首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thirty-nine plant species representing 20 families from the four major divisions of plants were surveyed for the presence of proteinase inhibitor-inducing factor activity in leaves or other tissues. Tissue juices were assayed for their capacity to induce accumulation of proteinase inhibitor I in excised tomato (Lycopersico esculentum) leaves. In tissues of only 2 of the 39 species was proteinase inhibitor-inducing factor-like activity not found. The activity was absent in cabbage leaves and celery stalks. Fruiting bodies from one of three fungi genera assayed contained exceptionally large quantities of proteinase inhibitor-inducing factor-like activity. Extracts from Agraricus campestris fruiting bodies contained over 20 times more activity than tomato leaf juice. The survey confirms that substances with proteinase inhibitor-inducing factor-like activity are widespread in the plant kingdom.  相似文献   

2.
Soluble chemical derivatives of chitin and chitosan including ethylene glycol chitin, nitrous acid-modified chitosan, glycol chitosan, and chitosan oligomers, produced from chitosan by limited hydrolysis with HCl, were found to possess proteinase inhibitor inducing activities when supplied to young excised tomato (Lycopersicon esculentum var Bonnie Best) plants. Nitrous acid-modified chitosans and ethylene glycol chitin exhibited about 2 to 3 times the activity of acid hydrolyzed chitosan and 15 times more activity than glycol chitosan. The parent chitin and chitosans are insoluble in water or neutral buffers and cannot be assayed. Glucosamine and its oligomers from degree of polymerization = 2 through degree of polymerization = 6 were purified from acid-fragmented chitosan and assayed. The monomer was inactive and dimer and trimer exhibited weak activities. Tetramer possessed higher activity and the larger pentamer and hexamer oligomers were nearly as active as the total hydrolyzed mixture. None of the fragments exhibited more than 2% acetylation (the limits of detection). The contents of the acid-fragmented mixture of oligomers was chemically N-acetylated to levels of 13% and 20% and assayed. The N-acetylation neither inhibited nor enhanced the proteinase inhibitor inducing activity of the mixture. These results, along with recent findings by others that chitinases and chitosanases are present in plants, provide further evidence for a possible role of soluble chitosan fragments as signals to activate plant defense responses.  相似文献   

3.
A large pectic polysaccharide, called rhamnogalacturonan I, that is solubilized by a fungal endo-α-1,4-polygalacturonase from the purified walls of suspension-cultured sycamore cells possesses proteinase inhibitor-inducing activity similar to that of the proteinase inhibitor-inducing factor, a pectic-like oligosaccharide fraction isolated from tomato leaves. This suggests that the proteinase inhibitor-inducing activity resides in particular polysaccharide fragments which can be released when plant cell walls are exposed to appropriate enzyme degradation as a result of either wounding or pest attack.  相似文献   

4.
Polygalacturonic acid (DPave approximately 20), alpha-1,4-di- and trigalacturonic acids, delta 4,5-alpha-1,4-di- and delta 4,5-alpha-trigalacturonic acids, and several chemically modified derivatives of these oligomers were prepared. Their proteinase inhibitor-inducing activities were determined by supplying solutions of the compounds to young, excised tomato plants through their cut stems. Digalacturonic acid, on a molar basis, was the most active oligomer (ED50 approximately 1.5 micrograms/plant), being about three times more active than the parent oligogalacturonic acid (ED50 approximately 5.5 micrograms/plant). The specific inducing activity of trigalacturonic acid was about half that of digalacturonic acid. Both delta 4,5-di- and delta 4,5-trigalacturonic acids were about half as active as di- and trigalacturonic acids, respectively. Reduction of the hemiacetal (carbonyl) group of the di- and trigalacturonic acids with sodium borohydride completely destroyed proteinase inhibitor inducing activities, indicating that the inducing activity of both acids depends upon an intact hemiacetal at the reducing termini. Reduction of the double bonds of delta 4,5-di- and delta 4,5-trigalacturonic acids by catalytic hydrogenation with H2 (palladium catalyst) produced derivatives with specific inducing activities of approximately one-half that of the parent compounds. Thus, while the reducing termini of oligogalacturonides require an intact hemiacetal for proteinase inhibitor inducing activities, the nonreducing termini of the small oligouronides do not require a C4 hydroxyl nor a C5 proton to be active inducers.  相似文献   

5.
Rhizopus stolonifer endopolygalacturonase, an elicitor of casbene synthetase activity in castor bean seedlings, was found to be a potent elicitor of the phytoalexin pisatin in pea pods and of proteinase Inhibitor I in tomato leaves. The enzyme was an active elicitor or inducer only in its active native state; heat-denatured enzyme was inactive in all three systems. The activities of (a) the tomato pectic polysaccharide proteinase inhibitor-inducing factor, (b) a partially acid hydrolyzed proteinase inhibitor-inducing factor, (c) citrus pectic fragments, and (d) chitosan, were also compared in the three bioassay systems. The four oligosaccharide preparations were active in all three systems, but with different degrees of potency. In tomato leaves and pea pods, chitosans were most active, whereas in castor beans, the citrus pectic fragments were the best elicitors. The data presented support the hypothesis that plant and fungal cell wall fragments are important signals in mobilizing a wide variety of biochemically different types of plant defense responses, and that endopolygalacturonases play a key role in releasing the plant cell wall fragments during pest attacks.  相似文献   

6.
Ryan CA 《Plant physiology》1974,54(3):328-332
An assay has been developed for the proteinase inhibitor-inducing factor (PIIF), a wound hormone. PIIF is present in tomato (Lycopersicum esculentum var. Bonnie Best) leaf extracts and induces accumulation of proteinase Inhibitor I when the extracts are supplied briefly to excised leaves that are subsequently incubated in water under constant light. An active water-soluble crude PIIF solution was conveniently prepared from autoclaved and lyophilized tomato leaves. Accumulation of Inhibitor I, induced by crude PIIF, is linear, commencing at about 8 to 10 hours after feeding and continues for several hours. Evidence is presented that the PIIF-induced accumulation of Inhibitor I, determined immunologically, is accompanied by the accumulation of other trypsin and chymotrypsin inhibitors, determined enzymatically. The accumulation of Inhibitor I is inhibited by actinomycin D and cycloheximide but not by chloramphenicol or rifampin. PIIF cannot be replaced by traumatin, indoleacetic acid, gibberellic acid, kinetin, ethylene, or abscisic acid. PIIF activity was not destroyed by incubation with a number of proteolytic, carbohydrase, phosphatase, or pyrophosphatase enzymes. The active substance is insoluble in lipid solvents.  相似文献   

7.
Proteinase inhibitor I has been identified and quantified in isolated vacuoles from tomato (Lycopersicon esculentum) leaves induced to accumulate inhibitors either by wounding or by supplying excised leaves with the wound hormone, proteinase inhibitor-inducing factor. Proteinase inhibitor II was also identified in the vacuoles but not quantified. Control vacuoles were prepared from unwounded plants that did not contain inhibitors. Vacuole to leaf cell ratios of inhibitors, chlorophyll, and several vacuolar and cytoplasmic enzymes were determined. The inhibitors were found almost entirely in the vacuoles. Acid phosphatase was located in control leaf vacuoles, but was found in both vacuoles and cytoplasm in induced leaves. Carboxypeptidase, induced by wounding, was found distributed between the vacuoles and cytoplasm of induced leaves. Low vacuole to leaf cell ratios of three cytoplasmic markers, triosephosphate isomerase, catalase, and chlorophyll, indicated that the isolated vacuoles were relatively free of intact protoplasts and cell debris.  相似文献   

8.
The sulfhydryl group reagent p-chloromecuribenzene sulfonic acid (PCMBS), an established inhibitor of active apoplastic phloem loading of sucrose in several plant species, is shown to be a powerful inhibitor of wound-induced and systemin-induced activation of proteinase inhibitor synthesis and accumulation in leaves of tomato plants (Lycopersicon esculentum cv Castlemart). PCMBS, supplied to young tomato plants through their cut stems, blocks accumulation of proteinase inhibitors in leaves in response to wounding. The application of systemin directly to fresh wounds enhances systemic accumulation of proteinase inhibitors to levels higher than wounding alone. Placed on fresh wounds, PCMBS severely inhibits systemic induction of proteinase inhibitors, in both the presence and absence of exogenous systemin. PCMBS inhibition can be reversed by cysteine, dithiothreitol, and glutathione. Radiolabeled systemin placed on fresh wounds is readily transported from the wounded leaves to upper leaves. However, in the presence of PCMBS, radiolabeled systemin is not transported away from wound sites. Induction of proteinase inhibitor I synthesis by oligouronides (degree of polymerization [almost equal to] 20), linolenic acid, or methyl jasmonate was not inhibited by PCMBS. The cumulative data support a possible role for sulfhydryl groups in mediating the translocation of systemin from wound sites to distal receptor sites in tomato plants and further support a role for systemin as a systemic wound signal.  相似文献   

9.
Phospholipase A (PLA) activity, as measured by the accumulation of (14)C-lysophosphatidylcholine in leaves of tomato plants, increased rapidly and systemically in response to wounding. The increase in PLA activity in the systemic unwounded leaves was biphasic in wild-type tomato plants, peaking at 15 min and again at 60 min, but the second peak of activity was absent in transgenic prosystemin antisense plants. Supplying young excised tomato plants with the polypeptide hormone systemin also caused (14)C-lysophosphatidylcholine to increase to levels similar to those induced by wounding, but the increase in activity persisted for >2 hr. Antagonists of systemin blocked both the release of (14)C-lysophosphatidylcholine and the accumulation of defense proteins in response to systemin. (14)C-lysophosphatidylcholine levels did not increase in response to jasmonic acid. Chemical acylation of the lysophosphatidylcholine produced by wounding, systemin, and oligosaccharide elicitors followed by enzymatic hydrolysis with lipases of known specificities demostrated that the lysophosphatidylcholine is generated by a PLA with specificity for the sn-2 position.  相似文献   

10.
W E Brown  K Takio  K Titani  C A Ryan 《Biochemistry》1985,24(9):2105-2108
The primary structure of the wound-inducible trypsin inhibitor from alfalfa (ATI) establishes it as a member of the Bowman-Birk proteinase inhibitor family. The time course of induction of ATI in alfalfa following wounding is similar to the induction of the nonhomologous proteinase inhibitors I and II in tomato and potato leaves, and, like inhibitors I and II, ATI is induced to accumulate in excised leaves supplied with the proteinase inhibitor inducing factor from tomato leaves. The similarity of the wound induction of ATI to that of inhibitors I and II indicates that wound-regulated systems are present in Solanaceae and Leguminosae plant families that possess a common fundamental recognition system regulating synthesis of proteinase inhibitors in response to pest attacks. ATI is the first Bowman-Birk inhibitor that has been found in leaves and is the only member of this family known to be regulated by wounding.  相似文献   

11.
A multidomain cystatin was purified from the leaves of mature and seedling tomato plants (Lycopersicon esculentum, cv Bonnie Best) that had been sprayed with methyl jasmonate. For seedlings, cystatin purification was accomplished using EDTA washing, KCI extraction, 70 degrees C heat treatment, ammonium sulfate fractionation and gel filtration chromatography. For mature plants, DEAE chromatography was also needed to separate a protease, hydrolysis products of cystatin and serine proteinase inhibitors from the intact cystatin. Purified tomato cystatin has a molecular weight (Mr) of 88 kDa, eight papain binding domains, is a non-competitive inhibitor of papain with K1 of 1.4 nM and is not a glycoprotein. Tryptic peptides (Mr 26, 13 kDa) and most chymotryptic peptides (Mr 33, 13 kDa) of tomato cystatin retain inhibitor activity. Amino acid analysis revealed no Cys; Asx, Glx, Gly, Ser accounted for almost half the residues and there was some homology with potato multicystatin. Activity is stable at pH 4-11 at 4 degrees C, but unstable at neutral pH at > 60 degrees C (Ea = 92.5 kJ/mole). Extracts of mature plants treated with methyl jasmonate contain lower Mr cystatins that appear to result from the action of an endogenous 26 kDa protease on the 88 kDa inhibitor.  相似文献   

12.
The Proteinase Inhibitor Inducing Factor, PIIF, a pectic polysaccharide that induces synthesis and accumulation of proteinase inhibitor proteins in tomato and potato leaves, is an effective elicitor of the phytoalexin pisatin in pea pod tissues. The levels of pisatin induced by PIIF, and the time course of elicitation, are similar to those induced by chitosans, β-1,4 glucosamine polymers, which are potent elicitors of pisatin in pea pods. Similarly, the chitosans, found in both insect and fungal cell walls, are the most potent inducers yet found of proteinase inhibitor accumulation in excised tomato cotyledons. The similarity in the induction of synthesis of proteinase inhibitors in tomato cotyledons and of pisatin in pea pods by pectic polysaccharides and chitosans suggests that the two polysaccharide types may be triggering a similar fundamental system present in pea and tomato plants that regulates the expression of genes for natural protection systems.  相似文献   

13.
Expression of proteinase inhibitor I and II genes was investigated during infection by Pseudomonas syringae pv. tomato, the causal agent of bacterial speck disease in tomato. Inoculation of leaves with P. s. pv. tomato of two inbred tomato lines that are resistant and susceptible to the pathogen resulted in the accumulation of proteinase inhibitor I and II mRNAs in this organ. Our data showed that in the lines used in this study, proteinase inhibitor II mRNAs accumulated in leaves to higher levels than proteinase inhibitor I mRNA in response to P. s. pv. tomato infection and wounding. Proteinase inhibitor II mRNAs accumulated more rapidly in disease-resistant than in disease-susceptible plants. Proteinase inhibitor I mRNAs were first detected in the disease-susceptible line during infection and wounding. In contrast to wounding, the systemic induction of these genes during pathogen ingression was limited. These data show that the plant proteinase inhibitors constitute one of the components of the plant defense system that are induced in response to bacterial pathogen invasion.  相似文献   

14.
The proteinase inhibitor II (pin2) gene family exhibits two different modes of expression. It is, on the one hand, constitutively expressed in flowers of potato and tomato plants. and in potato tubers. On the other hand, its expression is induced in the plant foliage by mechanical wounding. To define cis-regulatory elements involved in pin2 promoter activity, deletion analysis of a potato pin2 promoter has been performed in stably and transiently transformed potato and tobacco plants. Two different elements, a quantitative enhancer and a regulatory element, are required for promoter activity. While functional promoter elements required for pin2 activity in tubers and wounded leaves could not be separated, its expression in flowers is mediated by different cis-acting sequences. Induction of pin2 expression in leaves by treatment with the plant growth regulators abscisic acid and jasmonic acid, and the general metabolite sucrose, depends on the presence of the regulatory element involved in expression in tubers and wounded leaves. Thus, pin2 expression in tubers and wounded leaves apparently results from the action of similar hormonal signals on closely linked promoter elements, while a different signal pathway leads to its constitutive expression in flowers.  相似文献   

15.
Abstract. Two size ranges of oligosaccharide elicitors of pectic origin have been investigated for their effects on tomato plants. Both size ranges, with degrees of polymerization of 1–7 and 10–20 respectively, induced the accumulation of proteinase inhibitor (PI) activity in excised plants, and also induced changes in membrane potential of leaf mesophyll cells. The depolarizations were substantial, rapid, and reversible on removal of the elicitors. The effects are discussed in the context of early events in the signal transduction pathway linking oligosaccharides to changes in PI gene expression.  相似文献   

16.
Abstract Exopolygalacturonase, endopolygalacturonase and pectinesterase were separated from culture filtrates of Trichoderma reesei QM9414 by Sephadex chromatography. Exopolygalacturonase was characterized by specific cleavage of pectic acid to form d -galactopyranuronic acid, and by the hydrolysis of oligomers (highest reaction rate at pentamer). Polygalacturonase exhibited 2 pH-optima peaks (at 4.8 and 5.1) and 10 bands with enzyme activity by isoelectric focusing (IEF) (p I 4.6–8.5). Pectinesterase showed a pH-optimum at 7.6, and 6 enzyme-activity bands on an IEF zymogram which seemed identical with those of higher plants (tomato, alfalfa).  相似文献   

17.
An 18-amino acid peptide in tomato leaves called systemin is a primary signal released at wound sites in response to herbivory that systemically signals the activation of defense genes throughout the plants. We report here the isolation of three hydroxyproline-rich glycopeptides from tomato leaves, of 20, 18, and 15 amino acids in length, that signal the activation of defense genes, similar to the activity of the systemin peptide. The three new peptides cause an alkalinization of suspension-cultured cells and induce the synthesis of defensive proteinase inhibitor proteins when supplied at fmol levels to young tomato plants through their cut stems. This suggests that they are part of the wound signaling of tomato plants that activates defense against herbivores and pathogens. Isolation of cDNAs coding for the tomato peptides revealed that they are all derived from the same pre-proprotein precursor that is systemically wound-inducible. The peptides are considered members of the functionally characterized systemin family of defense signals from plants that are synthesized both in wounded leaves and in distal, unwounded leaves in response to herbivory or other mechanical wounding. The precursor deduced from the cDNA exhibits a leader sequence, indicating that it is synthesized through the secretory pathway, where it is hydroxylated and glycosylated. The amino acid sequence of the precursor exhibited weak identity to the precursor of two hydroxyproline-rich defense signals recently found in tobacco, suggesting that the two pre-protein precursors have evolved from a common ancestral protein. The identification of hydroxyproline-rich glycoprotein systemins in tomato indicates that the initiation of wound signaling is more complex than previously thought and appears to involve multiple peptide signals.  相似文献   

18.
Five Botrytis cinerea endopolygalacturonase enzymes (BcPGs) were individually expressed in Pichia pastoris, purified to homogeneity and biochemically characterized. While the pH optima of the five enzymes were similar (approximately pH 4.5) the maximum activity of individual enzymes differed significantly. For hydrolysis of polygalacturonic acid (PGA), the V(max,app) ranged from 10 to 900 U mg(-1), while the K(m,app) ranged from 0.16 to 0.6 mg ml(-1). Although all BcPGs are true endopolygalacturonases, they apparently have different modes of action. PGA hydrolysis by BcPG1, BcPG2 and BcPG4 leads to the transient accumulation of oligomers with DP < 7, whereas PGA hydrolysis by BcPG3 and BcPG6 leads to the immediate accumulation of monomers and dimers. The necrotizing activity (NA) of all BcPGs was tested separately in tomato, broad bean and Arabidopsis thaliana. They showed different NAs on these plants. BcPG1 and BcPG2 possessed the strongest NA as tissue collapse was observed within 10 min after infiltration of broad bean leaves. The amino acid (aa) D192A substitution in the active site of BcPG2 not only abolished enzyme activity but also the NA, indicating that the NA is dependent on enzyme activity. Furthermore, deletion of the Bcpg2 gene in B. cinerea resulted in a strong reduction in virulence on tomato and broad bean. Primary lesion formation was delayed by approximately 24 h and the lesion expansion rate was reduced by 50-85%. These data indicate that BcPG2 is an important virulence factor for B. cinerea.  相似文献   

19.
Inhibitors of chymotrypsin and the alkaline proteinase of Aspergillus oryzae were present in the shoots of barley seedlings and weak activities were also detected in the shoot tops of 6-week-old plants. Treatments which induce inhibitor formation in tomato and potato leaves had no effect when tested on mature leaves, seedlings, or young tillers of barley. Fractionation experiments with isoelectric focusing showed that the barley leaves contained several proteinase inhibitors acting on both chymotrypsin and the Aspergillus proteinase, and one inhibitor which acted only on the Aspergillus enzyme. All of these inhibitors were different from the five Aspergillus proteinase inhibitors which are abundant in the endosperm of resting seeds. Two chymotrypsin inhibitors with weaker activity on the Aspergillus proteinase were present in rootlets and also in embryos of resting seeds. These inhibitors were different from both the endospermal inhibitors and the inhibitors present in young leaves.  相似文献   

20.
The impact of reduced vacuolar invertase activity on photosynthetic and carbohydrate metabolism was examined in tomato (Solanum lycopersicon L.). The introduction of a co-suppression construct (derived from tomato vacuolar invertase cDNA) produced plants containing a range of vacuolar invertase activities. In the leaves of most transgenic plants from line INV-B, vacuolar invertase activity was below the level of detection, whereas leaves from line INV-A and untransformed wild-type plants showed considerable variation. Apoplasmic invertase activity was not affected by the co-suppression construct. It has been suggested that, in leaves, vacuolar invertase activity regulates sucrose content and its availability for export, such that in plants with high vacuolar invertase activity a futile cycle of sucrose synthesis and degradation takes place. In INV-B plants with no detectable leaf vacuolar invertase activity, sucrose accumulated to much higher levels than in wild-type plants, and hexoses were barely detectable. There was a clear threshold relationship between invertase activity and sucrose content, and a linear relationship with hexose content. From these data the following conclusions can be drawn. (i) In INV-B plants sucrose enters the vacuole where it accumulates as hydrolysis cannot take place. (ii) There was not an excess of vacuolar invertase activity in the vacuole; the rate of sucrose hydrolysis depended upon the concentration of the enzyme. (iii) The rate of import of sucrose into the vacuole is also important in determining the rate of sucrose hydrolysis. The starch content of leaves was not significantly different in any of the plants examined. In tomato plants grown at high irradiance there was no impact of vacuolar invertase activity on the rate of photosynthesis or growth. The impact of the cosuppression construct on root vacuolar invertase activity and carbohydrate metabolism was less marked.Abbreviations CaMV Cauliflower Mosaic Virus - WT wild type  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号