首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Time‐dependent variations in the hormonal and metabolic responses to food are of importance to human health, as postprandial metabolic responses have been implicated as risk factors in a number of major diseases, including cardiovascular disease. Early work reported decreasing glucose tolerance in the evening and at night with evidence for insulin resistance at night. Subsequently an endogenous circadian component, assessed in constant routine (CR), as well as an influence of sleep time, was described for glucose and insulin. Plasma triacylglycerol (TAG), the major lipid component of dietary fat circulating after a meal, also appears to be influenced by both the circadian clock and sleep time with higher levels during biological night (defined as the time between the onset and offset of melatonin secretion) despite identical hourly nutrient intake. These time‐dependent differences in postprandial responses have implications for shiftworkers. In the case of an unadapted night shift worker, meals during work time will be taken during biological night. In simulated night shift conditions the TAG response to a standard meal, preceded by either a low‐fat or a high‐fat premeal, was higher after a nighttime meal than during a daytime meal, and the day/night difference was larger in men than in women. In real night shift workers in Antarctica, insulin, glucose, and TAG all showed an increased response after a nighttime meal (second day of night shift) compared to a daytime meal. Night shift workers are reported to have an approximately 1.5 times higher incidence of heart disease risk and also demonstrate higher TAG levels compared with matched dayworkers. As both insulin resistance and elevated circulating TAG are independent risk factors for heart disease, it is possible that meals at night may contribute to this risk.  相似文献   

2.
A number of reports suggest that shift workers have an increased risk of coronary heart disease (CHD). One contributing factor may be the consumption of meals at night with consequent altered postprandial responses. This study investigated circulating triacylglycerol (TAG), a possible risk factor for CHD, after meals during a simulated day and night shift. Twenty-five healthy participants (10 women and 15 men) were studied. They were given a pre-meal at 0800 h and a test meal at 1330 h on a simulated day shift and then an identical pre-meal at 2000 h and test meal at 0130 h, respectively, on a simulated night shift with maintained wakefulness. Blood was sampled for 9 h after the test meal for analysis of basal and postprandial plasma TAG levels. ANOVA for repeated measures indicated higher TAG in men compared with women (p < 0.0001) and higher responses at night in both genders (p = 0.027). Incremental area under the curve (IAUC) analysis indicated that men had significantly increased postprandial TAG levels at night compared with the day: (IAUC 0-540 min, mean +/- SEM) 253.29 +/- 28.73 versus 148.33 +/- 17.28 mmol/L x min, respectively, p = 0.025. In women, night and day responses (61.16 +/- 8.93 versus 34.09 +/- 7.87 mmol/L x min, respectively, p = 0.457) were not significantly different. Circulating TAG remained elevated for longer at night in the men compared with the women (p = 0.009). This study demonstrates the existence of gender and time-of-day differences in TAG responses to a meal. These raised TAG levels at night, for a prolonged time in men, may be relevant to the increased risk of CHD in shift workers.  相似文献   

3.
Shift workers are known to have an increased risk of developing cardiovascular disease (CVD) compared with day workers. An important factor contributing to this increased risk could be the increased incidence of postprandial metabolic risk factors for CVD among shift workers, as a consequence of the maladaptation of endogenous circadian rhythms to abrupt changes in shift times. We have previously shown that both simulated and real shift workers showed relatively impaired glucose and lipid tolerance if a single test meal was consumed between 00:00-02:00 h (night shift) compared with 12:00-14:00 h (day shift). The objective of the present study was to extend these observations to compare the cumulative metabolic effect of consecutive snacks/meals, as might normally be consumed throughout a period of night or day shift work. In a randomized crossover study, eight healthy nonobese men (20-33 yrs, BMI 20-25kg/m2) consumed a combination of two meals and a snack on two occasions following a standardized prestudy meal, simulating night and day shift working (total energy 2500 kcal: 40% fat, 50% carbohydrate, 10% protein). Meals were consumed at 01:00/ 13:00 h and 07:00/19:00h, and the snack at 04:00/16:00 h. Blood was taken after an overnight fast, and for 8 h following the first meal on each occasion, for the measurement of glucose, insulin, triacylglycerol (TAG), and nonesterified fatty acids (NEFA). RM-ANOVA (factors time and shift) showed a significant effect of shift for plasma TAG, with higher levels on simulated night compared to day shift (p < 0.05). There was a trend toward an effect of shift for plasma glucose, with higher plasma glucose at night (p = 0.08), and there was a time-shift interaction for plasma insulin levels (p < 0.01). NEFA levels were unaffected by shift. Inspection of the area under the plasma response curve (AUC) following each meal and snack revealed that the differences in lipid tolerance occurred throughout the study, with greatest differences occurring following the mid-shift snack. In contrast, glucose tolerance was relatively impaired following the first night-time meal, with no differences observed following the second meal. Plasma insulin levels were significantly lower following the first meal (p < 0.05), but significantly higher following the second meal (p < 0.01) on the simulated night shift. These findings confirm our previous observations of raised postprandial TAG and glucose at night, and show that sequential meal ingestion has a more pronounced effect on subsequent lipid than carbohydrate tolerance.  相似文献   

4.
Shift workers are known to have an increased risk of developing cardiovascular disease (CVD) compared with day workers. An important factor contributing to this increased risk could be the increased incidence of postprandial metabolic risk factors for CVD among shift workers, as a consequence of the maladaptation of endogenous circadian rhythms to abrupt changes in shift times. We have previously shown that both simulated and real shift workers showed relatively impaired glucose and lipid tolerance if a single test meal was consumed between 00:00–02:00 h (night shift) compared with 12:00–14:00 h (day shift). The objective of the present study was to extend these observations to compare the cumulative metabolic effect of consecutive snacks/meals, as might normally be consumed throughout a period of night or day shift work. In a randomized crossover study, eight healthy nonobese men (20–33 yrs, BMI 20–25 kg/m2) consumed a combination of two meals and a snack on two occasions following a standardized prestudy meal, simulating night and day shift working (total energy 2500 kcal: 40% fat, 50% carbohydrate, 10% protein). Meals were consumed at 01:00/13:00 h and 07:00/19:00 h, and the snack at 04:00/16:00 h. Blood was taken after an overnight fast, and for 8 h following the first meal on each occasion, for the measurement of glucose, insulin, triacylglycerol (TAG), and nonesterified fatty acids (NEFA). RM-ANOVA (factors time and shift) showed a significant effect of shift for plasma TAG, with higher levels on simulated night compared to day shift (p < 0.05). There was a trend toward an effect of shift for plasma glucose, with higher plasma glucose at night (p = 0.08), and there was a time-shift interaction for plasma insulin levels (p < 0.01). NEFA levels were unaffected by shift. Inspection of the area under the plasma response curve (AUC) following each meal and snack revealed that the differences in lipid tolerance occurred throughout the study, with greatest differences occurring following the mid-shift snack. In contrast, glucose tolerance was relatively impaired following the first night-time meal, with no differences observed following the second meal. Plasma insulin levels were significantly lower following the first meal (p < 0.05), but significantly higher following the second meal (p < 0.01) on the simulated night shift. These findings confirm our previous observations of raised postprandial TAG and glucose at night, and show that sequential meal ingestion has a more pronounced effect on subsequent lipid than carbohydrate tolerance.  相似文献   

5.
Our aim was to investigate how circadian adaptation to night shift work affects psychomotor performance, sleep, subjective alertness and mood, melatonin levels, and heart rate variability (HRV). Fifteen healthy police officers on patrol working rotating shifts participated to a bright light intervention study with 2 participants studied under two conditions. The participants entered the laboratory for 48 h before and after a series of 7 consecutive night shifts in the field. The nighttime and daytime sleep periods were scheduled during the first and second laboratory visit, respectively. The subjects were considered “adapted” to night shifts if their peak salivary melatonin occurred during their daytime sleep period during the second visit. The sleep duration and quality were comparable between laboratory visits in the adapted group, whereas they were reduced during visit 2 in the non-adapted group. Reaction speed was higher at the end of the waking period during the second laboratory visit in the adapted compared to the non-adapted group. Sleep onset latency (SOL) and subjective mood levels were significantly reduced and the LF∶HF ratio during daytime sleep was significantly increased in the non-adapted group compared to the adapted group. Circadian adaptation to night shift work led to better performance, alertness and mood levels, longer daytime sleep, and lower sympathetic dominance during daytime sleep. These results suggest that the degree of circadian adaptation to night shift work is associated to different health indices. Longitudinal studies are required to investigate long-term clinical implications of circadian misalignment to atypical work schedules.  相似文献   

6.
Night shift work is associated with a myriad of health and safety risks. Phase-shifting the circadian clock such that it is more aligned with night work and day sleep is one way to attenuate these risks. However, workers will not be satisfied with complete adaptation to night work if it leaves them misaligned during days off. Therefore, the goal of this set of studies is to produce a compromise phase position in which individuals working night shifts delay their circadian clocks to a position that is more compatible with nighttime work and daytime sleep yet is not incompatible with late nighttime sleep on days off. This is the first in the set of studies describing the magnitude of circadian phase delays that occurs on progressively later days within a series of night shifts interspersed with days off. The series will be ended on various days in order to take a "snapshot" of circadian phase. In this set of studies, subjects sleep from 23:00 to 7:00 h for three weeks. Following this baseline period, there is a series of night shifts (23:00 to 07:00 h) and days off. Experimental subjects receive five 15 min intermittent bright light pulses (approximately 3500 lux; approximately 1100 microW/cm2) once per hour during the night shifts, wear sunglasses that attenuate all visible wavelengths--especially short wavelengths ("blue-blockers")--while traveling home after the shifts, and sleep in the dark (08:30-15:30 h) after each night shift. Control subjects remain in typical dim room light (<50 lux) throughout the night shift, wear sunglasses that do not attenuate as much light, and sleep whenever they want after the night shifts. Circadian phase is determined from the circadian rhythm of melatonin collected during a dim light phase assessment at the beginning and end of each study. The sleepiest time of day, approximated by the body temperature minimum (Tmin), is estimated by adding 7 h to the dim light melatonin onset. In this first study, circadian phase was measured after two night shifts and day sleep periods. The Tmin of the experimental subjects (n=11) was 04:24+/-0.8 h (mean+/-SD) at baseline and 7:36+/-1.4 h after the night shifts. Thus, after two night shifts, the Tmin had not yet delayed into the daytime sleep period, which began at 08:30 h. The Tmin of the control subjects (n=12) was 04:00+/-1.2 h at baseline and drifted to 4:36+/-1.4 h after the night shifts. Thus, two night shifts with a practical pattern of intermittent bright light, the wearing of sunglasses on the way home from night shifts, and a regular sleep period early in the daytime, phase delayed the circadian clock toward the desired compromise phase position for permanent night shift workers. Additional night shifts with bright light pulses and daytime sleep in the dark are expected to displace the sleepiest time of day into the daytime sleep period, improving both nighttime alertness and daytime sleep but not precluding adequate sleep on days off.  相似文献   

7.
ABSTRACT

Current dietary trends show that humans consume up to 40% of their energy intake during the night. Those who habitually eat during the night are observed to have an increased risk of metabolic conditions such as type-2 diabetes and cardiovascular disease. Increasing evidence suggest that a biological consequence of eating during the night is a larger postprandial glucose response, compared to meals eaten earlier in the day. However, findings from individual acute postprandial studies have been inconsistent, due to variations in protocols. Therefore, this review aimed to systematically summarize findings from acute postprandial studies and investigate whether postprandial glucose and insulin response at night differs to during the day in healthy adults. This would indicate a possible physiological mechanism linking habitual nighttime eating and increased risk of metabolic conditions. Seven electronic databases were searched in February 2018. Included studies met the following criteria: had a day-time test between 0700 – 1600h, a nighttime test between 2000 and 0400h, the test meals were identical and consumed by the same participant at both day and night time points, preceded by a 3-h fast (minimum). Primary outcome measures were postprandial glucose and insulin incremental area under the curve (iAUC) or area under the curve (AUC). Studies that reported numerical data were included in the meta-analyses, conducted using Stata statistical software (version 13.0, StataCorp, College Station, TX, USA). For eligible studies that did not report numerical data, their authors’ conclusions on the effect of time of day on the primary outcome measures were summarized qualitatively. Full text of 172 articles were assessed for eligibility. Fifteen studies met the eligibility criteria, ten of which were included in the meta-analyses. Meta-analysis for glucose showed a lower postprandial glucose response in the day compared to during the night, after an identical meal (SMD = ?1.66; 95% CI, ?1.97 to ?1.36; p < .001). This was supported by the findings from included studies ineligible for meta-analysis. Meta-analysis also showed a lower postprandial insulin response in the day compared to during the night (SMD = ?0.35; 95% CI, ?0.63 to ?0.06; p = .016). However, findings from included studies ineligible for meta-analysis were inconsistent. Our results suggest poor glucose tolerance at night compared to the day. This may be a contributing factor to the increased risk of metabolic diseases observed in those who habitually eat during the night, such as shift workers.  相似文献   

8.
To determine whether the ultradian and circadian rhythms of glucose and insulin secretion rate (ISR) are adapted to their permanent nocturnal schedule, eight night workers were studied during their usual 24-h cycle with continuous enteral nutrition and a 10-min blood sampling procedure and were compared with 8 day-active subjects studied once with nocturnal sleep and once with an acute 8-h-shifted sleep. The mean 24-h glucose and ISR levels were similar in the three experiments. The duration and the number of the ultradian oscillations were influenced neither by the time of day nor by the sleep condition or its shift, but their mean amplitude increased during sleep whenever it occurred. In day-active subjects, glucose and ISR levels were high during nighttime sleep and then decreased to a minimum in the afternoon. After the acute sleep shift, the glucose and ISR rhythms were split in a biphasic pattern with a slight increase during the night of deprivation and another during daytime sleep. In night workers, the glucose and ISR peak levels exhibited an 8-h shift in accordance with the sleep shift, but the onset of the glucose rise underwent a shift of only 6 h and the sleep-related amplification of the glucose and ISR oscillations did not occur simultaneously. These results demonstrate that despite a predominant influence of sleep, the 24-h glucose and ISR rhythms are only partially adapted in permanent night workers.  相似文献   

9.
Night shift work is associated with a myriad of health and safety risks. Phase‐shifting the circadian clock such that it is more aligned with night work and day sleep is one way to attenuate these risks. However, workers will not be satisfied with complete adaptation to night work if it leaves them misaligned during days off. Therefore, the goal of this set of studies is to produce a compromise phase position in which individuals working night shifts delay their circadian clocks to a position that is more compatible with nighttime work and daytime sleep yet is not incompatible with late nighttime sleep on days off. This is the first in the set of studies describing the magnitude of circadian phase delays that occurs on progressively later days within a series of night shifts interspersed with days off. The series will be ended on various days in order to take a “snapshot” of circadian phase. In this set of studies, subjects sleep from 23:00 to 7:00 h for three weeks. Following this baseline period, there is a series of night shifts (23:00 to 07:00 h) and days off. Experimental subjects receive five 15 min intermittent bright light pulses (~3500 lux; ~1100 µW/cm2) once per hour during the night shifts, wear sunglasses that attenuate all visible wavelengths—especially short wavelengths (“blue‐blockers”)—while traveling home after the shifts, and sleep in the dark (08:30–15:30 h) after each night shift. Control subjects remain in typical dim room light (<50 lux) throughout the night shift, wear sunglasses that do not attenuate as much light, and sleep whenever they want after the night shifts. Circadian phase is determined from the circadian rhythm of melatonin collected during a dim light phase assessment at the beginning and end of each study. The sleepiest time of day, approximated by the body temperature minimum (Tmin), is estimated by adding 7 h to the dim light melatonin onset. In this first study, circadian phase was measured after two night shifts and day sleep periods. The Tmin of the experimental subjects (n=11) was 04:24±0.8 h (mean±SD) at baseline and 7:36±1.4 h after the night shifts. Thus, after two night shifts, the Tmin had not yet delayed into the daytime sleep period, which began at 08:30 h. The Tmin of the control subjects (n=12) was 04:00±1.2 h at baseline and drifted to 4:36±1.4 h after the night shifts. Thus, two night shifts with a practical pattern of intermittent bright light, the wearing of sunglasses on the way home from night shifts, and a regular sleep period early in the daytime, phase delayed the circadian clock toward the desired compromise phase position for permanent night shift workers. Additional night shifts with bright light pulses and daytime sleep in the dark are expected to displace the sleepiest time of day into the daytime sleep period, improving both nighttime alertness and daytime sleep but not precluding adequate sleep on days off.  相似文献   

10.
Circadian phase resetting is sensitive to visual short wavelengths (450–480?nm). Selectively filtering this range of wavelengths may reduce circadian misalignment and sleep impairment during irregular light-dark schedules associated with shiftwork. We examined the effects of filtering short wavelengths (<480?nm) during night shifts on sleep and performance in nine nurses (five females and four males; mean age?±?SD: 31.3?±?4.6 yrs). Participants were randomized to receive filtered light (intervention) or standard indoor light (baseline) on night shifts. Nighttime sleep after two night shifts and daytime sleep in between two night shifts was assessed by polysomnography (PSG). In addition, salivary melatonin levels and alertness were assessed every 2?h on the first night shift of each study period and on the middle night of a run of three night shifts in each study period. Sleep and performance under baseline and intervention conditions were compared with daytime performance on the seventh day shift, and nighttime sleep following the seventh daytime shift (comparator). On the baseline night PSG, total sleep time (TST) (p?<?0.01) and sleep efficiency (p?=?0.01) were significantly decreased and intervening wake times (wake after sleep onset [WASO]) (p?=?0.04) were significantly increased in relation to the comparator night sleep. In contrast, under intervention, TST was increased by a mean of 40?min compared with baseline, WASO was reduced and sleep efficiency was increased to levels similar to the comparator night. Daytime sleep was significantly impaired under both baseline and intervention conditions. Salivary melatonin levels were significantly higher on the first (p?<?0.05) and middle (p?<?0.01) night shifts under intervention compared with baseline. Subjective sleepiness increased throughout the night under both conditions (p?<?0.01). However, reaction time and throughput on vigilance tests were similar to daytime performance under intervention but impaired under baseline on the first night shift. By the middle night shift, the difference in performance was no longer significant between day shift and either of the two night shift conditions, suggesting some adaptation to the night shift had occurred under baseline conditions. These results suggest that both daytime and nighttime sleep are adversely affected in rotating-shift workers and that filtering short wavelengths may be an approach to reduce sleep disruption and improve performance in rotating-shift workers. (Author correspondence: casper@lunenfeld.ca)  相似文献   

11.
Night shiftworkers often complain of disturbed sleep during the day. This could be partly caused by morning sunlight exposure during the commute home, which tends to maintain the circadian clock on a daytime rhythm. The circadian clock is most sensitive to the blue portion of the visible spectrum, so our aim was to determine if blocking short wavelengths of light below 540 nm could improve daytime sleep quality and nighttime vigilance of night shiftworkers. Eight permanent night shiftworkers (32–56 yrs of age) of Quebec City's Canada Post distribution center were evaluated during summertime, and twenty others (24–55 yrs of age) during fall and winter. Timing, efficacy, and fragmentation of daytime sleep were analyzed over four weeks by a wrist activity monitor, and subjective vigilance was additionally assessed at the end of the night shift in the fall–winter group. The first two weeks served as baseline and the remaining two as experimental weeks when workers had to wear blue-blockers glasses, either just before leaving the workplace at the end of their shift (summer group) or 2 h before the end of the night shift (fall–winter group). They all had to wear the glasses when outside during the day until 16:00 h. When wearing the glasses, workers slept, on average ±SD, 32±29 and 34±60 more min/day, increased their sleep efficacy by 1.95±2.17% and 4.56±6.1%, and lowered their sleep fragmentation by 1.74±1.36% and 4.22±9.16% in the summer and fall–winter group, respectively. Subjective vigilance also generally improved on Fridays in the fall–winter group. Blue-blockers seem to improve daytime sleep of permanent night-shift workers.  相似文献   

12.
The prevalence of hazardous incidents induced by attentional impairment during night work and ensuing commute times is attributable to circadian misalignment and increased sleep pressure. In a 10-day shift work simulation protocol (4 day shifts and 3 night shifts), the efficacies of 2 countermeasures against nighttime (2300 to 0700 h) attentional impairment were compared: (1) Morning Sleep (0800 to 1600 h; n = 18) in conjunction with a phase-delaying light exposure (2300 to 0300 h), and (2) Evening Sleep (1400 to 2200 h; n = 17) in conjunction with a phase-advancing light exposure (0300 to 0700 h). Analysis of the dim light salivary melatonin onset indicated a modest but significant circadian realignment in both sleep groups (evening sleep: 2.27 +/- 0.6 h phase advance, p < 0.01; morning sleep: 4.98 +/- 0.43 h phase delay, p < 0.01). Daytime sleep efficiency and total sleep time did not differ between them or from their respective baseline sleep (2200 to 0600 h; p > 0.05). However, on the final night shift, the evening sleep subjects had 37% fewer episodes of attentional impairment (long response times: 22 +/- 4 vs. 35 +/- 4; p = 0.02) and quicker responses (p < 0.01) on the Psychomotor Vigilance Task than their morning sleep counterparts. Their response speed recovered to near daytime levels (p = 0.47), whereas those of the morning sleep subjects continued to be slower than their daytime levels (p = 0.008). It is concluded that partial circadian realignment to night work in combination with reduced homeostatic pressure contributed to the greater efficacy of a schedule of Evening Sleep with a phase-advancing light exposure as a countermeasure against attentional impairment, over a schedule of Morning Sleep with a phase-delaying light exposure. These results have important implications for managing patients with shift work disorder.  相似文献   

13.
This study aimed to examine prospectively whether individual nighttime sleep characteristics at baseline (prior to shift‐work exposure) are related to parameters of daytime sleep after commencing shift work. A longitudinal field study was carried out with novice police officers of the Dutch Police Force. A total of 26 subjects were examined at baseline before they entered shift work and re‐examined during follow‐up sessions after four and twelve months of shift‐work exposure. Wrist actigraphy and sleep diaries were used to study nocturnal sleep at baseline and daytime sleep after night shifts during follow‐up sessions. As outcome variables, estimated total sleep time, sleep efficiency, and subjective sleep quality were analyzed. Daytime total sleep time showed a 66 min decline during the first year of shift‐work exposure. Systematic inter‐individual differences were observed for daytime total sleep time and subjective sleep quality (explaining 53% and 38% of the variance, respectively), suggesting potential predictability of these sleep parameters. Although no predictors were found for daytime total sleep time, the subjective quality of nighttime sleep before the onset of shift work predicted 40% of the variance in the subjective quality of daytime sleep after commencing shift work. Follow‐up studies may reveal whether the subjective quality of baseline nighttime sleep also predicts long‐term overall tolerance for shift work.  相似文献   

14.
This study aimed to examine prospectively whether individual nighttime sleep characteristics at baseline (prior to shift-work exposure) are related to parameters of daytime sleep after commencing shift work. A longitudinal field study was carried out with novice police officers of the Dutch Police Force. A total of 26 subjects were examined at baseline before they entered shift work and re-examined during follow-up sessions after four and twelve months of shift-work exposure. Wrist actigraphy and sleep diaries were used to study nocturnal sleep at baseline and daytime sleep after night shifts during follow-up sessions. As outcome variables, estimated total sleep time, sleep efficiency, and subjective sleep quality were analyzed. Daytime total sleep time showed a 66 min decline during the first year of shift-work exposure. Systematic inter-individual differences were observed for daytime total sleep time and subjective sleep quality (explaining 53% and 38% of the variance, respectively), suggesting potential predictability of these sleep parameters. Although no predictors were found for daytime total sleep time, the subjective quality of nighttime sleep before the onset of shift work predicted 40% of the variance in the subjective quality of daytime sleep after commencing shift work. Follow-up studies may reveal whether the subjective quality of baseline nighttime sleep also predicts long-term overall tolerance for shift work.  相似文献   

15.
Although repeated selective rapid eye movement (REM) sleep deprivation by awakenings during nighttime has shown that the number of sleep interruptions required to prevent REM sleep increases within and across consecutive nights, the underlying regulatory processes remained unspecified. To assess the role of circadian and homeostatic factors in REM sleep regulation, REM sleep was selectively deprived in healthy young adult males during a daytime sleep episode (7-15 h) after a night without sleep. Circadian REM sleep propensity is known to be high in the early morning. The number of interventions required to prevent REM sleep increased from the first to the third 2-h interval by a factor of two and then leveled off. Only a minor REM sleep rebound (11.6%) occurred in the following undisturbed recovery night. It is concluded that the limited rise of interventions during selective daytime REM sleep deprivation may be due to the declining circadian REM sleep propensity, which may partly offset the homeostatic drive and the sleep-dependent disinhibition of REM sleep.  相似文献   

16.

Background

Low birth weight and slow growth during infancy are associated with increased rates of chronic diseases in adulthood. Associations with risk factors such as fasting glucose and lipids concentrations are weaker than expected based on associations with disease. This could be explained by differences in postprandial responses, which, however, have been little studied. Our aim was to examine the impact of growth during infancy on postprandial responses to a fast-food meal (FF-meal) and a meal, which followed the macro-nutrient composition of the dietary guidelines (REC-meal).

Methodology/Principal Findings

We recruited 24 overweight 65–75 year-old subjects, 12 with slow growth during infancy (SGI-group) and 12 with normal early growth. All the subjects were born at term. The study meals were isocaloric and both meals were consumed once. Plasma glucose, insulin, triglycerides (TG) and free fatty acids (FFA) were measured in fasting state and over a 4-h period after both meals. Subjects who grew slowly during infancy were also smaller at birth. Fasting glucose, insulin or lipid concentrations did not differ significantly between the groups. The TG responses were higher for the SGI-group both during the FF-meal (P = 0.047) and the REC-meal (P = 0.058). The insulin responses were significantly higher for the SGI-group after the FF-meal (P = 0.036). Glucose and FFA responses did not differ significantly between the groups.

Conclusions

Small birth size and slow early growth predict postprandial TG and insulin responses. Elevated responses might be one explanation why subjects who were small at birth and experiencing slow growth in infancy are at an increased risk of developing cardiovascular diseases in later life.  相似文献   

17.

Objective:

The aim of this study was to compare postprandial lipemia, oxidative stress, antioxidant activity, and insulinemia between a three and six isocaloric high‐carbohydrate meal frequency pattern in obese women.

Design and Methods:

In a counterbalanced order, eight obese women completed two, 12‐h conditions in which they consumed 1,500 calories (14% protein, 21% fat, and 65% carbohydrate) either as three 500 calorie liquid meals every 4‐h or six 250 calorie liquid meals every 2‐h. Blood samples were taken every 30 min and analyzed for triacylglycerol (TAG), total cholesterol, high‐density lipoprotein cholesterol, low‐density lipoprotein cholesterol, oxidized low‐density lipoprotein cholesterol, myeloperoxidase, paraoxonase‐1 activity, and insulin.

Results:

The TAG incremental area under the curve (iAUC) during the three meal condition (321 ± 129 mg/dl·12 h) was significantly lower (P = 0.04) compared with the six meal condition (481 ± 155 mg/dl·12 h). The insulin iAUC during the three meal condition (5,549 ± 1,007 pmol/l.12 h) was significantly higher (P = 0.05) compared with the six meal condition (4,230 ± 757 pmol/l.12 h). Meal frequency had no influence on the other biochemical variables.

Conclusions:

Collectively, a three and six isocaloric high‐carbohydrate meal frequency pattern differentially alters postprandial TAG and insulin concentrations but has no effect on postprandial cholesterol, oxidative stress, or antioxidant activity in obese women.  相似文献   

18.
It is unknown whether nonparallel pancreatic enzyme output occurs under basal conditions in humans. We aimed to determine whether the circadian or wake-sleep cycle influences the relationship among pancreatic enzymes or between pancreatic secretory and jejunal motor activity. Using orojejunal multilumen intubation, we measured enzyme outputs and proximal jejunal motility index during consecutive daytime and nighttime periods in each of seven fasting, healthy volunteers. Enzyme outputs were correlated tightly during daytime phases of wakefulness and nighttime phases of sleep (r > 0.72, P < 0.001). During nocturnal phases of wakefulness, output of proteases (r = 0.84, P < 0.001), but not of amylase and trypsin (r = 0.12), remained associated. Nocturnally, particularly during sleep, pancreatic secretory activity was directly correlated with jejunal motility index (r > 0.50, P < 0.001). In conclusion, parallel secretion of pancreatic enzymes dominates throughout the circadian cycle. Nonparallel secretion during nocturnal phases of wakefulness may be due to merely circadian effects or to the coupling of the wake-sleep and the circadian cycle. The association between fluctuations of secretory and motor activity appears to be particularly tight during the night.  相似文献   

19.
One of the hallmarks of rapid eye movement (REM) sleep is muscle atonia. Here we report extended epochs of muscle atonia in non-REM sleep (MAN). Their extent and time course was studied in a protocol that included a baseline night, a daytime sleep episode with or without selective REM sleep deprivation, and a recovery night. The distribution of the latency to the first occurrence of MAN was bimodal with a first mode shortly after sleep onset and a second mode 40 min later. Within a non-REM sleep episode, MAN showed a U-shaped distribution with the highest values before and after REM sleep. Whereas MAN was at a constant level over consecutive 2-h intervals of nighttime sleep, MAN showed high initial values when sleep began in the morning. Selective daytime REM sleep deprivation caused an initial enhancement of MAN during recovery sleep. It is concluded that episodes of MAN may represent an REM sleep equivalent and that it may be a marker of homeostatic and circadian REM sleep regulating processes. MAN episodes may contribute to the compensation of an REM sleep deficit.  相似文献   

20.
The current study investigated changes in night-time performance, daytime sleep, and circadian phase during a week of simulated shift work. Fifteen young subjects participated in an adaptation and baseline night sleep, directly followed by seven night shifts. Subjects slept from approximately 0800 hr until they naturally awoke. Polysomnographic data was collected for each sleep period. Saliva samples were collected at half hourly intervals, from 2000 hr to bedtime. Each night, performance was tested at hourly intervals. Analysis indicated that there was a significant increase in mean performance across the week. In general, sleep was not negatively affected. Rather, sleep quality appeared to improve across the week. However, total sleep time (TST) for each day sleep was slightly reduced from baseline, resulting in a small cumulative sleep debt of 3.53 (SD = 5.62) hours. Finally, the melatonin profile shifted across the week, resulting in a mean phase delay of 5.5 hours. These findings indicate that when sleep loss is minimized and a circadian phase shift occurs, adaptation of performance can occur during several consecutive night shifts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号