首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Germination and subsequent hydroponic growth under salt stress (100 mmol/L NaCl) triggered an accumulation of six major stress proteins and resulted in a growth arrest of young seedlings of rice (Oryza sativa L.) cv. Bura Rata. Based on two-dimensional electrophoretic resolution, partial amino acid sequencing and immunodetection techniques, four of the salt stress-induced polypeptides were identified as LEA proteins. Under all experimental conditions wherein seedlings exhibited superior halotolerance, salt stress-induced LEA proteins were expressed at low levels. In contrast, accumulation of LEA proteins was found associated with growth arrest. When returned to non-saline media, seedlings stressed with salt for four days recovered immediately. Longer exposure to 100 mmol/L NaCl, however, progressively delayed recovery and reduced the number of seedlings which could recover from salt stress. Recovery from salt stress was consistently accompanied by degradation of the salt stress-induced LEA proteins. The results of this study show that LEA proteins accumulate during the salinity-triggered growth arrest of young Bura Rata seedlings and are mobilised during the recovery of seedlings from salinity stress.  相似文献   

2.
Developing seeds accumulate late embryogenesis abundant (LEA) proteins, a family of intrinsically disordered and hydrophilic proteins that confer cellular protection upon stress. Many different LEA proteins exist in seeds, but their relative contribution to seed desiccation tolerance or longevity (duration of survival) is not yet investigated. To address this, a reference map of LEA proteins was established by proteomics on a hydrophilic protein fraction from mature Medicago truncatula seeds and identified 35 polypeptides encoded by 16 LEA genes. Spatial and temporal expression profiles of the LEA polypeptides were obtained during the long maturation phase during which desiccation tolerance and longevity are sequentially acquired until pod abscission and final maturation drying occurs. Five LEA polypeptides, representing 6% of the total LEA intensity, accumulated upon acquisition of desiccation tolerance. The gradual 30-fold increase in longevity correlated with the accumulation of four LEA polypeptides, representing 35% of LEA in mature seeds, and with two chaperone-related polypeptides. The majority of LEA polypeptides increased around pod abscission during final maturation drying. The differential accumulation profiles of the LEA polypeptides suggest different roles in seed physiology, with a small subset of LEA and other proteins with chaperone-like functions correlating with desiccation tolerance and longevity.  相似文献   

3.
Late Embryogenesis Abundant (LEA) proteins are commonly found in plants and other organisms capable of undergoing severe and reversible dehydration, a phenomenon termed “anhydrobiosis”. Here, we have produced a tagged version for three different LEA proteins: pTag-RAB17-GFP-N, Zea mays dehydrin-1dhn, expressed in the nucleo-cytoplasm; pTag-WCOR410-RFP, Tricum aestivum cold acclimation protein WCOR410, binds to cellular membranes, and pTag-LEA-BFP, Artemia franciscana LEA protein group 3 that targets the mitochondria. Sheep fibroblasts transfected with single or all three LEA proteins were subjected to air drying under controlled conditions. After rehydration, cell viability and functionality of the membrane/mitochondria were assessed. After 4 h of air drying, cells from the un-transfected control group were almost completely nonviable (1% cell alive), while cells expressing LEA proteins showed high viability (more than 30%), with the highest viability (58%) observed in fibroblasts expressing all three LEA proteins. Growth rate was markedly compromised in control cells, while LEA-expressing cells proliferated at a rate comparable to non-air-dried cells. Plasmalemma, cytoskeleton and mitochondria appeared unaffected in LEA-expressing cells, confirming the protection conferred by LEA proteins on these organelles during dehydration stress. This is likely to be an effective strategy when aiming to confer desiccation tolerance to mammalian cells.  相似文献   

4.

Main conclusion

Expression of eight LEA genes enhanced desiccation tolerance in yeast, including two LEA_2 genes encoding atypical, stably folded proteins. The recombinant proteins showed enzyme, but not membrane protection during drying. To screen for possible functions of late embryogenesis abundant (LEA) proteins in cellular stress tolerance, 15 candidate genes from six Arabidopsis thaliana LEA protein families were expressed in Saccharomyces cerevisiae as a genetically amenable eukaryotic model organism. Desiccation stress experiments showed that eight of the 15 LEA proteins significantly enhanced yeast survival. While none of the proteins belonging to the LEA_1, LEA_5 or AtM families provided protection to yeast cells, two of three LEA_2 proteins, all three LEA_4 proteins and three of four dehydrins were effective. However, no significantly enhanced tolerance toward freezing, salt, osmotic or oxidative stress was observed. While most LEA proteins are highly hydrophilic and intrinsically disordered, LEA_2 proteins are “atypical”, since they are more hydrophobic and possess a stable folded structure in solution. Because nothing was known about the functional properties of LEA_2 proteins, we expressed the three Arabidopsis proteins LEA1, LEA26 and LEA27 in Escherichia coli. The bacteria expressed all three proteins in inclusion bodies from which they could be purified and refolded. Correct folding was ascertained by Fourier transform Infrared (FTIR) spectroscopy. None of the proteins was able to stabilize liposomes during freezing or drying, but they were all able to protect the enzyme lactate dehydrogenase (LDH) from inactivation during freezing. Significantly, only LEA1 and LEA27, which also protected yeast cells during drying, were able to stabilize LDH during desiccation and subsequent rehydration.  相似文献   

5.
The brine shrimp Artemia is a well known stress tolerant invertebrate found on most continents. Under certain conditions females produce cysts (encysted gastrulae) that enter diapause, a state of obligate dormancy. During developmental formation of diapause embryos several different types of stress proteins accumulate in large amounts, including the late embryogenesis abundant (LEA) proteins. In this study we used a combination of heterologous group 3 LEA antibodies to demonstrate that the heat-soluble proteome of the cysts contains up to 12 distinct putative group 3 LEA proteins that complement the group 1 LEA proteins found previously. Most antibody-positive, heat-soluble proteins were larger than 50 kDa although antibody positive proteins of 20–38 kDa were also detected. Both nuclei and mitochondria had distinct complements of the putative group 3 LEA proteins. A few small group 3 LEA proteins were induced by cycles of hydration–dehydration along with one protein of about 62 kDa. The expression of group 3 LEA proteins, unlike members of group 1, was not restricted to encysted diapause embryos. Three to five putative group 3 LEA proteins were expressed in gravid females and in larvae. Cysts of different species from various geographic locations had distinct complements of group 3 LEA proteins suggesting rapid evolution of the LEA proteins or differences in the type of group 3 Lea genes expressed. Our results demonstrate the potential importance of group 3 LEA proteins in embryos and other life cycle stages of this animal extremophile.  相似文献   

6.
Late embryogenesis abundant (LEA) proteins have been repeatedly implicated in the acquisition of desiccation tolerance in angiosperm seed embryos. However, the mechanism(s) by which protection occurs is not well understood. While the Group 1 LEA proteins are predicted to be largely unordered in solution, there is strong evidence that upon drying these proteins undergo a structural transition that leads to an increase in alpha-helical content. Several studies also suggest there is a direct interaction between Group 1 LEA proteins and other molecules in the cytoplasm that may be critical for the establishment of desiccation tolerance during embryo maturation. We have produced a recombinant Group 1 LEA protein and show that it is capable of protecting the enzyme lactate dehydrogenase from the deleterious effects of drying. We have also evaluated the ability of various altered recombinant Group 1 LEA proteins to protect in the same assay. Our results suggest that the highly conserved 20 amino acid Group 1 LEA signature motif is not required for protection in our in vitro assay. However, introduction of two juxtaposed proline residues into an N-terminal helical domain predicted to exist in the hydrated structure significantly compromises the ability of the recombinant protein to provide protection from drying. These results suggest that the N-terminal domain of Group 1 LEA proteins may be important for proper folding during dehydration.  相似文献   

7.
8.
Common amino acid sequence domains among the LEA proteins of higher plants   总被引:41,自引:0,他引:41  
LEA proteins are late embryogenesis abundant in the seeds of many higher plants and are probably universal in occurrence in plant seeds. LEA mRNAs and proteins can be induced to appear at other stages in the plant's life by desiccation stress and/or treatment with the plant hormone abscisic acid (ABA). A role in protecting plant structures during water loss is likely for these proteins, with ABA functioning in the stress transduction process. Presented here are conserved tracts of amino acid sequence among LEA proteins from several species that may represent domains functionally important in desiccation protection. Curiously, an 11 amino acid sequence motif is found tandemly repeated in a group of LEA proteins of vastly different sizes. Analysis of this motif suggests that it exists as an amphiphilic helix which may serve as the basis for higher order structure.  相似文献   

9.
A cDNA clone, pMA1949, detects two mRNA species in wheat seedling tissue that are late embryogenesis-abundant (LEA) and dehydration stress-inducible. Sequence analysis of the pMA1949 clone shows it to be a 991 bp partial cDNA encoding a polypeptide of 317 amino acids with homology to two group 3 LEA proteins, carrot (DC8) and a soybean protein encoded by pGmPM2 cDNA. Molecular analysis of the deduced protein reveals a 33 kDa acidic and extremely hydrophilic protein with potential amphiphilic -helical regions. In addition, the protein contains eleven similar, contiguous repeats of 11 amino acids, which are separated by 118 amino acids from two additional and unique repeats of 36 residues each at the carboxyl end of the protein. Comparisons of sequences of reported group 3 LEA proteins revealed that there are two types, separable by sequence similarity of the 11 amino acid repeating motifs and by the presence or absence of a certain amino acid stretch at the carboxyl terminus. Based on resuls from these comparisons, we propose a second type of group 3 LEA proteins, called group 3 LEA (II).  相似文献   

10.
LEA (late embryogenesis abundant) proteins are intrinsically disordered proteins that contribute to stress tolerance in plants and invertebrates. Here we show that, when both plant and animal LEA proteins are co-expressed in mammalian cells with self-aggregating polyglutamine (polyQ) proteins, they reduce aggregation in a time-dependent fashion, showing more protection at early time points. A similar effect was also observed in vitro, where recombinant LEA proteins were able to slow the rate of polyQ aggregation, but not abolish it altogether. Thus, LEA proteins act as kinetic stabilisers of aggregating proteins, a novel function in protein homeostasis consistent with a proposed role as molecular shields.  相似文献   

11.
胚胎发育晚期丰富蛋白(LEA蛋白)在自然条件下主要在种子发育晚期大量积累,植物LEA基因也在多种非生物胁迫下诱导表达。植物LEA蛋白是植物应对失水胁迫(包括干旱、盐碱、冷冻等)逆境的一种广泛存在的亲水性应答蛋白,具有很强的热稳定性。本论文就LEA蛋白的结构、分类、功能及抗逆性分子机制进行了概述与总结,为分离新的LEA蛋白成员,进行功能分析以及进一步发掘其潜在应用价值提供参考。  相似文献   

12.
Late embryogenesis abundant (LEA) proteins are a large group of anhydrobiosis-associated intrinsically disordered proteins, which are commonly found in plants and some animals. The brine shrimp Artemia franciscana is the only known animal that expresses LEA proteins from three, and not only one, different groups in its anhydrobiotic life stage. The reason for the higher complexity in the A. franciscana LEA proteome (LEAome), compared with other anhydrobiotic animals, remains mostly unknown. To address this issue, we have employed a suite of bioinformatics tools to evaluate the disorder status of the Artemia LEAome and to analyze the roles of intrinsic disorder in functioning of brine shrimp LEA proteins. We show here that A. franciscana LEA proteins from different groups are more similar to each other than one originally expected, while functional differences among members of group three are possibly larger than commonly anticipated. Our data show that although these proteins are characterized by a large variety of forms and possible functions, as a general strategy, A. franciscana utilizes glassy matrix forming LEAs concurrently with proteins that more readily interact with binding partners. It is likely that the function(s) of both types, the matrix-forming and partner-binding LEA proteins, are regulated by changing water availability during desiccation.  相似文献   

13.
晚期胚胎富集蛋白(late embryogenesis abundant protein,LEA蛋白)是在高等植物胚胎发育晚期大量积累的一类蛋白,根据其结构特点LEA蛋白一般分为6组,其中第3组LEA蛋白(LEA3)含有11个氨基酸串联重复的基元序列,可以形成α-螺旋结构,能在干旱胁迫的环境中保护生物大分子,减轻水份胁迫对植物造成的伤害,与植物抗逆性密切相关。该文就lea3基因及其蛋白的结构、功能、基因表达和应用等进行简要的综述,并对lea3基因及其蛋白今后的研究方向和应用前景进行了展望。  相似文献   

14.
Water loss either by desiccation or freezing causes multiple forms of cellular damage. The encysted embryos (cysts) of the crustacean Artemia franciscana have several molecular mechanisms to enable anhydrobiosis—life without water—during diapause. To better understand how cysts survive reduced hydration, group 1 late embryogenesis abundant (LEA) proteins, hydrophilic unstructured proteins that accumulate in the stress-tolerant cysts of A. franciscana, were knocked down using RNA interference (RNAi). Embryos lacking group 1 LEA proteins showed significantly lower survival than control embryos after desiccation and freezing, or freezing alone, demonstrating a role for group 1 LEA proteins in A. franciscana tolerance of low water conditions. In contrast, regardless of group 1 LEA protein presence, cysts responded similarly to hydrogen peroxide (H2O2) exposure, indicating little to no function for these proteins in diapause termination. This is the first in vivo study of group 1 LEA proteins in an animal and it contributes to the fundamental understanding of these proteins. Knowing how LEA proteins protect A. franciscana cysts from desiccation and freezing may have applied significance in aquaculture, where Artemia is an important feed source, and in the cryopreservation of cells for therapeutic applications.  相似文献   

15.
Late embryogenesis abundant (LEA) proteins are produced during seed embryogenesis and in vegetative tissue in response to various abiotic stressors. A correlation has been established between LEA expression and stress tolerance, yet their precise biochemical mechanism remains elusive. LEA proteins are very rich in hydrophilic amino acids, and they have been found to be intrinsically disordered proteins (IDPs) in vitro. Here, we perform biochemical and structural analyses of the four LEA3 proteins from Arabidopsis thaliana (AtLEA3). We show that the LEA3 proteins are disordered in solution but have regions with propensity for order. All LEA3 proteins were effective cryoprotectants of LDH in the freeze/thaw assays, while only one member, AtLEA3‐4, was shown to bind Cu2+ and Fe3+ ions with micromolar affinity. As well, only AtLEA3‐4 showed binding and a gain in α‐helicity in the presence of the membrane mimic dodecylphosphocholine (DPC). We explored this interaction in greater detail using 15N‐heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance, and demonstrate that two sets of conserved motifs present in AtLEA3‐4 are involved in the interaction with the DPC micelles, which themselves gain α‐helical structure.  相似文献   

16.
1. Total cellular proteins from the livers of 4-, 16- and 52-week-old hepatitis- and hepatoma-predisposed Long-Evans Cinnamon (LEC) rats were compared to those from the livers of the corresponding control rats [Long-Evans Agouti (LEA) rats] by two-dimensional gel electrophoresis. 2. A polypeptide, p50/7.2 (molecular weight x 10(-3)/isoelectric point) was only found in the LEC rats, and the p43/6.4 component was greater and the p51/6.8 component was less in the LEC rats than in the LEA rats during aging. 3. A polypeptide, p29/6.8, was dramatically greater in 4-week-old LEC rats than in 4-week-old LEA rats. 4. By sequencing and Western blotting analysis, the marked differences in the level of the p29/6.8 component were found to be due to carbonic anhydrase III.  相似文献   

17.
We investigated whether a model peptide for group 3 LEA (G3LEA) proteins we developed in previous studies can protect liposomes from desiccation damage. Four different peptides were compared: 1) PvLEA-22, which consists of two tandem repeats of the 11-mer motif characteristic of LEA proteins from the African sleeping chironomid; 2) a peptide with amino acid composition identical to that of PvLEA-22, but with its sequence scrambled; 3) poly-l-glutamic acid; and 4) poly-l-lysine. Peptides 1) and 2) protected liposomes composed of 1-palmitoyl 2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) against fusion caused by desiccation, as revealed by particle size distribution measurements with dynamic light scattering. Indeed, liposomes maintain their pre-stress size distribution when these peptides are added at a peptide/POPC molar ratio of more than 0.5. Interestingly, peptide 1) achieved the comparable or higher retention of a fluorescent probe inside liposomes than did several native LEA proteins published previously. In contrast, the other peptides exhibited less protective effects. These results demonstrate that the synthetic peptide derived from the G3LEA protein sequence can suppress desiccation-induced liposome fusion. Fourier transform infrared (FT-IR) spectroscopic measurements were performed for the dried mixture of each peptide and liposome. Based on results for the gel-to-liquid crystalline phase transition temperature of the liposome and the secondary structure of the peptide backbone, we discuss possible underlying mechanisms for the protection effect of the synthetic peptide on dried liposomes.  相似文献   

18.
Group 1 late embryogenesis-abundant (LEA) proteins are a subset of hydrophilins that are postulated to play important roles in protecting plant macromolecules from damage during freezing, desiccation, or osmotic stress. To better understand the putative functional roles of group 1 LEA proteins, we analyzed the structure of a group 1 LEA protein from soybean (Glycine max). Differential scanning calorimetry of the purified, recombinant protein demonstrated that the protein assumed a largely unstructured state in solution. In the presence of trifluoroethanol (50% [w/v]), the protein acquired a 30% alpha-helical content, indicating that the polypeptide is highly restricted to adopt alpha-helical structures. In the presence of sodium dodecyl sulfate (1% [w/v]), 8% of the polypeptide chain adopted an alpha-helical structure. However, incubation with phospholipids showed no effect on the protein structure. Ultraviolet absorption and circular dichroism spectroscopy revealed that the protein existed in equilibrium between two conformational states. Ultraviolet absorption spectroscopy studies also showed that the protein became more hydrated upon heating. Furthermore, circular dichroism spectral measurements indicated that a minimum of 14% of amino acid residues existed in a solvent-exposed, left-handed extended helical or poly (L-proline)-type (PII) conformation at 20 degrees C with the remainder of the protein being unstructured. The content of PII-like structure increased as temperature was lowered. We hypothesize that by favoring the adoption of PII structure, instead of the formation of alpha-helical or beta-sheet structures, group 1 LEA proteins retain a high content of surface area available for interaction with the solvent. This feature could constitute the basis of a potential role of LEA proteins in preventing freezing, desiccation, or osmotic stress damage.  相似文献   

19.
Irar S  Oliveira E  Pagès M  Goday A 《Proteomics》2006,6(Z1):S175-S185
Late-embryogenesis-abundant (LEA) proteins accumulate as plant seeds desiccate and also in vegetative organs during periods of stress. They are predicted to play a role in plant stress tolerance. In the present study, we have initiated the characterization of phosphorylated LEA proteins present in the Arabidopsis seed, using a strategy that combines the thermostability (solubility upon heating) of many LEA-type proteins with the use of phosphoaffinity chromatography to obtain an enriched subpopulation of phosphoproteins. The specificity and efficiency of the procedure was assessed by alkaline phosphatase treatment and by a specific stain for phosphoproteins, in addition to the immunodetection of AtRab18, a phosphorylated LEA protein present in the mature dry seed. The phosphoproteins were identified by MS either by PMF using MALDI-TOF MS after 2-DE separation, or by peptide sequencing using both capillary LC MS/MS (LC muESI-ITMS/MS) and nanoLC coupled to nanoESI-MS/MS (LC-nanoESI-Q-TOF-MS/MS). Several LEA-type and storage-like proteins were identified as components of the phosphoproteome of the Arabidopsis seed.  相似文献   

20.
Late embryogenesis abundant (LEA) proteins, which accumulate to high levels in seeds during late maturation, are associated with desiccation tolerance. A member of the LEA protein family was found in cultured cells of the liverwort Marchantia polymorpha; preculture treatment of these cells with 0.5 M sucrose medium led to their acquisition of desiccation tolerance. We characterized this preculture-induced LEA protein, designated as MpLEA1. MpLEA1 is predominantly hydrophilic with a few hydrophobic residues that may represent its putative signal peptide. The protein also contains a putative endoplasmic reticulum (ER) retention sequence, HEEL, at the C-terminus. Microscopic observations indicated that GFP-fused MpLEA1 was mainly localized in the ER. The recombinant protein MpLEA1 is intrinsically disordered in solution. On drying, MpLEA1 shifted predominantly toward α-helices from random coils. Such changes in conformation are a typical feature of the group 3 LEA proteins. Recombinant MpLEA1 prevented the aggregation of α-casein during desiccation–rehydration events, suggesting that MpLEA1 exerts anti-aggregation activity against desiccation-sensitive proteins by functioning as a “molecular shield”. Moreover, the anti-aggregation activity of MpLEA1 was ten times greater than that of BSA or insect LEA proteins, which are known to prevent aggregation on drying. Here, we show that an ER-localized LEA protein, MpLEA1, possesses biochemical and structural features specific to group 3 LEA proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号