首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 346 毫秒
1.

Background  

A number of completely sequenced eukaryotic genome data are available in the public domain. Eukaryotic genes are either 'intron containing' or 'intronless'. Eukaryotic 'intronless' genes are interesting datasets for comparative genomics and evolutionary studies. The SEGE database containing a collection of eukaryotic single exon genes is available. However, SEGE is derived using GenBank. The redundant, incomplete and heterogeneous qualities of GenBank data are a bottleneck for biological investigation in comparative genomics and evolutionary studies. Such studies often require representative gene sets from each genome and this is possible only by deriving specific datasets from completely sequenced genome data. Thus Genome SEGE, a database for 'intronless' genes in completely sequenced eukaryotic genomes, has been constructed.  相似文献   

2.

Background  

The availability of newly sequenced vertebrate genomes, along with more efficient and accurate alignment algorithms, have enabled the expansion of the field of comparative genomics. Large-scale genome rearrangement events modify the order of genes and non-coding conserved regions on chromosomes. While certain large genomic regions have remained intact over much of vertebrate evolution, others appear to be hotspots for genomic breakpoints. The cause of the non-uniformity of breakpoints that occurred during vertebrate evolution is poorly understood.  相似文献   

3.
The availability of bacterial genome sequences raises an important new problem - how can one move from completely sequenced microorganisms as a reference to the hundreds and thousands of other strains or isolates of the same or related species that will not be sequenced in the near future? An efficient way to approach this task is the comparison of genomes by subtractive hybridization. Recently we developed a sensitive and reproducible subtraction procedure for comparison of bacterial genomes, based on the method of suppression subtractive hybridization (SSH). In this work we demonstrate the applicability of subtractive hybridization to the comparison of the related but markedly divergent bacterial species Escherichia coli and Salmonella typhimurium. Clone libraries representing sequence differences were obtained and, in the case of completely sequenced E. coli genome, the differences were directly placed in the genome map. About 60% of the differential clones identified by SSH were present in one of the genomes under comparison and absent from the other. Additional differences in most cases represent sequences that have diverged considerably in the course of evolution. Such an approach to comparative bacterial genomics can be applied both to studies of interspecies evolution - to elucidate the "strategies" that enable different genomes to fit their ecological niches - and to development of diagnostic probes for the rapid identification of pathogenic bacterial species.  相似文献   

4.
There has been a dramatic increase in the number of completely sequenced bacterial genomes during the past two years as a result of the efforts both of public genome agencies and the pharmaceutical industry. The availability of completely sequenced genomes permits more systematic analyses of genes, evolution and genome function than was otherwise possible. Using computational methods - which are used to identify genes and their functions including statistics, sequence similarity, motifs, profiles, protein folds and probabilistic models - it is possible to develop characteristic genome signatures, assign functions to genes, identify pathogenic genes, identify metabolic pathways, develop diagnostic probes and discover potential drug-binding sites. All of these directions are critical to understanding bacterial growth, pathogenicity and host-pathogen interactions.  相似文献   

5.

Background  

The availability of increasing amounts of sequence data from completely sequenced genomes boosts the development of new computational methods for automated genome annotation and comparative genomics. Therefore, there is a need for tools that facilitate the visualization of raw data and results produced by bioinformatics analysis, providing new means for interactive genome exploration. Visual inspection can be used as a basis to assess the quality of various analysis algorithms and to aid in-depth genomic studies.  相似文献   

6.
The recently sequenced genome of the predatory delta-proteobacterium Bdellovibrio bacteriovorus provides many insights into its metabolism and evolution. Because its genes are reasonably uniform in G+C content, it was suggested that B. bacteriovorus actively resists recombination with foreign DNA and horizontal transfer of DNA from other bacteria. To investigate this further, we carried out a variety of phylogenetic and comparative genomics analyses using data from >200 microbial genomes, including several published delta-proteobacteria. Although there might be little evidence for the extensive recent transfer of genes, we demonstrate that ancient lateral gene acquisition has shaped the B. bacteriovorus genome to a great extent.  相似文献   

7.
The recent genome sequencing of a non-vertebrate deuterostome, the ascidian tunicate Ciona intestinalis, makes a substantial contribution to the fields of evolutionary and developmental biology.1 Tunicates have some of the smallest bilaterian genomes, embryos with relatively few cells, fixed lineages and early determination of cell fates. Initial analyses of the C. intestinalis genome indicate that it has been evolving rapidly. Comparisons with other bilaterians show that C. intestinalis has lost a number of genes, and that many genes linked together in most other bilaterians have become uncoupled. In addition, a number of independent, lineage-specific gene duplications have been detected. These new results, although interesting in themselves, will take on a deeper significance once the genomes of additional invertebrate deuterostomes (e.g. echinoderms, hemichordates and amphioxus) have been sequenced. With such a broadened database, comparative genomics can begin to ask pointed questions about the relationship between the evolution of genomes and the evolution of body plans.  相似文献   

8.

Background  

The introduction of next generation sequencing approaches has caused a rapid increase in the number of completely sequenced genomes. As one result of this development, it is now feasible to analyze large groups of related genomes in a comparative approach. A main task in comparative genomics is the identification of orthologous genes in different genomes and the classification of genes as core genes or singletons.  相似文献   

9.
Yeasts provide a powerful model system for comparative genomics research. The availability of multiple complete genome sequences from different fungal groups--currently 18 hemiascomycetes, 8 euascomycetes and 4 basidiomycetes--enables us to gain a broad perspective on genome evolution. The sequenced genomes span a continuum of divergence levels ranging from multiple individuals within a species to species pairs with low levels of protein sequence identity and no conservation of gene order. One of the most interesting emerging areas is the growing number of events such as gene losses, gene displacements and gene relocations that can be attributed to the action of natural selection.  相似文献   

10.
The first bacterial genome was sequenced in 1995, and the first archaeal genome in 1996. Soon after these breakthroughs, an exponential rate of genome sequencing was established, with a doubling time of approximately 20 months for bacteria and approximately 34 months for archaea. Comparative analysis of the hundreds of sequenced bacterial and dozens of archaeal genomes leads to several generalizations on the principles of genome organization and evolution. A crucial finding that enables functional characterization of the sequenced genomes and evolutionary reconstruction is that the majority of archaeal and bacterial genes have conserved orthologs in other, often, distant organisms. However, comparative genomics also shows that horizontal gene transfer (HGT) is a dominant force of prokaryotic evolution, along with the loss of genetic material resulting in genome contraction. A crucial component of the prokaryotic world is the mobilome, the enormous collection of viruses, plasmids and other selfish elements, which are in constant exchange with more stable chromosomes and serve as HGT vehicles. Thus, the prokaryotic genome space is a tightly connected, although compartmentalized, network, a novel notion that undermines the ‘Tree of Life’ model of evolution and requires a new conceptual framework and tools for the study of prokaryotic evolution.  相似文献   

11.
Recent advances in genomics open promising opportunities to investigate adaptive trait evolution at the molecular level. However, the accuracy of comparative genomic studies strongly relies on the taxonomic coverage, which can be insufficient when based solely on a few completely sequenced genomes. In particular, when distantly-related genomes are compared, orthology of some genes can be misidentified and long branches of the phylogenetic reconstructions make inappropriate positive selection tests, as recently exemplified with investigations on the evolution of the C4 photosynthetic pathway in grasses. Complementary studies addressing the diversification of multigene families in a broad taxonomic sample can help circumvent these issues.  相似文献   

12.
Genome and protein evolution in eukaryotes   总被引:1,自引:0,他引:1  
The past year has seen the completion of the genome sequence of the flowering plant Arabidopsis thaliana and the initial sequence reports of the human genome. The availability of completely sequenced eukaryotic genomes from disparate phylogenetic lineages has opened the door to comparative analyses and a better understanding of the evolutionary processes shaping genomes. Complex many-to-many relationships between genes from different species appear to be the norm, suggesting that transfer of detailed functional annotation will not be straightforward. In addition to expansion and contraction of gene families, new genes evolve from recombination of pre-existing domains, although some domain families do appear to have evolved recently and to be specific to restricted phylogenetic lineages. The overall picture is of a huge diversity of gene content within eukaryotic genomes, reflecting different functional demands in different species.  相似文献   

13.
The availability of a wider range of promoters for regulated expression in valuable transgenic crops would benefit functional genomics studies and current biotechnology programs aimed at improved productivity. Polymerase chain reaction (PCR)-based genome walking techniques are commonly used to isolate promoters or 5' flanking genomic regions adjacent to known cDNA sequences in genomes that are not yet completely sequenced. However, these techniques are problematic when applied directly to DNA isolated from crops with highly complex and large genomes. An adaptor ligation-mediated PCR-based BAC genome walking method is described here for the efficient isolation of promoters of multigene family members, such as the putative defense and fiber biosynthesis DIRIGENT genes that are abundant in the stem of sugarcane, a species with a highly polyploid genome. The advantage of this method is the efficient and specific amplification of the target promoter using BAC genomic DNA as template for the adaptor ligation-mediated PCR walking.  相似文献   

14.
Unicellular eukaryotes were among the first ones to be selected for complete genome sequencing because of the small size of their genomes and their interactions with humans and a broad range of animals and plants. Currently, ten completely sequenced unicellular genome sequences have been publicly released and as the number of available unicellular genomes increases, comparative genomics analysis within this group of organisms becomes more and more instructive. However, such an analysis is difficult to carry out without a suitable platform gathering not only the original annotations but also relevant information available in public databases or obtained by applying common bioinformatics methods. With the aim of solving these difficulties, we have developed a web-accessible database named u-Genome, the unicellular genome design database. The database is unique in featuring three datasets namely (1) orthologous proteins (2) paralogous proteins and (3) statistical distributions on exons, introns, intergenic DNA and correlations between them. A tool, Uniview, designed to visualize the gene structures for individual genes in the genome is also integrated. This database is of importance in understanding unicellular genome design and architecture and evolution related studies. The database is available through a web interface at http://sege.ntu.edu.sg/wester/ugenome.  相似文献   

15.
ABSTRACT: BACKGROUND: The availability of a large number of recently sequenced vertebrate genomes opens new avenues to integrate cytogenetics and genomics in comparative and evolutionary studies. Cytogenetic mapping can offer alternative means to identify conserved synteny shared by distinct genomes and also to define genome regions that are still not fine characterized even after wide-ranging nucleotide sequence efforts. An efficient way to perform comparative cytogenetic mapping is based on BAC clones mapping by fluorescence in situ hybridization. In this report, to address the knowledge gap on the genome evolution in cichlid fishes, BAC clones of an Oreochromis niloticus library covering the linkage groups (LG) 1, 3, 5, and 7 were mapped onto the chromosomes of 9 African cichlid species. The cytogenetic mapping data were also integrated with BAC-end sequences information of O. niloticus and comparatively analyzed against the genome of other fish species and vertebrates. RESULTS: The location of BACs from LG1, 3, 5, and 7 revealed a strong chromosomal conservation among the analyzed cichlid species genomes, which evidenced a synteny of the markers of each LG. Comparative in silico analysis also identified large genomic blocks that were conserved in distantly related fish groups and also in other vertebrates. CONCLUSIONS: Although it has been suggested that fishes contain plastic genomes with high rates of chromosomal rearrangements and probably low rates of synteny conservation, our results evidence that large syntenic chromosome segments have been maintained conserved during evolution, at least for the considered markers. Additionally, our current cytogenetic mapping efforts integrated with genomic approaches conduct to a new perspective to address important questions involving chromosome evolution in fishes.  相似文献   

16.
We analyzed the nucleotide contents of several completely sequenced genomes, and we show that nucleotide bias can have a dramatic effect on the amino acid composition of the encoded proteins. By surveying the genes in 21 completely sequenced eubacterial and archaeal genomes, along with the entire Saccharomyces cerevisiae genome and two Plasmodium falciparum chromosomes, we show that biased DNA encodes biased proteins on a genomewide scale. The predicted bias affects virtually all genes within the genome, and it could be clearly seen even when we limited the analysis to sets of homologous gene sequences. Parallel patterns of compositional bias were found within the archaea and the eubacteria. We also found a positive correlation between the degree of amino acid bias and the magnitude of protein sequence divergence. We conclude that mutational bias can have a major effect on the molecular evolution of proteins. These results could have important implications for the interpretation of protein-based molecular phylogenies and for the inference of functional protein adaptation from comparative sequence data.  相似文献   

17.
王磊  陈景堂  张祖新 《遗传》2007,29(9):1055-1060
随着拟南芥、水稻等模式植物基因组测序计划的完成, 比较基因组学作为一门新兴学科, 近年来发展迅速, 为植物基因组的进化、结构和功能研究开辟了新的途径。文章综述了比较基因组学在作物比较遗传作图、基因结构区域的微共线性、ESTs和蛋白质水平的比较以及基于比较基因组学的基因和QTL的克隆等方面内容与研究进展, 分析了不同水平上比较基因组学研究策略的原理、特点、可行性, 以期为利用模式生物的基因和基因组数据、采用比较基因组学策略克隆作物重要性状功能基因、阐明基因组结构与进化提供帮助。  相似文献   

18.
玉米比较基因组学研究进展   总被引:4,自引:0,他引:4  
玉米是世界上重要的粮食作物 ,长期以来一直是遗传学、分子生物学和基因组学研究的重点对象。近十多年来 ,涉及到玉米的基因组学研究取得了很大进展。不仅在利用比较遗传作图方法方面发现玉米和其它植物 (尤其是禾谷类作物 )的基因组存在广泛的共线性 ,在较小的DNA区域上也发现存在微共线性。尽管还存在一些共线性的例外情形 ,进一步的比较基因组学研究将深入阐明玉米基因组的结构和进化 ,并把这些研究成果应用于基因发掘中。  相似文献   

19.
20.
The availability of a large number of complete genome sequences raises the question of how many genes are essential for cellular life. Trying to reconstruct the core of the protein-coding gene set for a hypothetical minimal bacterial cell, we have performed a computational comparative analysis of eight bacterial genomes. Six of the analyzed genomes are very small due to a dramatic genome size reduction process, while the other two, corresponding to free-living relatives, are larger. The available data from several systematic experimental approaches to define all the essential genes in some completely sequenced bacterial genomes were also considered, and a reconstruction of a minimal metabolic machinery necessary to sustain life was carried out. The proposed minimal genome contains 206 protein-coding genes with all the genetic information necessary for self-maintenance and reproduction in the presence of a full complement of essential nutrients and in the absence of environmental stress. The main features of such a minimal gene set, as well as the metabolic functions that must be present in the hypothetical minimal cell, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号