首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular chitinases of Streptomyces peucetius and a chitinase overproducing mutant, SPVI, were purified to homogeneity by ion exchange and gel filtration chromatography. The purified enzyme has a molecular mass of 42 kDa on SDS-PAGE, and the N-terminal amino acid sequence of the protein from the wild type showed homology to catalytic domains (Domain IV) of several other Streptomyces chitinases such as S. lividans 66, S. coelicolor A3(2), S. plicatus, and S. thermoviolaceus OPC-520. Purified SPVI chitinase cross-reacted to anti-chitinase antibodies of wild-type S. peucetius chitinase. A genomic library of SPVI constructed in E. coli using lambda DASH II was probed with chiC of S. lividans 66 to screen for the chitinase gene. A 2.7 kb fragment containing the chitinase gene was subcloned from a lambda DASH II clone, and sequenced. The deduced protein had a molecular mass of 68 kDa, and showed domain organization similar to that of S. lividans 66 chiC. The N-terminal amino acid sequence of the purified S. peucetius chitinase matched with the N-terminus of the catalytic domain, indicating the proteolytic processing of 68 kDa chitinase precursor protein to 42 kDa mature chitinase containing the catalytic domain only. A putative chiR sequence of a two-component regulatory system was found upstream of the chiC sequence.  相似文献   

2.
Allosamidin is a family 18 chitinase inhibitor produced by Streptomyces. In its producing strain, Streptomyces sp. AJ9463, allosamidin promotes production of the family 18 chitinase originated from chi65 in a chitin medium through the two-component regulatory system encoded by chi65R and chi65S, which were present at the 5'-upstream region of chi65. In this study, we showed generality of the allosamidin's effect. Allosamidin enhanced production of the family 18 chitinases originated from chi65h of Streptomyces halstedii MF425, another allosamidin producer, chiC of Streptomyces coelicolor A3(2) and chiIII of Streptomyces griseus. All the three chitinase genes had high homology to chi65 and two genes homologous to chi65S and chi65R were present at their 5'-upstream regions. When allosamidin's effect was tested with six Streptomyces strains randomly isolated from soil, allosamidin enhanced chitinase production of all strains. All six strains possessed a set of three genes homologous to chi65, chi65S and chi65R. Analysis of 16S rDNA indicated that allosamidin-sensitive strains are distributed widely in Streptomyces. These observations suggested that allosamidin can affect the common regulatory system for production of a chitinase with a two-component regulatory system in Streptomyces.  相似文献   

3.
Abstract Serine proteinases of 42, 22 and 14 kDa were purified from the culture fluid of Streptomyces olivaceoviridis by FPLC. The first 14 amino acids at their N-termini were identical and coincide with the N-terminal amino acid sequence of 92-kDa chitinase, which was found to hydrolyse casein. The four proteins hydrolyse synthetic substrates at the carboxyl group of lysine and (more slowly) arginine. The 14-kDa endoproteinase releases only two fragments of 42 and 43 kDa from β-galactosidase. When the pure 92-kDa chitinase was incubated at 37°C in Tris·HCl buffer, it was cleaved into a 70-kDa chitinase and a 22-kDa proteinase which in its part is rapidly degraded to a 14-kDa proteinase.  相似文献   

4.
Aeromonas caviae CB101 secretes four chitinases (around 92, 82, 70, and 55 kDa) into the culture supernatant. A chitinase gene chi1 (92 kDa) was previously studied. To identify the genes encoding the remaining three chitinases, a cosmid library of CB101 was constructed to screen for putative chitinase genes. Nine cosmid clones were shown to contain a chitinase gene on chitin plates. Surprisingly, all the positive clones contained chi1. In parallel, we purified the 55-kDa chitinase (Chi55) from the CB101 culture supernatant by continuous DEAE-Sepharose and Mono-Q anion exchange chromatography. The N-terminal amino acid sequence of the purified chitinase exactly matched the N-terminal sequence of mature Chi1, indicating that the purified chitinase (Chi55) is a truncated form of Chi1. The N- and C-terminal domains of chi1 were cloned, expressed, and purified, separately. Western blots using anti-sera to the N- and C-terminal domains of chi1 on the chitinases of CB101 showed that the four chitinases in the culture supernatant are either chi1 or C-terminal truncations of Chi1. In addition, the CB101 chi1 null mutant showed no chitinolytic activity, while CB101 chi1 null mutant complemented by pUC19chi1 containing chi1 showed all four chitinases in gel activity assay. These data indicated that all four chitinases secreted by CB101 in the culture supernatant are the product of one chitinase gene chi1.  相似文献   

5.
The gene encoding chitinase from Streptomyces sp. (strain J-13-3) was cloned and its nucleotide structure was analyzed. The chitinase consisted of 298 amino acids containing a signal peptides (29 amino acids) and a mature protein (269 amino acids), and had calculated molecular mass of 31,081 Da. The calculated molecular mass (28,229 Da) of the mature protein was almost same as that of the native chitinase determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometer. Comparison of the encoded amino acid sequences with those of other chitinases showed that J-13-3 chitinase was a member of the glycosyl-hydrolase family 19 chitinases and the mature protein had a chitin binding domain (65 amino acids) containing AKWWTQ motif and a catalytic domain (204 amino acids). The J-13-3 strain had a single chitinase gene. The chitinase (298 amino acids) with C-terminal His tag was overexpressed in Escherichia coli BL21(DE3) cells. The recombinant chitinase purified from the cell extract had identical N-terminal amino acid sequence of the mature protein in spite of confirmation of the nucleotide sequence, suggesting that the signal peptide sequence is successfully cut off at the predicted site by signal peptidase from E. coli and will be a useful genetic tool in protein engineering for production of soluble recombinant protein. The optimum temperature and pH ranges of the purified chitinase were at 35-40 degrees C and 5.5-6.0, respectively. The purified chitinase hydrolyzed colloidal chitin and trimer to hexamer of N-acetylglucosamine and also inhibited the hyphal extension of Tricoderma reesei.  相似文献   

6.
A chitinase producing Bacillus subtilis CHU26 was isolated from Taiwan potato field. This strain exhibited a strong extra-cellular chitinase activity on the colloidal chitin containing agar plate, and showed a potential inhibit activity against phytopathogen, Rhizoctonia solani. The gene encoding chitinase (chi18) was cloned from the constructed B. subtilis CHU26 genomic DNA library. The chi18 consisted of an open reading frame of 1791 nucleotides and encodes 595 amino acids with a deduced molecular weight of 64kDa, next to a promoter region containing a 9 base pair direct repeat sequence (ATTGATGAA). The deduced amino acid sequence of the chitinase from Bacillus subtilis CHU26 exhibits 62% and 81% similarity to those from B. circulans WL-12 and B. licheniformis, respectively. Subcloned chi18 into vector pGEM3Z and pYEP352 to construct recombinant plasmid pGCHI18 and pYCHI18, respectively, chitinase activity could be observed on the colloidal chitin agar plate from recombinant plasmid containing Escherichia coli transformant. Cell-free culture broth of pYCHI18 containing E. coli transformant decreased R. solani pathogenic activity more than 90% in the antagonistic test on the radish seedlings (Raphanus sativus Linn.).  相似文献   

7.
When Streptomyces thermoviolaceus OPC-520 was grown in a minimal medium with 1% chitin, three activity bands corresponding to proteins of 40 kDa (Chi40), 30 kDa (Chi30), and 25 kDa (Chi25) were detected. Among them, Chi30 was purified from the culture filtrate of the strain. The molecular mass was estimated to be 30 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and its isoelectric point was 3.8. The optimum pH and temperature of Chi30 were 4.0 and 60 degrees C, respectively. Chi30 was stable at pH 6-8 up to 60 degrees C. The gene encoding Chi30 (chi30) was cloned and its nucleotides sequenced. The open reading frame of chi30 encoded a protein consisting of 347 amino acids with a calculated molecular weight of 35,621. The mature Chi30 consisted of only a catalytic domain and showed a significant similarity with ChiA from S. coelicolor and ChiA from S. lividans. The existence of a 12-bp direct repeat sequence in the promoter region of chi30 was detected, which have been suggested to be involved in both chitin induction and glucose repression.  相似文献   

8.
Metarhizium anisopliae infects arthropods via a combination of specialized structures and cuticle degradation. Hydrolytic enzymes are accepted as key factors for the host penetration step and include chitinases. The characterization of the chi2 chitinase gene from M. anisopliae var. anisopliae is reported. The chi2 gene is interrupted by two short introns and is 1,542-bp long, coding a predicted protein of 419 amino acids with a stretch of 19 amino acid residues displaying characteristics of signal peptide. The predicted chitinase molecular mass is 44 kDa with a mature protein of 42 kDa and a theoretical pI of 4.8. The comparison of the CHI2 predicted protein to fungal orthologues revealed similarity to the glycohydrolase family 18 and a phylogenetic analysis was conducted. The chi2 gene is up-regulated by chitin as a carbon source and in conditions of fungus autolysis, and is down-regulated by glucose. This regulation is consistent with the presence of putative CreA/Crel/Crr1 carbon catabolic repressor binding domains on the regulatory sequence.  相似文献   

9.
Degenerate PCR primers corresponding to conserved domains of fungal chitinases were designed, and PCR was performed on genomic DNA of the entomogenous fungus Verticillium lecanii (Zimmermann) Viegas. Two distinct PCR fragments, chf1 and chf2, were isolated and used to identify two DNA contigs. Analyses of these two contigs revealed that we had obtained the full-length DNA sequence including the promoter, 5' untranslated region, open reading frame (ORF), and 3' untranslated regions for two distinct chitinase-like genes. These two genomic DNA sequences exhibited 51% identity at the amino acid (aa) level and were designed as acidic (chi1) and basic (chi2) chitinase-like genes. The isolated cDNA for chi1 gene is 1110 bp with a predicted protein of 370 aa and molecular mass of 40.93 kDa, and its ORF was uninterrupted in its corresponding genomic DNA sequence. The cDNA for the chi2 gene is 1269 bp, a predicted ORF of 423 aa and molecular mass of 45.95 kDa. In contrast, the ORF was interrupted by three introns in its corresponding genomic DNA. The basic chitinase gene (chi2) was successfully expressed in the Pichia pastoris system; optimum enzymatic activity was observed at 22 degrees C and at pH 7.5. CHI1 and CHI2 were clustered into two different phylogenetic groups according to their sequence alignments with 28 other fungal chitinases. A chitin-binding domain, comprising two sub-domains that exhibit similarities at the aa level to chitin binding domains in bacteria, was identified in 30 fungal chitinase sequences examined.  相似文献   

10.
Streptomyces coelicolor A3(2) possesses nine genes for family 18 chitinases and two for family 19, showing high multiplicity. By hybridization analyses, distribution of those chitinase genes was investigated in six other Streptomyces species covering the whole phylogenetic range based on 16S rDNA sequences. All strains showed high-multiplicity of chitinase genes, like S. coelicolor A3(2). The phylogeny and gene organization of the family 18 chitinase genes cloned from Streptomyces species so far were then analyzed to investigate the gene evolution. It was concluded that Streptomyces already possessed a variety of chitinase genes prior to branching into many species, and that the ancestral genes of chiA and chiB have been generated by gene-duplication. In the course of the analyses, evidence that the chi30 and chi40 genes of S. thermoviolaceus were derived from their corresponding original chitinase genes by losing gene parts for substrate-binding domains and fibronectin type III-like domains was obtained. It was thus shown that gene-duplication and domain-deletion were implicated in generating the high diversity and multiplicity of chitinase genes in Streptomyces species. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
12.
Mycodextranase (EC 3.2.1.61) is an α-glucanase that cleaves α-1,4-bonds of alternating α-1,3- and α-1,4-linked D-glucan (nigeran). The gene encoding mycodextranase from Streptomyces sp. J-13-3 was cloned by hybridization with a degenerate oligonucleotide probe from the amino-terminal amino acid sequence of the enzyme and its nucleotide structure was analyzed. The open reading frame consisted of 1,803 base pairs encoding a signal peptide of 60 amino acids and a mature protein of 540 amino acids with a calculated molecular weight of 56,078. The deduced amino acid sequence showed weak similality to a chitinase homolog from Streptomyces lividans and a chitinase from Xanthomonas sp.  相似文献   

13.
High-multiplicity of chitinase genes in Streptomyces coelicolor A3(2).   总被引:2,自引:0,他引:2  
Six different genes for chitinase from ordered cosmids of the chromosome of Streptomyces coelicolor A3(2) were identified by hybridization, using the chitinase genes from other Streptomyces spp. as probes, and cloned. The genes were sequenced and analyzed. The genes, together with an additional chitinase gene obtained from the data bank, can be classified into either family 18 or family 19 of the glycosyl hydrolase classification. The five chitinases that fall into family 18 show diversity in their multiple domain structures as well as in the amino acid sequences of their catalytic domains. The remaining two chitinases are members of family 19 chitinases, since their C-terminus shares more than 70% identity with the catalytic domain of ChiC of Streptomyces griseus, the sole gene for family 19 chitinase so far found in an organism other than higher plants.  相似文献   

14.
A chitinase gene (pCHi58) encoding a 58 kDa chitinase was isolated from theSerratia marcescens KCTC 2172 cosmid library. The chitinase gene consisted of a 1686 bp open reading frame that encoded 562 amino acids.Escherichia coil harboring the pChi58 gene secreted a 58 kDa chitinase into the culture supernatant. The 58 kDa chitinase was purified using a chitin affinity column and mono-S column. A nucleotide andN-terminal amino acid sequence analysis showed that the 58 kDa chitinase had a leader peptide consisting of 23 amino acids which was cleaved prior to the 24th alanine. The 58 KDa chitinase exhibited a 98% similarity to that ofS. marcescens QMB 1466 in its nuclotide sequence. The chitinolytic patterns of the 58 kDa chitinase released N,N′-diacetyl chitobiose (NAG2) as the major hydrolysis end-product with a trace amount ofN-acetylglucosamine. When a 4-methylumbellyferyl-N-acetylglucosamin monomer, dimmer, and tetramer were used as substrates, the 58 kDa chitinase did not digest the 4-Mu-NAG monomer (analogue of NAG2), thereby indicating that the 58 kDa chitinase was likely an endochitinase. The optimum reaction temperature and pH of the enzyme were 50°C and 5.0, respectively.  相似文献   

15.
Upstream of the Streptomyces coelicolor A3(2) chitinase G gene, a small gene (named chb3) is located whose deduced product shares 37% identical amino acids with the previously described CHB1 protein from Streptomyces olivaceoviridis. The chb3 gene and its upstream region were cloned in a multicopy vector and transformed into the plasmid-free Streptomyces lividans TK21 strain. The CHB3 protein (14.9 kDa) was secreted by the S. lividans TK21 transformant during growth in the presence of glucose, N-acetylglucosamine, yeast extract, and chitin. The protein was purified to homogeneity using anionic exchange, hydrophobic interaction chromatographies, and gel filtration. In contrast to CHB1, CHB3 targets alpha-chitin, beta-chitin, and chitosan at pH 6.0 but does so relatively loosely. The ecological implications of the divergence of substrate specificity of various types of chitin-binding proteins are described.  相似文献   

16.
The gene (chiD) encoding the precursor of chitinase D was found to be located immediately upstream of the chiA gene, encoding chitinase A1, which is a key enzyme in the chitinase system of Bacillus circulans WL-12. Sequencing analysis revealed that the deduced polypeptide encoded by the chiD gene was 488 amino acids long and the distance between the coding regions of the chiA and chiD genes was 103 bp. Remarkable similarity was observed between the N-terminal one-third of chitinase D and the C-terminal one-third of chitinase A1. The N-terminal 47-amino-acid segment (named ND) of chitinase D showed a 61.7% amino acid match with the C-terminal segment (CA) of chitinase A1. The following 95-amino-acid segment (R-D) of chitinase D showed 62.8 and 60.6% amino acid matches, respectively, to the previously reported type III-like repeating units R-1 and R-2 in chitinase A1, which were shown to be homologous to the fibronectin type III sequence. A 73-amino-acid segment (residues 247 to 319) located in the putative activity domain of chitinase D was found to show considerable sequence similarity not only to other bacterial chitinases and class III higher-plant chitinases but also to Streptomyces plicatus endo-beta-N-acetylglucosaminidase H and the Kluyveromyces lactis killer toxin alpha subunit. The evolutionary and functional meanings of these similarities are discussed.  相似文献   

17.
Mycodextranase (EC 3.2.1.61) is an alpha-glucanase that cleaves alpha-1,4-bonds of alternating alpha-1,3- and alpha-1,4-linked D-glucan (nigeran). The gene encoding mycodextranase from Streptomyces sp. J-13-3 was cloned by hybridization with a degenerate oligonucleotide probe from the amino-terminal amino acid sequence of the enzyme and its nucleotide structure was analyzed. The open reading frame consisted of 1,803 base pairs encoding a signal peptide of 60 amino acids and a mature protein of 540 amino acids with a calculated molecular weight of 56,078. The deduced amino acid sequence showed weak similality to a chitinase homolog from Streptomyces lividans and a chitinase from Xanthomonas sp.  相似文献   

18.
19.
AIMS: The present work aims to study a new chitinase from Bacillus thuringiensis subsp. kurstaki. METHODS AND RESULTS: BUPM255 is a chitinase-producing strain of B. thuringiensis, characterized by its high chitinolytic and antifungal activities. The cloning and sequencing of the corresponding gene named chi255 showed an open reading frame of 2031 bp, encoding a 676 amino acid residue protein. Both nucleotide and amino acid sequences similarity analyses revealed that the chi255 is a new chitinase gene, presenting several differences from the published chi genes of B. thuringiensis. The identification of chitin hydrolysis products resulting from the activity, exhibited by Chi255 through heterologous expression in Escherichia coli revealed that this enzyme is a chitobiosidase. CONCLUSIONS: Another chitinase named Chi255 belonging to chitobiosidase class was evidenced in B. thuringiensis subsp. kurstaki and was shown to present several differences in its amino acid sequence with those of published ones. The functionality of Chi255 was proved by the heterologous expression of chi255 in E. coli. SIGNIFICANCE AND IMPACT OF THE STUDY: The addition of the sequence of chi255 to the few sequenced B. thuringiensis chi genes might contribute to a better investigation of the chitinase 'structure-function' relation.  相似文献   

20.
Soil that is suppressive to disease caused by fungal pathogens is an interesting source to target for novel chitinases that might be contributing towards disease suppression. In this study, we screened for chitinase genes, in a phytopathogen-suppressive soil in three ways: (1) from a metagenomic library constructed from microbial cells extracted from soil, (2) from directly extracted DNA and (3) from bacterial isolates with antifungal and chitinase activities. Terminal restriction fragment length polymorphism (T-RFLP) of chitinase genes revealed differences in amplified chitinase genes from the metagenomic library and the directly extracted DNA, but approximately 40% of the identified chitinase terminal restriction fragments (TRFs) were found in both sources. All of the chitinase TRFs from the isolates were matched to TRFs in the directly extracted DNA and the metagenomic library. The most abundant chitinase TRF in the soil DNA and the metagenomic library corresponded to the TRF103 of the isolate Streptomyces mutomycini and/or Streptomyces clavifer . There were good matches between T-RFLP profiles of chitinase gene fragments obtained from different sources of DNA. However, there were also differences in both the chitinase and the 16S rRNA gene T-RFLP patterns depending on the source of DNA, emphasizing the lack of complete coverage of the gene diversity by any of the approaches used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号