首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The induction of double-strand breaks (DSBs) in plant genomes can lead to increased homologous recombination or site-specific mutagenesis at the repair site. This phenomenon has the potential for use in gene targeting applications in plant cells upon the induction of site-specific genomic DSBs using zinc finger nucleases (ZFNs). Zinc finger nucleases are artificial restriction enzymes, custom-designed to cleave a specific DNA sequence. The tools and methods for ZFN assembly and validation could potentially boost their application for plant gene targeting. Here we report on the design of biochemical and in planta methods for the analysis of newly designed ZFNs. Cloning begins with de novo assembly of the DNA-binding regions of new ZFNs from overlapping oligonucleotides containing modified helices responsible for DNA-triplet recognition, and the fusion of the DNA-binding domain with a Fok I endonuclease domain in a dedicated plant expression cassette. Following the transfer of fully assembled ZFNs into Escherichia coli expression vectors, bacterial lysates were found to be most suitable for in vitro digestion analysis of palindromic target sequences. A set of three in planta activity assays was also developed to confirm the nucleic acid digestion activity of ZFNs in plant cells. The assays are based on the reconstruction of GUS expression following transient or stable delivery of a mutated uidA and ZFN-expressing cassettes into target plants cells. Our tools and assays offer cloning flexibility and simple assembly of tested ZFNs and their corresponding target sites into Agrobacterium tumefaciens binary plasmids, allowing efficient implementation of ZFN-validation assays in planta .  相似文献   

3.
S Salomon  H Puchta 《The EMBO journal》1998,17(20):6086-6095
To analyze genomic changes resulting from double-strand break (DSB) repair, transgenic tobacco plants were obtained that carried in their genome a restriction site of the rare cutting endonuclease I-SceI within a negative selectable marker gene. After induction of DSB repair via Agrobacterium-mediated transient expression of I-SceI, plant cells were selected that carried a loss-of-function phenotype of the marker. Surprisingly, in addition to deletions, in a number of cases repair was associated with the insertion of unique and repetitive genomic sequences into the break. Thus, DSB repair offers a mechanism for spreading different kinds of sequences into new chromosomal positions. This may have evolutionary consequences particularly for plants, as genomic alterations occurring in meristem cells can be transferred to the next generation. Moreover, transfer DNA (T-DNA), carrying the open reading frame of I-SceI, was found in several cases to be integrated into the transgenic I-SceI site. This indicates that DSB repair also represents a pathway for the integration of T-DNA into the plant genome.  相似文献   

4.
5.
Pelczar P  Kalck V  Gomez D  Hohn B 《EMBO reports》2004,5(6):632-637
Agrobacterium tumefaciens-mediated plant transformation, a unique example of interkingdom gene transfer, has been widely adopted for the generation of transgenic plants. In vitro synthesized transferred DNA (T-DNA) complexes comprising single-stranded DNA and Agrobacterium virulence proteins VirD2 and VirE2, essential for plant transformation, were used to stably transfect HeLa cells. Both proteins positively influenced efficiency and precision of transgene integration by increasing overall transformation rates and by promoting full-length single-copy integration events. These findings demonstrate that the virulence proteins are sufficient for the integration of a T-DNA into a eukaryotic genome in the absence of other bacterial or plant factors. Synthetic T-DNA complexes are therefore unique protein:DNA delivery vectors with potential applications in the field of mammalian transgenesis.  相似文献   

6.
In recent years, several studies have demonstrated the use of autonomously replicating plant viruses as vehicles to express a variety of therapeutic molecules of pharmaceutical interest. Plant virus vectors for expression of heterologous proteins in plants represent an attractive biotechnological tool to complement the conventional production of recombinant proteins in bacterial, fungal, or mammalian cells. Virus vectors are advantageous when high levels of gene expression are desired within a short time, although the instability of the foreign genes in the viral genome may present problems. Similar levels of foreign protein production in transgenic plants often are unattainable, in some cases because of the toxicity of the foreign protein. Now virus-based vectors are for the first time investigated as a means of producing recombinant allergens in plants. Several plant virus vectors have been developed for the expression of foreign proteins. Here, we describe the utilization of tobacco mosaic virus- and potato virus X-based vectors for the transient expression of plant allergens in Nicotiana benthamiana plants. One approach involves the inoculation of tobacco plants with infectious RNA transcribed in vitro from a cDNA copy of the recombinant viral genome. Another approach utilizes the transfection of whole plants from wounds inoculated with Agrobacterium tumefaciens containing cDNA copies of recombinant plus-sense RNA viruses.  相似文献   

7.
利用DNA或RNA植物病毒作载体表达外源蛋白是近几年发展较快的一种新的遗传转化方式,它具有以下几个优点:表达量大,表达速度快,易于进行基因操作和接种以及适用对象广泛。已发展的四种载体构建策略包括:基因取代,基因插入,融合抗原和基因互补。植物病毒表达载体可以用于基因的重组、病毒的移动和基因功能的检测等基础性研究,也可用于商业上表达多种药用蛋白或疫苗。植物病毒表达载体的稳定性主要取决于存在同源序列而引起的基因重组。本文还对病毒载体的生物安全性进行了讨论。  相似文献   

8.
Summary Recent advances in plant molecular biology have depended largely on the development of efficient methods of introducing foreign DNA into plant cells. Gene transfer into plant cells can be achieved by either direct uptake of DNA or the natural process of gene transfer carried out by the soil bacteriumAgrobacterium. Although both of these processes allow the generation of stably transformed plants, the former offers the advantage of allowing the study of transient expression of gene constructs in protoplasts cultured in vitro. In addition to the potential application of transgenic plants in agriculture and biotechnology they can be used to study the expression of foreign DNA, to carry out the functional analysis of plant DNA sequences, to investigate the mechanism of viral DNA replication and cell-to-cell spread, as well as to study transposition. Moreover, the versatility of the gene transfer vectors is such that they may be used to isolate genes unamenable to isolation using conventional protocols. Presented in the Formal Symposium Frontiers in Cell Biotechnology at the 41st Annual Meeting of the Tissue Culture Association, Houston, Texas, June 10–13, 1990.  相似文献   

9.
Conventional Agrobacterium-mediated transformation methods rely on complex and genotype-specific tissue culture media for selection, proliferation, and regeneration of genetically modified cells. Resulting transgenic plants may not only contain selectable marker genes but also carry fragments of the vector backbone. Here, we describe a new method for the production of transgenic plants that lack such foreign DNA. This method employs vectors containing the bacterial isopentenyltransferase (ipt) gene as backbone integration marker. Agrobacterium strains carrying the resulting ipt gene-containing "cytokinin" vectors were used to infect explants of various Solanaceous plant species as well as canola (Brassica napus). Upon transfer to hormone-free media, 1.8% to 9.9% of the infected explants produced shoots that contained a marker-free T-DNA while lacking the backbone integration marker. These frequencies often equal or exceed those for backbone-free conventional transformation.  相似文献   

10.
Agroinfection   总被引:1,自引:0,他引:1  
Agroinfection, the delivery of viral or viroidal sequences to plants by Agrobacterium, can be used to approach important basic questions in plant molecular biology. The combined use of three biological entities allows the analysis of plant-Agrobacterium interactions using the virus as a marker for T-DNA transfer, or the investigation of viral biology using Agrobacterium as a delivery vehicle for the virus. Plants transgenic for viral constructs offer possibilities for studying recombination, plant protection, and development of high copy number plant vectors. Relevant examples of these approaches are discussed.  相似文献   

11.
A chimeric gene encoding the alfalfa mosaic virus (AlMV) coat protein was constructed and introduced into tobacco and tomato plants using Ti plasmid-derived plant transformation vectors. The progeny of the self-fertilized transgenic plants were significantly delayed in symptom development and in some cases completely escaped infection after inoculated with AlMV. The inoculated leaves of the transgenic plants had significantly reduced numbers of lesions and accumulated substantially lower amounts of coat protein due to virus replication than the control plants. These results show that high level expression of the chimeric viral coat protein gene confers protection against AlMV, which differs from other plant viruses in morphology, genome structure, gene expression strategy and early steps in viral replication. Based on our results with AlMV and those reported earlier for tobacco mosaic virus, it appears that genetically engineered cross-protection may be a general method for preventing viral disease in plants.  相似文献   

12.
Biosafety implications of selectable marker genes that are integrated into the transgenic plants are discussed. In the laboratory, selectable marker genes are used at two stages to distinguish transformed cells out of a large population of nontransformed cells: 1) initial assembly of gene cassettes is generally done in E. coli on easily manipulatable plasmid vectors that contain the selectable marker genes which often code for antibiotic inactivating enzymes, and 2) Then the gene cassettes are inserted into the plant genome by various transformation methods. For selection of transformed plant cells, antibiotic and herbicide resistance genes are widely used. Consequently, transgenic plants can end up with DNA sequences of selectable markers that are functional in E. coli and plants. The potential for horizontal gene transfer of selectable markers from transgenic plants to other organisms both in the environment and in the intestine of humans and animals is evaluated. Mechanisms and consequences of the transfer of marker genes from plants to other organisms is examined. Strategies to avoid marker genes in plants are discussed. It is possible to avoid the use of controversial selectable markers in the construction of transgenic plants.  相似文献   

13.
Plant biotechnology relies on two approaches for delivery and expression of heterologous genes in plants: stable genetic transformation and transient expression using viral vectors. Although much faster, the transient route is limited by low infectivity of viral vectors carrying average-sized or large genes. We have developed constructs for the efficient delivery of RNA viral vectors as DNA precursors and show here that Agrobacterium-mediated delivery of these constructs results in gene amplification in all mature leaves of a plant simultaneously (systemic transfection). This process, called "magnifection", can be performed on a large scale and with different plant species. This technology combines advantages of three biological systems (the transfection efficiency of A. tumefaciens, the high expression yield obtained with viral vectors, and the post-translational capabilities of a plant), does not require genetic modification of plants and is faster than other existing methods.  相似文献   

14.
ST-LS1, a single copy gene from potato displaying a leaf/stem specific gene expression, was tagged by an exon modification and introduced into both potato and tobacco cells using Agrobacterium vectors. After regeneration of whole plants, the expression of the tagged gene was analyzed with respect to its organ specificity and compared to the expression of the corresponding resident gene. The expression of the transferred gene in transgenic plants closely followed the expression of the resident gene. No marked influence of the plant species serving as host was observed. The level of expression of the introduced gene varied by a factor of at least 100 in independent transformants when normalized to the expression of the resident gene. Southern analysis performed on the transformed plants indicated a correlation between copy number of the introduced gene and its expression level. The activity of the tagged gene as well as of the resident gene was significantly inhibited by treatment of the transgenic plants with the herbicide norfluorazon, indicating that this gene activity is dependent on the presence of functional chloroplasts in the leaves.  相似文献   

15.
16.
Transgenic tomato plants expressing wild-type or mutated BV1 or BC1 movement proteins from Bean dwarf mosaic virus (BDMV) were generated and examined for phenotypic effects and resistance to Tomato mottle virus (ToMoV). Fewer transgenic plants were recovered with the wild-type or mutated BC1 genes, compared with the wild-type or mutated BV1 genes. Transgenic tomato plants expressing the wild-type or mutated BV1 proteins appeared normal. Interestingly, although BDMV induces only a symptomless infection in tomato (i.e., BDMV is not well adapted to tomato), transgenic tomato plants expressing the BDMV BC1 protein showed a viral disease-like phenotype (i.e., stunted growth, and leaf mottling, curling, and distortion). This suggests that the symptomless phenotype of BDMV in tomato is not due to a host-specific defect in the BC1 protein. One transgenic line expressing the BC1 gene did not show the viral disease-like phenotype. This was associated with a deletion in the 3' region of the gene, which resulted in expression of a truncated BC1 protein. Several R0 plants, expressing either wild-type or mutated BV1 or BC1 proteins, showed a significant delay in ToMoV infection, compared with non-transformed plants. R1 progeny plants also showed a significant delay in ToMoV infection, but this delay was less than that in the R0 parents. These results also demonstrate that expression of viral movement proteins, in transgenic plants, can have deleterious effects on various aspects of plant development.  相似文献   

17.
The aim of this work is to increase the efficiency of the biodegradation of polychlorinated biphenyls (PCBs) by the introduction of bacterial genes into the plant genome. For this purpose, we selected the bphC gene encoding 2,3-dihydroxybiphenyl-1,2-dioxygenase from Pseudomonas testosteroni B-356 to be cloned into tobacco plants. The dihydroxybiphenyldioxygenase enzyme is the third enzyme in the biphenyl degradation pathway, and its unique function is the cleavage of biphenyl. Three different constructs were designed and prepared in E. coli: the bphC gene being fused with the beta-glucuronidase (GUS) gene, with the luciferase (LUC) gene, and with histidine tail in three separate plant cloning vectors. The GUS and LUC genes were chosen because they can be used as markers for the easy detection of transgenic plants, while histidine tail better enables the isolation of protein expressed in plant tissue. The prepared vectors were then introduced into cells of Agrobacterium tumefaciens. The transient expression of the prepared genes was first studied in cells of Nicotiana tabacum. Once this ability had been established, model tobacco plants were transformed by agrobacterial infection with the bphC/GUS, bphC/LUC, and bphC/His genes. The transformed regenerants were selected on media using a selective antibiotic, and the presence of transgenes and mRNA was determined by PCR and RT-PCR. The expression of the fused proteins BphC/GUS and BphC/LUC was confirmed histochemically by analysis of the expression of their detection markers. Western blot analysis was performed to detect the presence of the BphC/His protein immunochemically using a mouse anti-His antibody. Growth and viability of transgenic plants in the presence of PCBs was compared with control plants.  相似文献   

18.
Homologous recombination has been extensively studied in bacteria, yeast, and more recently in animal cells, but little is known about this process in plants. We present here an analysis of meiotic and somatic chromosomal recombination between closely linked inverted duplications located on a single chromosomal region in tobacco. Transgenic tobacco lines were constructed by Agrobacterium transformation with plasmid vectors containing a functional hygromycin phosphotransferase (hyg) selectable marker flanked by a pair of defective neomycin phosphotransferase (neo) genes positioned as inverted repeats. As each neo gene is mutated in a different site, recombination between the two defective genes can be detected following selection for kanamycin-resistant plant cells. The recombination substrates were designed to allow investigation into the nature of molecular events underlying homologous recombination by restriction endonuclease analysis. Chromosomal recombination was studied in mitotically dividing cells (cultured leaf mesophyll cells) and after meiosis (germinated seedlings). Spontaneous somatic recombinants were recovered at frequencies between ~3 x 10-5 to 10-6 events per cell. Low dose [gamma] irradiation of somatic cells resulted in a threefold maximum increase in the recovery of recombinants. Recombinants were also detected at low frequency when transgenic T3 seeds were germinated under kanamycin selection. DNA gel blot analyses demonstrated that homologous recombination occurred mainly as gene conversion unassociated with reciprocal exchange, although a variety of other events including gene coconversion were also observed.  相似文献   

19.
Summary We describe in this paper the construction and use of a set of novel Ti plasmid-derived vectors that can be used to produce transgenic plants. These vectors are based on one of two strategies: 1) double recombination into the wild-type Ti plasmid of genetic information flanked by two T-DNA fragments on a wide-host range plasmid; 2) the binary vector strategy. The vector based on the double recombination principle contains a kanamycin resistance gene for use as a plant selectable marker, a polylinker for the insertion of foreign genes, and a nopaline synthase gene. The vector was constructed such that a disarmed T-DNA results from the double recombination event. The binary vector combines several advantageous features including an origin of replication that is stable in Agrobacterium in the absence of selection, six unique sites for insertion of foreign genes, an intact nopaline synthase gene, and a kanamycin resistance marker for selection of transformed plant cells. All of these vectors have been used to produce tobacco plants transformed with a variety of foreign genes.  相似文献   

20.
《Genetika》2006,42(4):507-518
The parameters for delivery of expression cassettes to cells of wheat morphogenic callus induced from immature embryos were optimized. Three systems (gradation, delayed, and regeneration) for in vitro selection of transgenic wheat tissue using the bar gene, providing resistance to the herbicide phosphinothricin (PPT), were compared. The efficiency of gene delivery to the cells competent for plant regeneration was assessed by comparing the number of spots transiently expressing uidA gene (encoding beta-glucuronidase) per unit surface of the morphogenic calluses treated under various conditions. The selection systems in question were evaluated by comparing the transformation efficiency frequencies. The optimal parameters for wheat biolistic transformation using a particle inflow gun were determined, namely, the distance between the particle source and the target tissue (12 cm) and helium pressure during the shot (6 atm). The optimal time of callus tissue development on the medium inducing callus formation was determined (10-14 days). Comparison of the three selection variants demonstrated that the regeneration system was the most efficient for producing true transgenic plants of common wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号