首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 575 毫秒
1.
2.
Cyclin-dependent kinases (Cdks) play a key role in orchestrating the coordination of cell cycle progression in proliferating cells. The escape from the proper, control of the cell cycle by the upregulation of cyclins or aberrant activation of Cdks leads to malignant transformation. In quiescent cells and/or terminally differentiated cells, the expression pattern and activity of Cdks is altered. In postmitotic neurons, expression of mitotic kinases is downregulated, whereas Cdk5 expression becomes upregulated. Similarly to other Cdks, free Cdk5 displays no enzymatic activity and requires complex formation with a specific regulatory subunit. Two activators of Cdk5 have been identified. p35 and its isoform p39 bind to, and thereby activate, Cdk5. Unlike mitotic kinases, Cdk5 does not require activating phosphorylation within the T-loop. Because p35 is a short-lived protein, the p35/Cdk5 complexes are unstable. The stability of the p35 protein is regulated by its Cdk5-mediated phosphorylation of p35. Activated p35/Cdk5 kinase phosphorylates numerous physiological targets. The proper phosphorylation of the most important substrates, such as τ protein and neurofilament H, is essential for the correct regulation of the cytoskeletal organization, thereby regulating cell adhesion, motility, and synaptic plasticity. Moreover, Cdk5 regulates the activity of the p53 tumor suppressor via phosphorylation. p53 is upregulated in multiple neuronal death paradigms, including hypoxia, ischemia, and excitotoxicity, and plays a key role in the induction of apoptosis. On the other hand, an abnormally high expression and elevated activity of Cdk5 was observed in neurodegenerative diseases, suggesting the application of Cdk inhibitors for their therapy. Considering the action of some Cdk inhibitors on the expression and activity of the p53 protein, their therapeutic efficacy must be carefully evaluated.  相似文献   

3.
Cyclin-dependent kinases (Cdks) play a key role in orchestrating the coordination of cell cycle progression in proliferating cells. The escape from the proper control of the cell cycle by the upregulation of cyclins or aberrant activation of Cdks leads to malignant transformation. In quiescent cells and/or terminally differentiated cells, the expression pattern and activity of Cdks is altered. In postmitotic neurons, expression of mitotic kinases is downregulated, whereas Cdk5 expression becomes upregulated. Similarly to other Cdks, free Cdk5 displays no enzymatic activity and requires complex formation with a specific regulatory subunit. Two activators of Cdk5 have been identified. p35 and its isoform p39 bind to, and thereby activate, Cdk5. Unlike mitotic kinases, Cdk5 does not require activating phosphorylation within the T-loop. Because p35 is a short-lived protein, the p35/Cdk5 complexes are unstable. The stability of the p35 protein is regulated by its Cdk5-mediated phosphorylation of p35. Activated p35/Cdk5 kinase phosphorylates numerous physiological targets. The proper phosphorylation of the most important substrates, such as tau protein and neurofilament H, is essential for the correct regulation of the cytoskeletal organization, thereby regulating cell adhesion, motility, and synaptic plasticity. Moreover, Cdk5 regulates the activity of the p53 tumor suppressor via phosphorylation. p53 is upregulated in multiple neuronal death paradigms, including hypoxia, ischemia, and excitotoxicity, and plays a key role in the induction of apoptosis. On the other hand, an abnormally high expression and elevated activity of Cdk5 was observed in neurodegenerative diseases, suggesting the application of Cdk inhibitors for their therapy. Considering the action of some Cdk inhibitors on the expression and activity of the p53 protein, their therapeutic efficacy must be carefully evaluated.  相似文献   

4.
Cyclin-dependent kinases (Cdks) play a key role in orchestrating the coordination of cell cycle progression in proliferating cells. The escape from the proper control of the cell cycle by the upregulation of cyclins or aberrant activation of Cdks leads to malignant transformation. In quiescent cells and/or terminally differentiated cells, the expression pattern and activity of Cdks is altered. In postmitotic neurons, expression of mitotic kinases is downregulated, whereas Cdk5 expression becomes upregulated. Similarly to other Cdks, free Cdk5 displays no enzymatic activity and requires complex formation with a specific regulatory subunit. Two activators of Cdk5 have been identified. p35 and its isoform p39 bind to, and thereby activate, Cdk5. Unlike mitotic kinases, Cdk5 does not require activating phosphorylation within the T-loop. Because p35 is a short-lived protein, the p35/Cdk5 complexes are unstable. The stability of the p35 protein is regulated by its Cdk5-mediated phosphorylation of p35. Activated p35/Cdk5 kinase phosphorylates numerous physiological targets. The proper phosphorylation of the most important substrates, such as tau protein and neurofilament H, is essential for the correct regulation of the cytoskeletal organization, thereby regulating cell adhesion, motility, and synaptic plasticity. Moreover, Cdk5 regulates the activity of the p53 tumor suppressor via phosphorylation. p53 is upregulated in multiple neuronal death paradigms, including hypoxia, ischemia, and excitotoxicity, and plays a key role in the induction of apoptosis. On the other hand, an abnormally high expression and elevated activity of Cdk5 was observed in neurodegenerative diseases, suggesting the application of Cdk inhibitors for their therapy. Considering the action of some Cdk inhibitors on the expression and activity of the p53 protein, their therapeutic efficacy must be carefully evaluated.  相似文献   

5.
Learning and memory are processes by which organisms acquire, retain and retrieve information. They result in modifications of behavior in response to new or previously encountered stimuli thereby enabling adaptation to a permanently changing environment. Protein phosphorylation has long been known to play a key role in triggering synaptic changes underlying learning and memory. Although intracellular phosphorylation and dephosphorylation is orchestrated by a complex network of interactions between a number of protein kinases and phosphatases, significant advances in the understanding of neuronal mechanisms underlying learning and memory have been achieved by investigating the actions of individual molecules under defined experimental conditions, brain areas, neuronal cells and their subcellular compartments. On the basis of these approaches, the cyclic AMP protein kinase (PKA), protein kinase C (PKC) and extracellularly regulated protein kinases 1 and 2 (Erk-1/2) have been identified as the core signaling pathways in memory consolidation. Here we review recent findings demonstrating an important novel role for Cdk5 in learning and memory. We suggest that some of the well-characterized roles of Cdk5 during neurodevelopmental processes, such as interactions with distinct cytoplasmic and synaptic target molecules, may be also involved in synaptic plasticity underlying memory consolidation within the adult central nervous system.  相似文献   

6.
Cdk5 (cyclin-dependent kinase 5) activity is dependent upon association with one of two neuron-specific activators, p35 or p39. Genetic deletion of Cdk5 causes perinatal lethality with severe defects in corticogenesis and neuronal positioning. p35(-/-) mice are viable with milder histological abnormalities. Although substantial evidence implicates Cdk5 in synaptic plasticity, its role in learning and memory has not been evaluated using mutant mouse models. We report here that p35(-/-) mice have deficiencies in spatial learning and memory. Close examination of hippocampal circuitry revealed subtle histological defects in CA1 pyramidal cells. Furthermore, p35(-/-) mice exhibit impaired long-term depression and depotentiation of long-term potentiation in the Schaeffer collateral CA1 pathway. Moreover, the Cdk5-dependent phosphorylation state of protein phosphatase inhibitor-1 was increased in 4-week-old mice due to increased levels of p39, which co-localized with inhibitor-1 and Cdk5 in the cytoplasm. These results demonstrate that p35-dependent Cdk5 activity is important to learning and synaptic plasticity. Deletion of p35 may shift the substrate specificity of Cdk5 due to compensatory expression of p39.  相似文献   

7.
Guan JS  Su SC  Gao J  Joseph N  Xie Z  Zhou Y  Durak O  Zhang L  Zhu JJ  Clauser KR  Carr SA  Tsai LH 《PloS one》2011,6(9):e25735
Memory formation is modulated by pre- and post-synaptic signaling events in neurons. The neuronal protein kinase Cyclin-Dependent Kinase 5 (Cdk5) phosphorylates a variety of synaptic substrates and is implicated in memory formation. It has also been shown to play a role in homeostatic regulation of synaptic plasticity in cultured neurons. Surprisingly, we found that Cdk5 loss of function in hippocampal circuits results in severe impairments in memory formation and retrieval. Moreover, Cdk5 loss of function in the hippocampus disrupts cAMP signaling due to an aberrant increase in phosphodiesterase (PDE) proteins. Dysregulation of cAMP is associated with defective CREB phosphorylation and disrupted composition of synaptic proteins in Cdk5-deficient mice. Rolipram, a PDE4 inhibitor that prevents cAMP depletion, restores synaptic plasticity and memory formation in Cdk5-deficient mice. Collectively, our results demonstrate a critical role for Cdk5 in the regulation of cAMP-mediated hippocampal functions essential for synaptic plasticity and memory formation.  相似文献   

8.
Although the roles of cyclin-dependent kinase 5 (Cdk5) in neurodevelopment and neurodegeneration have been studied extensively, regulation of Cdk5 activity has remained largely unexplored. We report here that glutamate, acting via NMDA or kainate receptors, can induce a transient Ca(2+)/calmodulin-dependent activation of Cdk5 that results in enhanced autophosphorylation and proteasome-dependent degradation of a Cdk5 activator p35, and thus ultimately down-regulation of Cdk5 activity. The relevance of this regulation to synaptic plasticity was examined in hippocampal slices using theta burst stimulation. p35(-/-) mice exhibited a lower threshold for induction of long-term potentiation. Thus excitatory glutamatergic neurotransmission regulates Cdk5 activity through p35 degradation, and this pathway may contribute to plasticity.  相似文献   

9.
Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase with a multitude of functions. Although Cdk5 is widely expressed, it has been studied most extensively in neurons. Since its initial characterization, the fundamental contribution of Cdk5 to an impressive range of neuronal processes has become clear. These phenomena include neural development, dopaminergic function and neurodegeneration. Data from different fields have recently converged to provide evidence for the participation of Cdk5 in synaptic plasticity, learning and memory. In this review, we consider recent data implicating Cdk5 in molecular and cellular mechanisms underlying synaptic plasticity. We relate these findings to its emerging role in learning and memory. Particular attention is paid to the activation of Cdk5 by p25, which enhances hippocampal synaptic plasticity and memory, and suggests formation of p25 as a physiological process regulating synaptic plasticity and memory.  相似文献   

10.
Neurofibrillary tangles (NFT) of hyperphosphorylated tau protein are a major pathological hallmark of Alzheimer's disease (AD). One of the tau phosphorylating kinases with pathological relevance in AD has been suggested to be the cyclin-dependent kinase 5 (Cdk5). The proposed mechanism leading to pathological Cdk5 activity is through induced cleavage of p35 to a proteolytic product, p25. To further study activation of Cdk5 and its role in tau phosphorylation in vitro, we used differentiated SH-SY5Y cells treated with neurotoxic stimuli or transfected with p25. We show that glutamate increased tau phosphorylation, concomitant with an increased Cdk5 activity achieved by upregulation of Cdk5 and p35 protein levels. Treatment with the calcium ionophore A23187 generated the calpain cleaved p25 fragment but only in toxic conditions that caused dephosphorylation and loss of tau. When p25 was transfected to the cells, increased tau phosphorylation was achieved. However, application of the Cdk5 inhibitor Roscovitine did not result in inhibition of tau phosphorylation possibly due to activation of extracellular regulated kinase 1/2 (Erk1/2), which also is capable of phosphorylating tau. Cdk5 and Erk1/2 kinases share some common substrates but impact of their cross talk on tau phosphorylation has not previously been demonstrated. We also show that p25 is degraded via the proteasome in Roscovitine treated cells.  相似文献   

11.
细胞周期素依赖性蛋白激酶5(cyclin dependent kinase-5,Cdk5)是细胞周期素蛋白激酶之一,具有很多磷酸化底物,其激动剂p35和p39特异存在于神经系统(CNS)。因此,Cdk5在神经系统中的功能尤为突出,成为神经科学研究热点。目前研究较多的是Cdk5在可卡因诱导的药物成瘾中的作用。在可卡因所致药物成瘾过程中,多巴胺系统,ΔFosB,神经元突触可塑性等发挥重要作用。Cdk5与这些分子相互作用,所以,Cdk5与可卡因诱导所致药物成瘾密切相关。阐明其与药物成瘾的联系,探索新的以Cdk5为靶向的药物,将可能成为成瘾治疗的有效手段。综述了在可卡因诱导的药物成瘾中Cdk5作用,以及Cdk5与相关的信号转导分子之间的相互调节。  相似文献   

12.
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase that has been implicated in learning, synaptic plasticity, neurotransmission, and numerous neurological disorders. We previously showed that conditional loss of Cdk5 in adult mice enhanced hippocampal learning and plasticity via modulation of calpain-mediated N-methyl-D-aspartic acid receptor (NMDAR) degradation. In the present study, we characterize the enhanced synaptic plasticity and examine the effects of long-term Cdk5 loss on hippocampal excitability in adult mice. Field excitatory post-synaptic potentials (fEPSPs) from the Schaffer collateral CA1 subregion of the hippocampus (SC/CA1) reveal that loss of Cdk5 altered theta burst topography and enhanced post-tetanic potentiation. Since Cdk5 governs NMDAR NR2B subunit levels, we investigated the effects of long-term Cdk5 knockout on hippocampal neuronal excitability by measuring NMDAR-mediated fEPSP magnitudes and population-spike thresholds. Long-term loss of Cdk5 led to increased Mg2+-sensitive potentials and a lower threshold for epileptiform activity and seizures. Biochemical analyses were performed to better understand the role of Cdk5 in seizures. Induced-seizures in wild-type animals led to elevated amounts of p25, the Cdk5-activating cofactor. Long-term, but not acute, loss of Cdk5 led to decreased p25 levels, suggesting that Cdk5/p25 may be activated as a homeostatic mechanism to attenuate epileptiform activity. These findings indicate that Cdk5 regulates synaptic plasticity, controls neuronal and behavioral stimulus-induced excitability and may be a novel pharmacological target for cognitive and anticonvulsant therapies.  相似文献   

13.
Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase involved in synaptogenesis and brain development, and its enzymatic activity is essential for slow forms of synaptic vesicle endocytosis. Recent work also has implicated Cdk5 in exocytosis and synaptic plasticity. Pharmacological inhibition of Cdk5 modifies secretion in neuroendocrine cells, synaptosomes, and brain slices; however, the specific mechanisms involved remain unclear. Here we demonstrate that dominant-negative inhibition of Cdk5 increases quantal size and broadens the kinetics of individual exocytotic events measured by amperometry in adrenal chromaffin cells. Conversely, Cdk5 overexpression narrows the kinetics of fusion, consistent with an increase in the extent of kiss-and-run exocytosis. Cdk5 inhibition also increases the total charge and current of catecholamine released during the amperometric foot, representing a modification of the conductance of the initial fusion pore connecting the granule and plasma membrane. We suggest that these effects are not attributable to an alteration in catecholamine content of secretory granules and therefore represent an effect on the fusion mechanism itself. Finally, mutational silencing of the Cdk5 phosphorylation site in Munc18, an essential protein of the late stages of vesicle fusion, has identical effects on amperometric spikes as dominant-negative Cdk5 but does not affect the amperometric feet. Cells expressing Munc18 T574A have increased quantal size and broader kinetics of fusion. These results suggest that Cdk5 could, in part, control the kinetics of exocytosis through phosphorylation of Munc18, but Cdk5 also must have Munc18-independent effects that modify fusion pore conductance, which may underlie a role of Cdk5 in synaptic plasticity.  相似文献   

14.
Cdk5 is a member of the cyclin-dependent kinase (Cdk) family. In contrast to other Cdks that promote cell proliferation, Cdk5 plays a role in regulating various neuronal functions, including neuronal migration, synaptic activity, and neuron death. Cdks responsible for cell proliferation need phosphorylation in the activation loop for activation in addition to binding a regulatory subunit cyclin. Cdk5, however, is activated only by binding to its activator, p35 or p39. Furthermore, in contrast to Cdk1 and Cdk2, which are inhibited by phosphorylation at Tyr-15, the kinase activity of Cdk5 is reported to be stimulated when phosphorylated at Tyr-15 by Src family kinases or receptor-type tyrosine kinases. We investigated the activation mechanism of Cdk5 by phosphorylation at Tyr-15. Unexpectedly, however, it was found that Tyr-15 phosphorylation occurred only on monomeric Cdk5, and the coexpression of activators, p35/p25, p39, or Cyclin I, inhibited the phosphorylation. In neuron cultures, too, the activation of Fyn tyrosine kinase did not increase Tyr-15 phosphorylation of Cdk5. Further, phospho-Cdk5 at Tyr-15 was not detected in the p35-bound Cdk5. In contrast, expression of active Fyn increased p35 in neurons. These results indicate that phosphorylation at Tyr-15 is not an activation mechanism of Cdk5 but, rather, indicate that tyrosine kinases could activate Cdk5 by increasing the protein amount of p35. These results call for reinvestigation of how Cdk5 is regulated downstream of Src family kinases or receptor tyrosine kinases in neurons, which is an important signaling cascade in a variety of neuronal activities.  相似文献   

15.
LaFerla FM  Kitazawa M 《Neuron》2005,48(5):711-712
Elevated activity of the Cdk5/p25 complex has been implicated in the pathogenesis of Alzheimer's disease. The report by Fischer and colleagues in this issue of Neuron describes a dichotomous role for the activator protein p25 in synaptic plasticity, learning, and memory, whereby transient expression in transgenic mice produces beneficial effects, but prolonged expression is detrimental. This work demonstrates the complexity of Cdk5/p25 in neuronal function and shows that dysregulation of a factor involved in plasticity can cause neurodegeneration.  相似文献   

16.
Munton RP  Vizi S  Mansuy IM 《FEBS letters》2004,567(1):121-128
Synaptic plasticity is a phenomenon contributing to changes in the efficacy of neuronal transmission. These changes are widely believed to be a major cellular basis for learning and memory. Protein phosphorylation is a key biochemical process involved in synaptic plasticity that operates through a tight balance between the action of protein kinases and protein phosphatases (PPs). Although the majority of research in this field has concentrated primarily on protein kinases, the significant role of PPs is becoming increasingly apparent. This review examines one such phosphatase, PP1, and highlights recent advances in the understanding of its intervention in synaptic and structural plasticity and the mechanisms of learning and memory.  相似文献   

17.
18.
Emerging evidence has indicated a regulatory role of cyclin-dependent kinase 5 (Cdk5) in synaptic plasticity as well as in higher brain functions, such as learning and memory. However, the molecular and cellular mechanisms underlying the actions of Cdk5 at synapses remain unclear. Recent findings demonstrate that Cdk5 regulates dendritic spine morphogenesis through modulating actin dynamics. Ephexin1 and WAVE-1, two important regulators of the actin cytoskeleton, have both been recently identified as substrates for Cdk5. Importantly, phosphorylation of these proteins by Cdk5 leads to dendritic spine loss, revealing a potential mechanism by which Cdk5 regulates synapse remodeling. Furthermore, Cdk5-dependent phosphorylation of ephexin1 is required for the ephrin-A1 mediated spine retraction, pointing to a critical role of Cdk5 in conveying signals from extracellular cues to actin cytoskeleton at synapses. Taken together, understanding the precise regulation of Cdk5 and its downstream targets at synapses would provide important insights into the multi-regulatory roles of Cdk5 in actin remodeling during dendritic spine development.  相似文献   

19.
Regulation of cytoskeletal dynamics is essential to neuronal plasticity during development and adulthood. Dysregulation of these mechanisms may contribute to neuropsychiatric and neurodegenerative diseases. The neuronal protein kinase, cyclin-dependent kinase 5 (Cdk5), is involved in multiple aspects of neuronal function, including regulation of cytoskeleton. A neuroproteomic search identified the tubulin-binding protein, stathmin, as a novel Cdk5 substrate. Stathmin was phosphorylated by Cdk5 in vitro at Ser25 and Ser38, previously identified as mitogen-activated protein kinase (MAPK) and p38 MAPKdelta sites. Cdk5 predominantly phosphorylated Ser38, while MAPK and p38 MAPKdelta predominantly phosphorylated Ser25. Stathmin was phosphorylated at both sites in mouse brain, with higher levels in cortex and striatum. Cdk5 knockout mice exhibited decreased phospho-Ser38 levels. During development, phospho-Ser25 and -Ser38 levels peaked at post-natal day 7, followed by reduction in total stathmin. Inhibition of protein phosphatases in striatal slices caused an increase in phospho-Ser25 and a decrease in total stathmin. Interestingly, the prefrontal cortex of schizophrenic patients had increased phospho-Ser25 levels. In contrast, total and phospho-Ser25 stoichiometries were decreased in the hippocampus of Alzheimer's patients. Thus, microtubule regulatory mechanisms involving the phosphorylation of stathmin may contribute to developmental synaptic pruning and structural plasticity, and may be involved in neuropsychiatric and neurodegenerative disorders.  相似文献   

20.
Cyclin-dependent kinase 5 (Cdk5) is a member of the cyclin-dependent kinase family that is involved in the regulation of the cell cycle. As their name suggests, the Cdks require association with activator proteins called cyclins for their activity. Cdk5, however, is unique to this family of proline-directed serine/threonine kinases on two accounts. Firstly, Cdk5 has not been found to function in the cell cycle and, although expressed in a number of tissues, its activity is restricted to the nervous system. Secondly, unlike the other members of the Cdk family, Cdk5 is not activated by association with a cyclin, although it can bind them. Instead, Cdk5 is activated by the activator proteins p35 and p39 that are structurally distinct from cyclins and have, for the most part, a neuronal-specific expression pattern. In the past decade of research on Cdk5, it is now established that Cdk5 activity is critical for the proper formation and function of the brain. Moreover, its role as a central kinase, phosphorylating its substrates in its 'cross-talk' control of other kinase and signal transduction pathways, has also been determined. In addition to the normal physiological role of Cdk5, the kinase has been implicated in certain neurodegenerative disorders. For example, Cdk5 associates with the proteolytic, more active p25 fragment that is derived through the cleavage of p35. In turn, the p25/Cdk5 complex aberrantly phosphorylates its substrates tau and neurofilaments, which has been implicated in the pathogenesis of these disorders. Here, we attempt to review the past decade of research on Cdk5 from our laboratory and others, on the roles of Cdk5 in nervous system function. Additionally, our research has recently uncovered a possible therapeutic avenue of research, focusing on inhibition of aberrant Cdk5 hyperactivity which may well be used to treat the symptoms of a number of neurodegenerative diseases. The elucidation of a specific inhibitor of p25/Cdk5, termed CIP, also inhibits p25/Cdk5-mediated tau phosphorylation. This may well provide us with avenues of research focusing on the inhibition of pathologically damaging p25/Cdk5 species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号