首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The transglycosylation reaction catalyzed by neopullulanase was analyzed. Radioactive oligosaccharides were produced when the enzyme acted on maltotriose in the presence of [U-14C]glucose. Some of the radioactive oligosaccharides had only alpha-(1----4)-glucosidic linkages, but others were suggested to have alpha-(1----6)-glucosidic linkages. The existence of alpha-(1----6)-glucosidic linkages in the products from maltotriose with neopullulanase was proven by proton NMR spectroscopy and methylation analysis. We previously reported that the one active center of neopullulanase catalyzes the hydrolysis of alpha-(1----4)- and alpha-(1----6)-glucosidic linkages (Kuriki, T., Takata, H., Okada, S., and Imanaka, T. (1991) J. Bacteriol. 173,6147-6152). These facts proved that neopullulanase catalyzed all four types of reactions: hydrolysis of alpha-(1----4)-glucosidic linkage, hydrolysis of alpha-(1----6)-glucosidic linkage, transglycosylation to form alpha-(1----4)-glucosidic linkage, and transglycosylation to form alpha-(1----6)-glucosidic linkage. The four reactions are typically catalyzed by alpha-amylase, pullulanase, cyclomaltodextrin glucanotransferase, and 1,4-alpha-D-glucan branching enzyme, respectively. These four enzymes have some structural similarities to one other, but reactions catalyzed by the enzymes are considered to be distinctive: the four reactions are individually catalyzed by each of the enzymes. The experimental results obtained from the analysis of the reaction of the neopullulanase exhibited that the four reactions can be catalyzed in the same mechanism.  相似文献   

2.
A synthetic substrate, N-acetyl-2'-O-methyllactosamine, was employed as a specific acceptor for alpha-L-(1----3)-fucosyltransferase from human serum. The fucosyl linkage of the product from this substrate was characterized by hydrolysis with a specific alpha-L-(1----3)/(1----4)-fucosidase. Using this acceptor, the pH optimum for the serum alpha-L-(1----3)-fucosyltransferase was 6.5. The enzyme was activated by Mn2+ or Mg2+ ions and was inhibited by EDTA. The apparent Km for this enzyme using N-acetyl-2'-O-methyllactosamine was 20.4 mM and Vmax was 5.6 pmol/h/ml serum.  相似文献   

3.
An exo-type cellulase (Ex-1) was extracted from Irpex lacteus (Polyporus tulipiferae) and purified essentially to homogeneity. This cellulase attacked cellulosic substrates in an exo-wise fashion to produce almost exclusively cellobiose. In contrast, Ex-1 was found to attack beta-glucans having beta-(1----3)- and beta-(1----4)-mixed linkages in a way similar to an endo-type cellulase. The products formed from barley glucan by Ex-1 were 3(2)-O-beta-D-cellobiosyl-cellobiose much greater than 3(2)-O-beta-D-glucosyl-cellobiose greater than cellobiose much greater than or equal to cellotriose much greater than glucose in the early stage, but no laminaribiose was produced. An endo-type cellulase (En-1) obtained from the same fungus also hydrolyzed beta-glucans but in a typical endo-wise fashion and the products from barley glucan were 3(2)-O-beta-D-glucosyl-cellobiose much greater than 3(2)-O-beta-D-cellobiosyl-cellobiose greater than cellobiose much greater than laminaribiose; no glucose or cellotriose was produced. Thus, it seems likely that En-1 can attack any intramolecular linkage of beta-glucan, while Ex-1 requires the presence of at least cellobiosyl residues adjacent to a beta-(1----3)-D-linked glucosyl residue. This finding, together with the mode of hydrolysis of cellulosic substrates by Ex-1, suggests that the stereochemical structure of successive beta-(1----4)-cellobiosyl residues inserted by beta-(1----3)-D-glucosidic linkage is permissible in the action of Ex-1, although this enzyme prefers the beta-(1----4)-linked cellobiosyl sequence.  相似文献   

4.
E Yoon  R A Laine 《Glycobiology》1992,2(2):161-168
Development of tandem mass spectral methods for direct linkage determination in oligosaccharides requires sets of trisaccharides differing only in one structural parameter. In this case, we chose the position of linkage to the reducing-end hexose. These sets of compounds would also be useful for the development of high-resolution separation techniques geared to resolve linkage types. Conventional organic synthesis of such a set could take as long as 2-5 months for each member of the set. Each trisaccharide would require 10-20 steps of synthesis. Instead, we utilized low pH to induce a loose acceptor specificity for bovine milk galactosyltransferase (lactose synthase: EC 2.4.1.22) and by this method, within 2 weeks, generated four novel oligosaccharides for NMR and mass spectral studies. The disaccharides cellobiose (beta 1----4), laminaribiose (beta 1----3), gentiobiose (beta 1----6) and maltose (alpha 1----4) acted as acceptors for EC 2.4.1.22 under these conditions. The beta 1----2-linked disaccharide, sophorose, was not commercially available and is not included in this study. The alpha-linked disaccharides were also examined, but except for the alpha 1----4 disaccharide maltose, were very poor acceptors under a variety of conditions. From these four acceptors, the following four novel trisaccharides were synthesized in micromole amounts, suitable for studies of linkage position using low-energy collision-induced-dissociation tandem mass spectrometry (FAB-MS-CID-MS), and for NMR: Galp(beta 1----4)Glcp(beta 1----3)-Glc, Galp(beta 1----4)Glcp(beta 1----4)Glc, Galp(beta 1----4)Glcp(beta 1----6)-Glc and Galp(beta 1----4)Glcp(alpha 1----4)Glc.  相似文献   

5.
Fucosyl residues in the alpha 1----3 linkage to N-acetylglucosamine (Fuc alpha 1----3GlcNAc) on oligosaccharides of glycoproteins and glycolipids have been detected in certain human tumors and are developmentally expressed (reviewed in Foster, C. S., and Glick, M. C. (1988) Adv. Neuroblastoma Res. 2, 421-432). In order to understand control mechanisms for the biosynthesis of these fucosylated glycoconjugates, GDP-L-Fuc-N-acetyl-beta-D-glucosaminide alpha 1----3fucosyltransferase was purified from human neuroblastoma cells, CHP 134, utilizing either the immobilized oligosaccharide or disaccharide substrates. The enzyme, extracted from CHP 134 cells, was purified by DEAE- and SP-Sephadex chromatography and then by either immobilized substrate. alpha 1----3Fucosyltransferase was obtained in approximately 10% yield and was purified 45,000-fold from the cell extract. The kinetic properties of the enzyme showed an apparent KGDP-Fuc 43 microM, KGal beta 1----4GlcNAc 0.4 mM, KGal beta 1----4Glc 8.1 mM, and KFuc alpha 1----2Gal beta 1----4Glc 1.0 mM. Polyacrylamide gel electrophoresis of the affinity-purified enzyme showed two proteins which migrated, Mr = 45,000-40,000. The enzyme differed in substrate specificity, pH optimum, response to N-ethylmaleimide and ion requirements from the enzymes purified from human milk or serum. The inability of alpha 1----3fucosyltransferase to transfer to substrates containing NeuAc alpha 2----3 or alpha 2----6Gal is in contrast to the reports for the enzyme in other human tumors. This substrate specificity correlates with the oligosaccharide residues thus far defined on glycoproteins of CHP 134 cells since NeuAc and Fuc alpha 1----3GlcNAc have yet to be detected on the same oligosaccharide antenna. However, the enzyme transfers to Fuc alpha 1----2Gal beta 1----4GlcNAc/Glc with higher activity than the unfucosylated disaccharides, although neither alpha 1----2fucosyltransferase nor Fuc alpha 1----2 residues have been detected in CHP 134 cells. The different substrate specificities of alpha 1----3fucosyltransferase isolated from human tumors and normal sources leads to the suggestion that a family of alpha 1----3fucosyltransferases may exist and that they may be differentially expressed in human tumors.  相似文献   

6.
An alpha-L-fucosidase which hydrolyzes fucose from alpha-(1----6)-linkage to N-acetylglucosamine was found in Aspergillus niger. The enzyme was purified by affinity chromatography with bovine IgG glycopeptide-Sepharose 4B. The enzyme preparation released fucose from bovine IgG glycopeptide and fucosylated asialoagalactofetuin, but failed to cleave 1----2, 1----3 or 1----4 linkages of alpha-L-fucosides.  相似文献   

7.
M Mori  Y Ito  T Ogawa 《Carbohydrate research》1990,195(2):199-224
The mollu-series glycosphingolipids, O-alpha-D-mannopyranosyl-(1----3)-O-beta-D-mannopyranosyl-(1----4)-O-bet a-D-glucopyranosyl-(1----1)-2-N-tetracosanoyl-(4E)-sphingeni ne and O-alpha-D-mannopyranosyl-(1----3)-O-[beta-D-xylopyranosyl-(1----2])-O- beta-D-mannopyranosyl-(1----4)-O-beta-D-glucopyranosyl-(1----1)-2-N- tetracosanoyl-(4E)-sphingenine, were synthesized for the first time by using 2,3,4-tri-O-acetyl-D-xylopyranosyl trichloroacetimidate, methyl 2,3,4,6-tetra-O-acetyl-1-thio-alpha-D-mannopyranoside, benzyl O-(4,6-di-O-benzyl-beta-D-mannopyranosyl)-(1----4)-2,3,6-tri-O-benzyl-be ta-D- glucopyranoside 9, and (2S,3R,4E)-2-azido-3-O-(tert-butyldiphenylsilyl)-4-octade cene-1,3-diol 6 as the key intermediates. The hexa-O-benzyl disaccharide 9 was prepared by coupling two monosaccharide synthons, namely, 2,3-di-O-allyl-4,6-di-O-benzyl-alpha-D-mannopyranosyl bromide and benzyl 2,3,6-tri-O-benzyl-beta-D-glucopyranoside. It was demonstrated that azide 6 was highly efficient as a synthon for the ceramide part in the coupling with both glycotriaosyl and glycotetraosyl donors, particularly in the presence of trimethylsilyl triflate.  相似文献   

8.
Two types of alpha-L-fucosidase (F-I and F-II), that differ in substrate specificity, were produced in the culture fluid by Bacillus circulans isolated from soil when the bacterium was cultivated on medium containing porcine gastric mucin. F-I was able to cleave the alpha-(1----2), alpha-(1----3), and alpha-(1----4)-L-fucosidic linkages in various oligosaccharides and glycoproteins, but not p-nitrophenyl alpha-L-fucoside, as previously reported [Y. Tsuji et al. (1990) J. Biochem. 107, 324-330]. F-II was purified from the culture fluid obtained with glucose medium by ammonium sulfate fractionation and various subsequent column chromatographies. The purified enzyme was found to be homogeneous on PAGE and its molecular weight was estimated to be approximately 250,000. The maximal activity was observed between pH 6.0 to 7.0, the stable pH range being 6.0 to 8.5. The enzyme specifically cleaved alpha-L-fucosidic bonds in low molecular weight substrates. The enzyme cleaved not only p-nitrophenyl alpha-L-fucoside, but also 2-fucosyllactose and 3-fucosyllactose. The enzyme was also able to act on the alpha-(1----6)-L-fucosidic linkages to N-acetylglucosamine in 6-O-alpha-L-fucopyranosyl-N-acetylglucosamine, and bi- and tetra-antennary oligosaccharides derived from porcine pancreatic lipase, which were not hydrolyzed by F-I.  相似文献   

9.
Novikoff ascites tumor cells contain a UDP-GlcNAc:beta-galactoside beta 1----6-N-acetylglucosaminyltransferase (beta 6-GlcNAc-transferase B) that acts on galactosides and N-acetylgalactosaminides in which the accepting sugar is beta 1----3 substituted by a Gal or GlcNAc residue. Characterization of enzyme products by 1H-NMR and methylation analysis indicates that an R beta 1----3(GlcNAc beta 1----6)Gal- branching point is formed such as occurs in blood-group-I-active substances. The enzyme does not show an absolute divalent cation requirement and 20 mM EDTA is not inhibitory. The activity is strongly inhibited by Triton X-100 at concentrations of greater than or equal to 0.2%. Competition studies suggest that a single enzyme acts on Gal beta 1----3Gal beta 1----4Glc, GlcNAc beta 1----3Gal beta 1----4GlcNAc and GlcNAc beta 1----3GalNAc alpha-O-benzyl (Km values 0.71, 0.83 and 0.53 mM, respectively). Gal beta----3Gal beta 1----4Glc as an acceptor substrate for beta 6-GlcNAc-transferase B does not inhibit the incorporation of GlcNAc in beta 1----6 linkage to the terminal Gal residues of asialo-alpha 1-acid glycoprotein catalyzed by a beta-galactoside beta 1----6-N-acetylglucosaminyltransferase (beta 6-GlcNAc-transferase A) previously described in Novikoff ascites tumor cells [D. H. Van den Eijnden, H. Winterwerp, P. Smeeman & W.E.C.M. Schiphorst (1983) J. Biol. Chem. 258, 3435-3437]. Neither is Triton X-100 at a concentration of 0.8% inhibitory for the activity of beta 6-GlcNAc-transferase A. This activity is absent from hog gastric mucosa microsomes, which has been described to contain high levels of beta 6-GlcNAc-transferase B. [F. Piller, J. P. Cartron, A. Maranduba, A. Veyrières, Y. Leroy & B. Fournet (1984) J. Biol. Chem. 259, 13,385-13,390]. Our results show that Novikoff tumor cells contain two beta-galactoside beta 6-GlcNAc-transferases, which differ in acceptor specificity and tolerance towards Triton X-100. A role for these enzymes in the synthesis of branched polylactosaminoglycans and of O-linked oligosaccharide core structures having blood-group I activity is proposed.  相似文献   

10.
We have identified a mannosidase in rat liver that releases alpha 1----2, alpha 1----3 and alpha 1----6 linked manose residues from oligosaccharide substrates, MannGlcNAc where n = 4-9. The end product of the reaction is Man alpha 1----3[Man alpha 1----6]Man beta 1----4GlcNAc. The mannosidase has been purified to homogeneity from a rat liver microsomal fraction, after solubilization into the aqueous phase of Triton X-114, by anion-exchange, hydrophobic and hydroxyapatite chromatography followed by chromatofocusing. The purified enzyme is a dimer of a 110-kDa subunit, has a pH optimum between 6.1 and 6.5 and a Km of 65 microM and 110 microM for the Man5GlcNAc-oligosaccharide or Man9GlcNAc-oligosaccharide substrates, respectively. Enzyme activity is inhibited by EDTA, by Zn2+ and Cu2+, and to lesser extent by Fe2+ and is stabilized by Co2+. The pattern of release of mannose residues from a Man6GlcNAc substrate shows an ordered hydrolysis of the alpha 1----2 linked residue followed by hydrolysis of alpha 1----3 and alpha 1----6 linked residues. The purified enzyme shows no activity against p-nitrophenyl-alpha-mannoside nor the hybrid GlcNAc Man5GlcNAc oligosaccharide. The enzyme activity is inhibited by swainsonine and 1-deoxymannojirimycin at concentrations 50-500-fold higher than required for complete inhibition of Golgi-mannosidase II and mannosidase I, respectively. The data indicate strongly that the enzyme has novel activity and is distinct from previously described mannosidases.  相似文献   

11.
Aspergillus oryzae alpha-amylase [(1----4)-alpha-D-glucan glucanohydrolase, EC 3.2.1.1] produced O-(6-phosphoryl-alpha-D-glucopyranosyl)-(1----4)-O-alpha-D-glucopyran osy l-(1----4)-D-glucopyranose (6(3)-phosphorylmaltotriose) and O-alpha-D-glucopyranosyl-(1----4)-O-(3-phosphoryl-alpha-D-glucopyranosyl )- (1----4)-O-alpha-D-glucopyranosyl-(1----4)-D-glucopyranose (3(3)-phosphorylmaltotetraose) from potato starch upon exhaustive hydrolysis. These products indicate that the enzyme hydrolyses the same linkages in the vicinity of the 6-phosphorylated residue as porcine-pancreatic alpha-amylase, but hydrolyses different linkages in the vicinity of the 3-phosphorylated residue when compared with B. subtilis and pancreatic alpha-amylases. Potato phosphorylase [(1----4)-alpha-D-glucan:orthophosphate alpha-D-glucosyltransferase, EC 2.4.1.1] and rabbit muscle phosphorylase a and b were unable to by-pass the phosphorylated D-glucosyl residue of 6-phosphorylated (1----4)-alpha-D-glucan, leaving three D-glucosyl residues attached to the 6-phosphorylated residue on the non-reducing side.  相似文献   

12.
An exocellular D- glucansucrase that synthesizes a water-soluble, alpha-D-(1----6)-linked D-glucan having a high proportion of alpha-D-(1----3) branches was purified from the culture broth of Streptococcus mutans 6715. The rate of incorporation of D-[14C]glucose from [14C]sucrose into D-glucan of high molecular weight by this enzyme was increased (stimulated) by the presence of exogenous Leuconostoc mesenteroides B- 512F dextran, and it was found that this dextran could act as an acceptor. A highly branched dextran, containing 45-50% of alpha-D-(1----3) branch linkages, did not stimulate the enzyme nearly so much as B- 512F dextran, which has a low degree (5%) of alpha-D-(1----3) branches. We interpret this as evidence that the stimulating effects of dextran are not due to priming. If they were, the more highly branched dextran should have produced the greatest stimulation per unit weight, because a much greater number of nonreducing-end, priming sites would be available. We show that the D- glucansucrase was capable of transferring D-glucosyl groups from sucrose to B- 512F dextran to form alpha-D-(1----3) branches, thereby rendering the dextran more resistant to hydrolysis by endodextranase . The presence of 1.6M ammonium sulfate caused the enzyme to synthesize a D-glucan having a much higher percentage of alpha-D-(1----3) linkages.  相似文献   

13.
The human-tracheal, epithelial alpha-(1----2)-L-fucosyltransferase that transfers L-fucose from GDP-L-fucose to an acceptor containing a beta-D-galactopyranosyl group at the nonreducing terminal was characterized. Optimal enzyme activity was obtained at pH 6.5. 20-30mM MnCl2 (or CaCl2), and 0.05% Triton X-100 or 0.5% Tween 20. Mg2+ and Ba2+ ions moderately enhanced the enzyme activity, whereas Fe2+, Co2+, Zn2+, and Cd2+ ions were inhibitory. The enzyme activity was inhibited by N-ethylmaleimide and nucleotides of guanine, inosine, xanthine, and uridine. However, ATP and dithiothreitol did not affect the enzyme activity. The apparent Michaelis constant for GDP-L-fucose, freezing point-depressing glycoproteins (expressed as Gal----GalNAc----Thr), and phenyl beta-D-galactopyranoside was 0.29, 5.70, and 25.4mM, respectively. Under alkali-borohydride conditions (0.05M NaOH-M NaBH4, 45 degrees, 20 h), an L-[14C]fucosyltrisaccharide was released from the product obtained by use of freezing point-depressing glycoprotein as the acceptor. The alpha-L anomeric configuration of the fucoside was determined by the release of L-[14C]fucose from the purified trisaccharide by Turbo cornutus alpha-L-fucosidase. The (1----2) linkage of the L-fucosyl group to the D-galactosyl residue was established by methylation technique (m.s.-g.l.c.). The present enzyme has properties similar to those of the human milk alpha-(1----2)-L-fucosyltransferase which is encoded by a secretor gene.  相似文献   

14.
1. The rainbow trout (Oncorhynchus mykiss) CMPNeuAc:lactosylceramide alpha 2----3sialytransferase enzyme from RTH-149 cells has been characterized. 2. Transfer of sialic acid to lactosylceramide was optimal at a pH of 5.9, temperature of 25 degrees C, and in the pressure of 0.3% CF-54, 10 mM Mn2+, 0.1 M sodium cacodylate, and 2 mM ATP. 3. Golgi-rich membrane fractions of RTH-149 cells were found to be enriched in sialidase activity and as such the addition of 40 microM 2,3-dehydro-2-deoxy-N-acetylneuraminic acid was necessary to assay alpha 2----3sialyltransferase activity optimally. 4. Apparent Km for donor (CMPNeuAc) and acceptor (lactosylceramide) were found to be 243 microM and 34 microM, respectively. 5. The alpha 2----3sialyltransferase characterized was found to be primarily specific for lactosylceramide though minor activity with other glycolipid acceptors was observed. 6. The presence of another sialyltransferase with differing substrate specificity was noted. 7. Properties of this enzyme, compared to analogous mammalian enzymes, are discussed.  相似文献   

15.
A beta-(1----6)-D-galactosyltransferase has been purified over 2000-fold by affinity chromatography on UDP-p-aminophenyl-Sepharose. The enzyme, from a pellet fraction (8000 x g) of Helix pomatia albumen gland, catalyzes transfer of D-galactose from UDP-galactose to a (1----6) linkage on acceptor H. pomatia galactogen. Three other polymers served as acceptors: beef lung galactan, Lymnaea stagnalis galactogen and arabinogalactan from larch wood. To determine the linkage specificity of the enzyme, it was incubated with UDP-D-galactose and acceptor galactogen that had been tritiated previously by treatment with galactose oxidase and [3H]KBH4. The [3H]galactogen reaction product was recovered, methylated, hydrolyzed and acetylated; tritiated derivatives were identified by mass spectroscopy of effluent fractions separated by gas chromatography. This analysis revealed that (1----6)-linked galactosyl groups had been added to the enzyme-treated acceptor galactogen. Also identified was a hydrolytic enzyme that removed terminal alpha 1,2-linked L-galactosyl residues from H. pomatia galactogen.  相似文献   

16.
The action of neopullulanase from Bacillus stearothermophilus on many oligosaccharides was tested. The enzyme hydrolyzed not only alpha-(1----4)-glucosidic linkages but also specific alpha-(1----6)-glucosidic linkages of several branched oligosaccharides. When pullulan was used as a substrate, panose, maltose, and glucose, in that order, were produced as final products at a final molar ratio of 3:1:1. According to these results, we proposed a model for the pattern of action of neopullulanase on pullulan as follows. In the first step, the enzyme hydrolyzes only alpha-(1----4)-glucosidic linkages on the nonreducing side of alpha-(1----6) linkages of pullulan and produces panose and several intermediate products composed of some panose units. In the second step, taking 6(2)-O-alpha-(6(3)-O-alpha-glucosyl-maltotriosyl)-maltose as an example of one of the intermediate products, the enzyme hydrolyzes either alpha-(1----4) (the same position as that described above) or alpha-(1----6) linkages and produces panose or 6(3)-O-alpha-glucosyl-maltotriose plus maltose, respectively. In the third step, the alpha-(1----4) linkage of 6(3)-O-alpha-glucosyl-maltotriose is hydrolyzed by the enzyme, and glucose and another panose are produced. To confirm the model of the pattern of action, we extracted intermediate products produced from pullulan by neopullulanase and analyzed the structures by glucoamylase, pullulanase, and neopullulanase analyses. The experimental results supported the above-mentioned model of the pattern of action of neopullulanase on pullulan.  相似文献   

17.
A synthetic substrate, benzyl 2-acetamido-2-deoxy-3-O-(2-O-methyl-beta-D- galactopyranosyl)-beta-D-glucopyranoside, was demonstrated to be a specific acceptor for the Lewis blood group-specified alpha(1----4)-L-fucosyltransferase from human saliva and stomach mucosa. The fucosyl linkage of the product resulting from the use of this substrate isolated by paper chromatography was characterized by hydrolysis with specific alpha(1----3)/(1----4)-L- fucosidase. The product can be separated by adsorption onto the reverse-phase cartridge and recovered by one-step elution with methanol. The enzymatic properties of alpha(1----4)-L-fucosyltransferase from saliva and stomach mucosa have also been examined using this substrate.  相似文献   

18.
19.
The secretor-type beta-galactoside alpha 1----2-fucosyltransferase from human serum was purified by hydrophobic chromatography on phenyl-Sepharose, ion-exchange chromatography on sulfopropyl-Sepharose, and affinity chromatography on GDP-hexanolamine-Sepharose. Final purification of the enzyme was achieved by high pressure liquid chromatography gel filtration and resulted in a homogeneous protein as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the radiolabeled protein. The native enzyme appears as a molecule of apparent Mr 150,000 as determined by gel filtration high pressure liquid chromatography. The apparent Mr of the enzyme resolved in the presence of beta-mercaptoethanol by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was determined to be 50,000, indicating a multisubunit structure of the enzyme. Secretor-type alpha 1----2-fucosyltransferase is a glycoprotein as determined by WGA binding properties. A comparison of the Mr of the native blood group H gene encoded with the secretor-type beta-galactoside alpha 1----2-fucosyltransferases as well as comparison of subunit Mr for both enzymes suggests structural similarity. The alpha 1----2 linkage formed between alpha-L-fucose and terminal beta-D-galactose by the purified H- and secretor-type alpha 1----2-fucosyltransferases was determined by 1H NMR homonuclear cross-irradiation analysis of the oligosaccharide products. The substrate specificity and Km values calculated from the initial rate using various oligosaccharide acceptors showed that purified enzymes differ primarily in affinity for phenyl-beta-D-galactopyranoside and GDP-fucose as well as type 1 (Gal beta 1----3GlcNAc), 2 (Gal beta 1----4GlcNAc), and 3 (Gal beta 1----3GalNAc) oligosaccharide acceptors. The secretor-type alpha 1----2-fucosyltransferase shows significantly lower affinity than the H enzyme for phenyl-beta-D-galactopyranoside and GDP-fucose as well as for type 2 oligosaccharide acceptors. On the contrary, type 1 and 3 oligosaccharide acceptors are preferentially utilized by the secretor-type enzyme as compared with the H enzyme. The enzymes also differ in several physicochemical properties, implying nonidentity of the two enzymes (Sarnesto, A., K?hlin, T., Thurin, J., and Blaszczyk-Thurin, M. (1990) J. Biol. Chem. 265, 15067-15075).  相似文献   

20.
A beta-N-Acetylglucosaminide alpha 1----3-fucosyltransferase was purified from human serum by ammonium sulfate precipitation, hydrophobic chromatography on phenyl-Sepharose, ion-exchange chromatography on sulfopropyl-Sepharose, affinity chromatography on GDP-hexanolamine-Sepharose, and finally high pressure liquid chromatography gel filtration. Gel filtration chromatography of the native enzyme revealed a Mr of 45,000. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified protein also appeared as a single molecular species of Mr 45,000. In contrast to the multisubunit beta-galactoside alpha 1----2-fucosyltransferases with an apparent Mr of 150,000, present in human serum, the native beta-N-acetylglucosaminide alpha 1----3-fucosyltransferase is a monomer with a Mr of 45,000. The enzyme is glycosylated, as revealed by wheat germ agglutinin binding properties. The alpha 1----3 linkage formed by the enzyme between alpha-L-fucose and the penultimate beta-N-acetylglucosamine by the purified enzyme was confirmed by 1H NMR homonuclear cross-irradiation analysis of the oligosaccharide product. The specificity of the purified enzyme is restricted to type 2 structures, as revealed by its reactivity with different substrates and from the Km values calculated from the initial rate data using various oligosaccharide acceptors. The enzyme has the ability to utilize the N-acetyl-beta-lactosamine determinant (Gal beta 1----4GlcNAc) and the sialylated (NeuAc alpha 2----3Gal beta 1----4GlcNAc) and fucosylated (Fuc alpha 1----2Gal beta 1----4GlcNAc) derivatives of N-acetyl-beta-lactosamine and thus is distinct from both the human Lewis gene-encoded enzyme and the alpha 1----3-fucosyltransferase of the myeloid cell type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号