首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Raising the tonicity of the fluid bathing frog atrial trabeculae has three effects: an initial sustained relaxation, which depends on muscle length and probably originates from structures other than the contractile apparatus; an increase in contractility, which takes the form of a transient contracture if the muscle has previously undergone a high-potassium or a low-sodium contracture, and a further rise in contractility on return to isotonic fluid (off response). The hypertonic contractures, in high-potassium or sodium-free fluids, are antagonized by local anaesthetics and in Na-free media they are unaffected by removal of extracellular coat, whereas the 'off responses' are insensitive to both experimental manoeuvres. Hypotonic fluids applied in Na-free solutions evoke a phasic and a tonic contracture, neither of which are sensitive to local anaesthetics. The tonic response is reduced by lowering the [Ca]o, and occurs at tonicities where the permeability of the cell membrane is likely to have increased. The phasic part of the hypotonic contracture resembles the 'off response' which follows exposure to hypertonic solution. The effects of hypertonic fluids and of caffeine on frog heart are alike, and are also similar to the responses induced by the same experimental manoeuvres in skeletal muscle. The results can be interpreted by assuming that the intracellular relaxing system in frog heart is sensitive to changes in tonicity, and could be functionally divided.  相似文献   

2.
The effect of the antianginal drug nonachlazine displaying antiarrhythmic properties on transmembrane ionic currents in the frog atrial fibers was studied in experiments on isolated trabeculae of the frog atria. The transmembrane ionic currents were measured by a voltage clamp technique based on a double sucrose gap arrangement. Nonachlazine (1.03 X 10(-5) mol/l) decreased the amplitude of the fast inward current whatever the magnitude of membrane potential. The drug inhibited the slow inward current and prevented the adrenaline-increased permeability of the slow sodium-calcium channel if external sodium ions were replaced by choline chloride. Nonachlazine (1.03 X 10(-5) mol/l) diminished the amplitude of the inward ionic current in a calcium-free medium as well. The stimulatory effect of prostacycline (2 X 10(-7) mol/l) on the fast inward ionic current was inhibited by nonachlazine. The data obtained suggest that the antiarrhythmic effect of nonachlazine might be linked with the inhibition of the fast sodium inward current and the slow calcium inward current.  相似文献   

3.
The new nonhormonal activator of adenylate cyclase forskolin was studied on frog atrial trabeculae by current clamp and voltage clamp methods using a double sucrose gap technique. Forskolin (5 X 10(-6) M to 2 X 10(-5) M) dose-dependently increased action potential duration, the height of the plateau and twitch tension. The time constant for inactivation of the slow inward current and the steady state kinetic variables of calcium channels d infinity and f infinity remained uneffected. Forskolin increased the amplitude of slow inward calcium current isi and of the phasic tension related to it. The maximal conductance gsi increased. These effects were indistinguishable from those obtained earlier on cardiac fibers with hormonal and nonhormonal activators of cyclic AMP-dependent phosphorylation. The beta-adrenoreceptor antagonist propranolol 10(-6)M did not decrease the effect of forskolin. Forskolin had no effect when slow inward current was previously increased by saturating concentrations of the beta-adrenergic agonist isoproterenol (10(-4)M). Our results are in favour of the hypothesis that cyclic AMP-dependent phosphorylation of membrane proteins modulates the Ca-entry in the heart cells through the membrane slow calcium channels.  相似文献   

4.
Electrical and mechanical responses of frog atrial trabeculae were studied simultaneously using the double-sucrose gap method. Action potentials and twitch tension could be successively generated in fibers in which the slow inward calcium channel current was not observed. As a rule, this could be obtained in the course of a long experiment (3 to 4 hours). Peak tension was shown to increase monotonically with membrane potential in these preparations. In preparations with the slow inward current the total peak tension could be separated into two components. The first component (tonic) monotonically increased with the membrane potential and was probably related to Na/Ca exchange (Horackova 1984). The potential dependency of the second (phasic) component correlated with that of the slow inward calcium current. Only the tonic but not the phasic component could be observed in preparations without the presence of the slow inward calcium current. The tonic component prevailed when both the slow inward current and phasic tension were greatly reduced by nifedipine. Long experiments, long depolarizing clamp pulses, a metabolic inhibitor 2,4-dinitrophenol, inhibitors of Na/K pump ouabain and AR-L57, toxins promoting intracellular sodium accumulation (aconitine, scorpion toxin) were all shown to increase the tonic tension, but not the slow inward current; they induced a transition from biphasic tension-voltage curve into a monotonically increasing one. We concluded that these procedures and agents greatly stimulate Ca influx via Na/Ca exchange. These results show that Na/Ca exchange can function as a reserve system of Ca2+ used for contraction, thus supporting the heart function, especially under unfavourable metabolic conditions.  相似文献   

5.
The effects of putative phospholipase A2 inhibitors mepacrine and chloroquine on membrane ionic currents were studied in intact frog atrial trabeculae. Both agents decreased slow calcium channel current Isi and fast sodium channel current If. Isi was affected twice at least in comparison to If. Half-block of Isi was observed at approximately 10(-6) mol/l mepacrine and at approximately 10(-5) mol/l chloroquine. These effects on transmembrane ionic transport should be considered when using the above agents as phospholipase inhibitors or antiarrhythmic drugs.  相似文献   

6.
Preparations of frog atrial muscle were stimulated at 0.33 Hz under voltage clamp, and the resulting membrane currents and the twitch contractions (phasic and tonic components) were recorded in presence or absence of D600. It has been suggested earlier that the tonic contractions are regulated by an electrogenic Na+-Ca2+ exchange, while the phasic contractions are closely related to the calcium inward current (Isi). In this study we investigated the effect of D600 on (i) the tonic contractions elicited by long depolarizing pulses of high amplitude and (ii) the tonic contractions increased by veratrine and resulting in a positive inotropic effect (PIE). While 1 microM D600 reduced Isi and the corresponding phasic contractions to less than 30% of their initial values within 5 min, the inhibitory effect of D600 on tonic contractions developed more slowly or higher concentrations of D600 were needed to achieve similar levels of inhibition within the same time. Furthermore, applications of 5-50 microM D600 inhibited the veratrine-induced increase in INa and in tonic contractions, and both of these effects again fully developed within a few minutes of D600 being removed. The results demonstrate that D600 inhibits not only Isi and phasic contractions, but it also decreases the tonic contractions in frog heart. The effect on the tonic component is associated with inhibition of the tetrodotoxin-sensitive Na+ inward current, and the results are interpreted as an effect of D600 on the electrogenic Na+-Ca2+ exchange. These additional effects of D600 should be considered when using this drug as the "specific" calcium channel blocker.  相似文献   

7.
Membrane excitability is a critical regulatory step in skeletal muscle contraction and is modulated by local ionic concentrations, conductances, ion transporter activities, temperature, and humoral factors. Intense fatiguing contractions induce cellular K(+) efflux and Na(+) and Cl(-) influx, causing pronounced perturbations in extracellular (interstitial) and intracellular K(+) and Na(+) concentrations. Muscle interstitial K(+) concentration may increase 1- to 2-fold to 11-13 mM and intracellular K(+) concentration fall by 1.3- to 1.7-fold; interstitial Na(+) concentration may decline by 10 mM and intracellular Na(+) concentration rise by 1.5- to 2.0-fold. Muscle Cl(-) concentration changes reported with muscle contractions are less consistent, with reports of both unchanged and increased intracellular Cl(-) concentrations, depending on contraction type and the muscles studied. When considered together, these ionic changes depolarize sarcolemmal and t-tubular membranes to depress tetanic force and are thus likely to contribute to fatigue. Interestingly, less severe local ionic changes can also augment subtetanic force, suggesting that they may potentiate muscle contractility early in exercise. Increased Na(+)-K(+)-ATPase activity during exercise stabilizes Na(+) and K(+) concentration gradients and membrane excitability and thus protects against fatigue. However, during intense contraction some Na(+)-K(+) pumps are inactivated and together with further ionic disturbances, likely precipitate muscle fatigue.  相似文献   

8.
(Na(+) + K(+))-ATPase regulates both excitability and contractility of the heart. Little is known about the molecular basis of the enzyme that underlies its cardiac regulatory functions. Here we demonstrate that the (833)KRQPRNPKTDKLVNE(847) region, which resides in the alpha-subunit of rat (Na(+) + K(+))-ATPase, directly participates in the regulation of cardiac contraction. A site-specific antibody (SSA95) against this peptide sequence markedly increased intracellular Ca(2+) transients and contraction (EC(50) = 11.4 nM) in intact rat heart cells without inactivating the (Na(+) + K(+))-ATPase. These novel findings establish the first link between a precise structural region of the (Na(+) + K(+))-ATPase and cardiac positive inotropy.  相似文献   

9.
Since highly concentrated NaCl is suspected to enter into the heart of the seawater eels, effects of high NaCl concentration on the atrial beating was examined, and plasma ion concentrations and osmolality were measured simultaneously in the blood collected from the bulbus arteriosus and from the caudal vessels. When 100 mmole l(-1) NaCl was added to the incubation medium, atrial contraction was enhanced significantly. Similar enhancement in the atrial contractility was also observed after addition of NaCH3SO4 (100 mmole l(-1)) or Tris HCl (100 mmole l(-1)), indicating that Na(+) and Cl(-) are not indispensable for the positive inotropic effect. Furthermore, an addition of sucrose (200 mmole l(-1)) also enhanced the contraction. Inversely, hypoosmotic solution reduced the atrial contraction. These results indicate that the eel atrium is sensitive to environmental osmolarity. The eel atrium responses even at 20 mmole l(-1) sucrose. Such an inotropic effect of sucrose was not depressed after blocking adrenoceptor with betaxolol, a beta1-adrenoceptor antagonist, indicating that the effect is not due to adrenaline release from nerve endings. Plasma osmolality and Na(+) concentration were higher in bulbus arteriosus than in caudal vessels, indicating that the eel heart is really exposed to hyperosmotic blood in sea water. The osmotically enhanced atrial contraction may increase the cardiac outflow into the gill. Such property of the atrium would have clear advantages for seawater teleosts, since the concentrated NaCl from the esophagus can be excreted immediately through the gill, without circulating their body, and blood homeostasis can be maintained efficiently.  相似文献   

10.
Temperature has a strong influence on the excitability and the contractility of the ectothermic heart that can be alleviated in some species by temperature acclimation. The molecular mechanisms involved in the temperature-induced improvement of cardiac contractility and excitability are, however, still poorly known. The present study examines the role of sarcolemmal K(+) currents from rainbow trout (Oncorhynchus mykiss) cardiac myocytes after thermal acclimation. The two major K(+) conductances of the rainbow trout cardiac myocytes were identified as the Ba(2+)-sensitive background inward rectifier current (I(K1)) and the E-4031-sensitive delayed rectifier current (I(Kr)). In atrial cells, the density of I(K1) is very low and the density of I(Kr) is remarkably high. The opposite is true for ventricular cells. Acclimation to cold (4 degrees C) modified the two K(+) currents in opposite ways. Acclimation to cold increases the density of I(Kr) and depresses the density of I(K1). These changes in repolarizing K(+) currents alter the shape of the action potential, which is much shorter in cold-acclimated than warm-acclimated (17 degrees C) trout. These results provide the first concrete evidence that K(+) channels of trout cardiac myocytes are adaptable units that provide means to regulate cardiac excitability and contractility as a function of temperature.  相似文献   

11.
Pharmacological treatment of atrial fibrillation (AF) exhibits limited efficacy. Further developments require a comprehensive characterization of ionic modulators of electrophysiology in human atria. Our aim is to systematically investigate the relative importance of ionic properties in modulating excitability, refractoriness, and rotor dynamics in human atria before and after AF-related electrical remodeling (AFER). Computer simulations of single cell and tissue atrial electrophysiology were conducted using two human atrial action potential (AP) models. Changes in AP, refractory period (RP), conduction velocity (CV), and rotor dynamics caused by alterations in key properties of all atrial ionic currents were characterized before and after AFER. Results show that the investigated human atrial electrophysiological properties are primarily modulated by maximal value of Na(+)/K(+) pump current (G(NaK)) as well as conductances of inward rectifier potassium current (G(K1)) and fast inward sodium current (G(Na)). G(NaK) plays a fundamental role through both electrogenic and homeostatic modulation of AP duration (APD), APD restitution, RP, and reentrant dominant frequency (DF). G(K1) controls DF through modulation of AP, APD restitution, RP, and CV. G(Na) is key in determining DF through alteration of CV and RP, particularly in AFER. Changes in ionic currents have qualitatively similar effects in control and AFER, but effects are smaller in AFER. The systematic analysis conducted in this study unravels the important role of the Na(+)/K(+) pump current in determining human atrial electrophysiology.  相似文献   

12.
Using differential centrifugation in sucrose density gradient, from muscles of the frog fractions were obtained which contain fragments of sarcolemma, as well as membranes of T-system tubules and sarcoplasmic reticulum. In isolated membrane fractions, studies were made on the activity of cation-stimulated ATPases (Na+, K+-, Ca2+, Mg2+- and Mg2+-ATPases). Enzymic and electrophoretic analyses showed that the highest content of Mg2+-ATPases is typical of the fractions which are located on the surface of 35% sucrose. The data obtained indicate that Mg2+-ATPase is the enzyme which is specific for the membranes of T-system tubules in skeletal muscles of not only birds but amphibians as well. From cardiac muscle of the frog, membrane fraction was isolated which is similar (with respect to its predominant content of Mg2+-ATPase) to the membranes of T-system tubules. It is suggested that the presence of Mg2+-ATPase in these membranes is a common property of phasic striated muscle fibers in all mature vertebrate animals.  相似文献   

13.
The origin and regulatory mechanisms of tonic tension (Ca current-independent component of contractility) were investigated in frog atrial muscle under voltage-clamp conditions. Tonic tension was elicited by depolarizing pulses of 160 mV (Em = +90 mV, i.e., close to E ca) and 400--600 ms long. An application of Na-free (LiCl) or Ca-free Ringer's solutions resulted in a fast (less than 120 s), almost complete abolition of tonic tension. When [Na]o was reduced (with LiCl or sucrose as the substitutes), the peak tonic tension increased transiently and then decreased below the control level. The transient changes in tonic tension were prevented by using low-Na, low-Ca solutions where the ratios [Ca]0/[Na]40 to [Ca]o/[Na]4o were kept constant (1.1 X 10(-8) mM-3 to 8.7 X 10(-13) mM-5). Na-free (LiCl) solution elicited contractures accompanied by a membrane hyperpolarization or by an outward current even when the Na-K pump was inhibited. 15 mM MnCl2 (or 3 mM LaCl3) inhibited the development of the Na-free contracture and the related part of hyperpolarization or the outward current. In conclusion, our results indicate that tonic tension is regulated by a Na-Ca exchange mechanism. Furthermore, they suggest that this exchange could be electrogenic (exchanging three or more Na ions for one Ca ion) and thus voltage dependent. The possible contribution of an electrogenic Na-Ca exchange in the maintenance of cardiac membrane potential is discussed.  相似文献   

14.
Mechanical load is an important regulator of cardiac force. Stretching human atrial and ventricular trabeculae elicited a biphasic force increase: an immediate increase (Frank-Starling mechanism) followed by a further slow increase (slow force response, SFR). In ventricle, the SFR was unaffected by AT- and ET-receptor antagonism, by inhibition of protein-kinase-C, PI-3-kinase, and NO-synthase, but attenuated by inhibition of Na+/H+- (NHE) and Na+/Ca2+ exchange (NCX). In atrium, however, neither NHE- nor NCX-inhibition affected the SFR. Stretch elicited a large NHE-dependent [Na+]i increase in ventricle but only a small, NHE-independent [Na+]i increase in atrium. Stretch-activated non-selective cation channels contributed to basal force development in atrium but not ventricle and were not involved in the SFR in either tissue. Interestingly, inhibition of AT receptors or pre-application of angiotensin II or endothelin-1 reduced the atrial SFR. Furthermore, stretch increased phosphorylation of atrial myosin light chain 2 (MLC2) and inhibition of myosin light chain kinase (MLCK) attenuated the SFR in atrium and ventricle. Thus, in human heart both atrial and ventricular myocardium exhibit a stretch-dependent SFR that might serve to adjust cardiac output to increased workload. In ventricle, there is a robust NHE-dependent (but angiotensin II- and endothelin-1-independent) [Na+]i increase that is translated into a [Ca2+]i and force increase via NCX. In atrium, on the other hand, there is an angiotensin II- and endothelin-dependent (but NHE- and NCX-independent) force increase. Increased myofilament Ca2+ sensitivity through MLCK-induced phosphorylation of MLC2 is a novel mechanism contributing to the SFR in both atrium and ventricle.  相似文献   

15.
16.
A double sucrose gap voltage clamp technic has been used to study the extra-current induced by acetylcholine (Iach) on the myocardial membrane on frog atrial trabeculae. I) No desensitization of the Iach current is noted for repeated perfusions of Ach. II) The Iach current is suppressed by atropine. III) The reversal potential Each is more negative than the resting potential --20 mV less than or equal to Each less than or equal to OmV.IV) The relationship Iach/Holding potential for various [K+]o shows a) That Each behaved as a potassium electrode, b) an inward going rectification. These results indicate that the cholinergic receptor might be related with the gk1 channel.  相似文献   

17.
18.
In order to test the requirement of Na channel inactivation for the action of local anesthetics, we investigated the inhibitory effects of quaternary and tertiary amine anesthetics on normally inactivating and noninactivating Na currents in squid axons under voltage clamp. Either the enzymatic mixture pronase, or chloramine-T (CT), a noncleaving, oxidizing reagent, was used to abolish Na channel inactivation. We found that both the local anesthetics QX-314 and etidocaine, when perfused internally at 1 mM, elicited a "tonic" (resting) block of Na currents, a "time-dependent" block that increased during single depolarizations, and a "use-dependent" (phasic) block that accumulated as a result of repetitive depolarizations. All three effects occurred in both control and CT-treated axons. As in previous reports, little time-dependent or phasic block by QX-314 appeared in pronase-treated axons, although tonic block remained. Time-dependent block was greatest and fastest at large depolarizations (Em greater than +60 mV) for both the control and CT-treated axons. The recovery kinetics from phasic block were the same in control and CT-modified axons. The voltage dependence of the steady state phasic block in CT-treated axons differed from that in the controls; an 8-10% reduction of the maximum phasic block and a steepening and shift of the voltage dependence in the hyperpolarizing direction resulted from CT treatment. The results show that these anesthetics can bind rapidly to open Na channels in a voltage-dependent manner, with no requirement for fast inactivation. We propose that the rapid phasic blocking reactions in nerve are consequences primarily of channel activation, mediated by binding of anesthetics to open channels, and that the voltage dependence of phasic block arises directly from that of channel activation.  相似文献   

19.
Properties of "creep currents" in single frog atrial cells   总被引:1,自引:5,他引:1  
Changes in membrane current in response to an elevation of [Na]i were studied in enzymatically dispersed frog atrial cells. Na loading by either intracellular dialysis or exposure to the Na ionophore monensin produces changes in membrane current that resemble the "creep currents" originally observed in cardiac Purkinje fibers during exposure to low-K solutions. Na loading induces a transient outward current during depolarizing voltage-clamp pulses, followed by an inward current in response to repolarization back to the holding potential. In contrast to cardiac Purkinje fibers, Na loading of frog atrial cells induces creep currents without accompanying transient inward currents. Creep currents induced by Na loading are insensitive to K channel antagonists like Cs and 4-aminopyridine; they are not influenced by doses of Ca channel antagonists that abolish iCa, but are sensitive to changes in [Ca]o or [Na]o. A comparison of the time course of development of inward creep currents are not tail currents associated with iCa. Inward creep currents can also be induced by experimental interventions that increase the iCa amplitude. Exposure to isoproterenol enhances the iCa amplitude and induces inward creep currents; both can be attenuated by Ca channel antagonists. Both inward and outward creep currents are blocked by low doses of La, independently of La's ability to block iCa. It is concluded that (a) creep currents are not mediated by voltage-gated Na, Ca, or K channels or by an electrogenic Na,K pump; (b) inward creep currents induced either by Na loading or in response to an increase in the amplitude of iCa are triggered by an elevation of [Ca]i; and (c) creep currents may be generated by either an electrogenic Na/Ca exchange mechanism or by a nonselective cation channel activated by [Ca]i.  相似文献   

20.
A single sucrose gap techniques has been used to study action potentials and phase plane trajectories of them in atrial trabeculae of the rabbit. Using polynomial representations of current-voltage relationships a model of membrane action potential of atrial myocardial fibres is described and allows an interpretation of recording data from the phase plane trajectories. Our findings show: 1. Increasing extracellular calcium concentration increases a potassium conductivity of the atrial membrane. 2. An anomalous rectification concerning repolarizing currents in atrial fibres decreases with increasing extracellular calcium. 3. Acetylcholine (3.10(-4) g.cm-3) abolishes the anomalous rectification. These results are discussed in relation to previous electrophysiological studies of negative electrotropic effects of acetylcholine in cardiac muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号