首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The construction of non-viral, virus-like vehicles for gene therapy involves the functionalization of multipartite constructs with nucleic acid-binding, cationic agents. Short basic peptides, alone or as fusion proteins, are appropriate DNA binding and condensing elements, whose incorporation into gene delivery vehicles results in the formation of protein–DNA complexes of appropriate size for cell internalization and intracellular trafficking. We review here the most used cationic peptides for artificial virus construction as well as the recently implemented strategies to control the architecture and biological activities of the resulting nanosized particles.  相似文献   

2.
The study of polymeric nucleic acid delivery vehicles has recently grown because of their promise for many biomedical applications. In an effort to understand how the chemical traits of polymers affect the biological mechanisms of nucleic acid delivery, we have calculated the buffering capacity in the physiological pH range of a series of 10 poly(glycoamidoamine)s with systematic structural variations in the amine stoichiometry (from 1 to 4), carbohydrate moiety (d-glucarate or l-tartarate), and amine spacer (ethylene or butylene) within their repeat units. In addition, we have compared the buffering capacity of these polymeric vectors to their polyplex (polymer-DNA complex) stability, cellular internalization, and gene expression profiles to understand the parameters that are important for increasing gene delivery efficiency. The results indicate that the buffering capacity is not always the primary characteristic that determines the gene delivery efficiency for all the poly(glycoamidoamine)s. We have found that the buffering capacity may affect the gene delivery efficiency only when analogous structures containing the same number of amines but different carbohydrates are compared. We reveal that the cellular internalization is the key step in the gene delivery process with systems containing different amine stoichiometry. Also, increasing the number of methylene groups between the secondary amines increases toxicity to a large degree. This systematic and heuristic approach of studying the correlations between structural variables and gene delivery efficiency will facilitate the development of effective synthetic vectors for specific nucleic acid delivery applications.  相似文献   

3.
Mechanistic understanding of the intracellular trafficking of nonviral nucleic acid delivery vehicles remains elusive. A live, single cell-based assay is described here that is used to investigate and quantitate the spatiotemporal, intracellular pH microenvironment of polymeric-based nucleic acid delivery vehicles. Polycations such as polyethylenimine (PEI), poly-l-lysine (PLL), beta-cyclodextrin-containing polymers lacking or possessing imidazole termini (CDP or CDP-imid), and cyclodextrin-grafted PEI (CD-PEI) are used to deliver an oligonucleotide containing a single fluorophore with two emission lines that can be employed to measure the pH. Delivery vehicles were also sterically stabilized by addition of poly(ethylene glycol) (PEG) and investigated. The intracellular trafficking data obtained via this new methodology show that vectors such as PEI and CDP-imid can buffer the endocytic vesicles while PLL and CDP do not. Additionally, the PEGylated vectors reveal the same buffering capacity as their unstabilized variants. Here, the live cell, spatiotemporal mapping of these behaviors is demonstrated and, when combined with cell uptake and luciferase expression data, shows that there is not a correlation between buffering capacity and gene expression.  相似文献   

4.
细胞膜的选择通透性对维持细胞内环境的稳定起着非常重要的作用,但细胞膜的这种特性限制了一些生物大分子和药物进入细胞内,不利于对一些细胞内疾病的诊断和药物靶向治疗的应用。如何将一些具有诊断和治疗潜力的生物大分子、药物通过细胞膜进入细胞内一直是医学界研究的热点和难点。细胞穿透肽是一类能够携带多肽、蛋白质、核酸、纳米颗粒、病毒颗粒及药物等穿过细胞膜进入细胞,导致完整载物内化的短肽,为生物大分子和药物进入细胞内部提供了有力的运载工具,其作为载体具有的高转导效率和低毒性特点,已经得到了广泛关注和大量研究。目前,细胞穿透肽作为生物分子和药物细胞内化的运载体已经在荧光成像,肿瘤治疗,抗炎治疗及药物靶向治疗中发挥了潜在的诊断和治疗作用,显示出其诱人的应用前景。  相似文献   

5.
This review summarizes the contribution of MALDI-TOF mass spectrometry in the study of cell-penetrating peptide (CPP) internalization in eukaryote cells. This technique was used to measure the efficiency of cell-penetrating peptide cellular uptake and cargo delivery and to analyze carrier and cargo intracellular degradation. The impact of thiol-containing membrane proteins on the internalization of CPP–cargo disulfide conjugates was also evaluated by combining MALDI-TOF MS with simple thiol-specific reactions. This highlighted the formation of cross-linked species to cell-surface proteins that either remained trapped in the cell membrane or led to intracellular delivery. MALDI-TOF MS is thus a powerful tool to dissect CPP internalization mechanisms.  相似文献   

6.
Nanoscale vehicles for delivery have been of interest and extensively studied for two decades. However, the encapsulation stability of hydrophobic drug molecules in delivery vehicles and selective targeting these vehicles into disease cells are potential hurdles for efficient delivery systems. Here we demonstrate a simple and fast synthetic protocol of nanogels that shows high encapsulation stabilities. These nanogels can also be modified with various targeting ligands for active targeting. We show that the targeting nanogels (T-NGs), which are prepared within 2 h by a one-pot synthesis, exhibit very narrow size distributions and have the versatility of surface modification with cysteine-modified ligands including folic acid, cyclic arginine-glycine-aspartic acid (cRGD) peptide, and cell-penetrating peptide. T-NGs hold their payloads, undergo facilitated cell internalization by receptor-mediated uptake, and release their drug content inside cells due to the reducing intracellular environment. Selective cytotoxicity to cells, which have complementary receptors, is also demonstrated.  相似文献   

7.
A novel internally quaternized and surface-acetylated poly(amidoamine) generation four dendrimer (QPAMAM-NHAc) was synthesized and evaluated for intracellular delivery of siRNA. The proposed dendrimer as a nanocarrier possesses the following advantages: (1) modified neutral surface of the dendrimer for low cytotoxicity and enhanced cellular internalization; (2) existence of cationic charges inside the dendrimer (not on the outer surface) resulting in highly organized compact nanoparticles, which can potentially protect nucleic acids from degradation. The properties of this dendrimer were compared with PAMAM-NH 2 dendrimer, possessing surface charges, and with an internally quaternized charged and hydroxyl-terminated QPAMAM-OH dendrimer. Atomic force microscopy studies revealed that internally charged and surface neutral dendrimers, QPAMAM-OH and QPAMAM-NHAc, formed well-condensed, spherical particles (polyplexes) with siRNA, while PAMAM-NH 2 resulted in the formation of nanofibers. The modification of surface amine groups to amide significantly reduced cytotoxicity of dendrimers with QPAMAM-NHAc dendrimer showing the lowest toxicity. Confocal microscopy demonstrated enhanced cellular uptake and homogeneous intracellular distribution of siRNA delivered by the proposed QPAMAM-NHAc nanocarrier. The results clearly demonstrated distinct advantages of developed QPAMAM-NHAc/siRNA polyplexes over the existing nucleic acid dendrimeric carriers.  相似文献   

8.
BACKGROUND: RNA interference provides a powerful technology for specific gene silencing. Therapeutic applications of small interfering RNA (siRNA) however require efficient vehicles for stable complexation, protection, and extra- and intracellular delivery of these nucleic acids. Here, we evaluated the potential of transferrin (Tf)-associated liposomes for siRNA complexation and gene silencing. METHODS: Cationic liposomes composed of DOTAP : Cholesterol associated with or without transferrin (Tf) were complexed with siRNA at different lipid/siRNA charge ratios. Complexation and protection of siRNA from enzymatic degradation was assessed with the PicoGreen intercalation assay and gel electrophoresis. Cellular internalization of these siRNA Tf-lipoplexes was detected by confocal microscopy. Luciferase assay, immunoblot and fluorescence-activated cell sorting (FACS) analysis were used to evaluate reporter gene silencing in Huh-7 hepatocarcinoma and U-373 glioma cells. c-Jun knockdown in HT-22 cells was evaluated by quantitative real-time polymerase chain reaction (RT-PCR). Cytotoxicity of the siRNA complexes was assessed by Alamar blue, lactate dehydrogenase and MTT assays. RESULTS: Complexation of siRNA with the cationic liposomes in the presence of Tf results in the formation of stable particles and prevents serum-mediated degradation. Confocal microscopy showed fast cellular internalization of the Tf-lipoplexes via endocytosis. In the GFP glioma cells Tf-lipoplexes showed enhanced gene silencing at minimum toxicity in comparison to Tf-free lipoplexes. Targeting luciferase in the hepatocarcinoma cell line resulted in more than 70% reduction of luciferase activity, while in HT-22 cells 50% knockdown of endogenous c-Jun resulted in a significant protection from glutamate-mediated toxicity. CONCLUSIONS: Cationic liposomes associated with Tf form stable siRNA lipoplexes with reduced toxicity and enhanced specific gene knockdown activity compared to conventional lipoplexes. Thus, such formulations may constitute efficient delivery systems for therapeutic siRNA applications.  相似文献   

9.
Non-viral vectors such as cationic lipids are capable of delivering nucleic acids, including genes, siRNA or antisense RNA into cells, thus potentially resulting in their functional expression. These vectors are considered as an attractive alternative for virus-based delivery systems, which may suffer from immunological and mutational hazards. However, the efficiency of cationic-mediated gene delivery, although often sufficient for cell biological purposes, runs seriously short from a therapeutics point of view, as realizing this objective requires a higher level of transfection than attained thus far. To develop strategies for improvement, there is not so much a need for novel delivery systems. Rather, better insight is needed into the mechanism of delivery, including lipoplex–cell surface interaction, route of internalization and concomitant escape of DNA/RNA into the cytosol, and transport into the nucleus. Current work indicates that a major obstacle involves the relative inefficient destabilization of membrane-bounded compartments in which lipoplexes reside after their internalization by the cell. Such an activity requires the capacity of lipoplexes of undergoing polymorphic transitions such as a membrane destabilizing hexagonal phase, while cellular components may aid in this process. A consequence of the latter notion is that for development of a novel generation of delivery devices, entry pathways have to be triggered by specific targeting to select delivery into intracellular compartments which are most susceptible to lipoplex-induced destabilization, thereby allowing the most efficient release of DNA, a minimal requirement for optimizing non-viral vector-mediated transfection. Dedicated to Prof. K. Arnold on the occasion of his 65th birthday.  相似文献   

10.
Polymeric vectors have potential as nucleic acid delivery vehicles for novel gene therapy and oligonucleotide treatments for cardiovascular disease. In this report, poly(glycoamidoamine)s that contain four secondary amines and either two or four hydroxyl units in the repeat unit with D-glucarate (D4), meso-galactarate (G4), D-mannarate (M4), and l-tartarate (T4) stereochemistry have been investigated for their pDNA-binding affinity, DNase protection effect, and polyplex stability in the presence of salt and serum. Also, the luciferase gene delivery and cellular internalization of polyplexes formed with these polymers have been investigated with rat cardiomyoblast [H9c2(2-1)] cells. The results demonstrate that the number of hydroxyl groups and the stereochemistry affect the biological properties. Polymers T4 and G4 have higher pDNA binding affinity, protect pDNA from nuclease degradation, and do not release pDNA in the presence of serum. Polymers D4 and M4 bind pDNA with lower affinity, which allows for some pDNA degradation and release in the presence of serum. Although T4 forms the most stable polyplexes, vector G4 reveals the highest luciferase gene expression in serum-free media and the greatest cellular internalization of fluorescein-labeled pDNA both in serum-free and serum-supplemented media. The results of these studies indicate that the polymer-DNA binding affinity, nuclease protection capability, and polyplex stability are important parameters to facilitate effective pDNA delivery with poly(glycoamidoamine)s in cultured cardiomyoblast cells. The carbohydrate type also plays an important role to increase cellular uptake and gene expression where the polymer with the galactarate stereochemistry (in G4) is found to be the most effective vector for pDNA delivery to cardiomyoblast cells in vitro.  相似文献   

11.
We present the mechanism for the cellular uptake of layered double hydroxide (LDH) nanoparticles that are internalized into MNNG/HOS cells principally via clathrin-mediated endocytosis. The intracellular LDHs are highly colocalized with not only typical endocytic proteins, such as clathrin heavy chain, dynamin, and eps15, but also transferrin, a marker of the clathrin-mediated process, suggesting their specific internalization pathway. LDHs loaded with an anticancer drug (MTX-LDH) were also prepared to confirm the efficacy of LDHs as drug delivery systems. The cellular uptake of MTX was higher in MTX-LDH-treated cells than in MTX-treated cells, giving a lower IC50 value for MTX-LDH than for MTX only. The inhibition of the cell cycle was greater for MTX-LDH than for MTX only. This result clearly shows that the internalization of LDH nanoparticles via clathrin-mediated endocytosis may allow the efficient delivery of MTX-LDH in cells and thus enhance drug efficacy.  相似文献   

12.
Shiraishi T  Nielsen PE 《FEBS letters》2006,580(5):1451-1456
Recent studies have shown that endosomal release is a major rate-limiting step for cellular delivery via a variety of cationic cell penetrating peptides. Thus, methods and/or protocols for effective release of endosomally entrapped drugs are highly warranted. Photochemical internalization (PCI) has previously been proposed for this purpose. Here, we demonstrate an enhancement of up to two orders of magnitude of the antisense effects (cytosolic/nuclear) of peptide nucleic acid-peptide conjugates (Tat, Arg7, KLA) in HeLa cells by a PCI approach using the photosensitizer AlPc2a. These results emphasize the importance of endosomal release for cellular activity of this type of drug delivery and also raise hope that methods like PCI which have applications for in vivo use may also enhance the bioavailability and in vivo efficacy of these types of conjugates.  相似文献   

13.
BACKGROUND: Neuron-specific, nonviral gene delivery vehicles are useful tools for the potential treatment of neurological disease and spinal cord injury. For minimally invasive, peripheral administration, gene carriers must efficiently mediate uptake at axon terminals, retrograde axonal transport, vesicular escape, and nuclear entry. The design of improved vehicles will benefit from an understanding of the barriers that limit nonviral delivery to neurons. Here, we demonstrate a detailed analysis of intracellular trafficking of both a lipid-based and a polymer-based delivery vehicle following site-specific exposure to neuron-like cells. METHODS: Site-specific exposure of gene carriers to soma or neurites of neuron-like PC-12 cells was accomplished using a microfluidic, compartmented culture chamber. Binding and internalization of vehicles at neurites and soma were quantified using an environmentally sensitive fluorescent marker. The intracellular transport of gene carriers was analyzed by time-lapse particle tracking in live cells, and transfection efficiencies were measured using green fluorescent protein (GFP) as a reporter gene. RESULTS: While the lipid-based carrier mediated measurable transfection when delivered to neuronal soma, neuritic delivery of this formulation failed to produce reporter gene expression due to limited internalization and transport. In contrast, the polymeric nanoparticles displayed active retrograde transport toward neuronal soma, but failed to produce measurable reporter gene expression. CONCLUSIONS: These results highlight distinct intracellular barriers preventing efficient neuronal transfection by the nonviral carriers examined, and provide a basis for the rational improvement of existing nonviral systems.  相似文献   

14.
We demonstrate the use of self-assembled luminescent semiconductor quantum dot (QD)-peptide bioconjugates for the selective intracellular labeling of several eukaryotic cell lines. A bifunctional oligoarginine cell penetrating peptide (based on the HIV-1 Tat protein motif) bearing a terminal polyhistidine tract was synthesized and used to facilitate the transmembrane delivery of the QD bioconjugates. The polyhistidine sequence allows the peptide to self-assemble onto the QD surface via metal-affinity interactions while the oligoarginine sequence allows specific QD delivery across the cellular membrane and intracellular labeling as compared to nonconjugated QDs. This peptide-driven delivery is concentration-dependent and thus can be titrated. Upon internalization, QDs display a punctate-like staining pattern in which some, but not all, of the QD signal is colocalized within endosomes. The effects of constant versus limited exposure to QD-peptide conjugates on cellular viability are evaluated by a metabolic specific assay, and clear differences in cytotoxicity are observed. The efficacy of using peptides for selective intracellular delivery is highlighted by performing a multicolor QD labeling, where we found that the presence or absence of peptide on the QD surface controls cellular uptake.  相似文献   

15.
Understanding the cellular uptake and intracellular trafficking of dendrimer–DNA complexes is an important prerequisite for improving the transfection efficiency of non-viral vector-mediated gene delivery. Dendrimers are synthetic polymers used for gene transfer. Although these cationic molecules show promise as versatile DNA carriers, very little is known about the mechanism of gene delivery. This paper investigates how the uptake occurs, using an endothelial cell line as model, and evaluates whether the internalization of dendriplexes takes place randomly on the cell surface or at preferential sites such as membrane rafts. Following extraction of plasma membrane cholesterol, the transfection efficiency of the gene delivered by dendrimers was drastically decreased. Replenishment of membrane cholesterol restored the gene expression. The binding and especially internalization of dendriplexes was strongly reduced by cholesterol depletion before transfection. However, cholesterol removal after transfection did not inhibit expression of the delivered gene. Fluorescent dendriplexes co-localize with the ganglioside GM1 present into membrane rafts in both an immunoprecipitation assay and confocal microscopy studies. These data strongly suggest that membrane cholesterol and raft integrity are physiologically relevant for the cellular uptake of dendrimer–DNA complexes. Hence these findings provide evidence that membrane rafts are important for the internalization of non-viral vectors in gene therapy.  相似文献   

16.
Taori VP  Lu H  Reineke TM 《Biomacromolecules》2011,12(6):2055-2063
In this study we synthesized a new series of polymers known as poly(glycoamidoguanidine)s (PGAGs). These new polymer structures were synthesized by copolymerizing a carbohydrate monomer (diester; galatarate or tartarate) with a diamine incorporating guanidine or methylguanidine as a charge center to create a polyamide backbone. These materials were strategically designed and compared to our previously studied DNA delivery vehicles, poly(glycoamidoamine)s (PGAAs), which contain secondary amines as the charge groups along the polymer backbone to examine the effect of charge center type on the cellular delivery efficiency of plasmid DNA (pDNA). The guanidine moieties within the PGAGs facilitate electrostatic binding with the negatively charged phosphate backbone of plasmid DNA (pDNA). Stable polymer-pDNA complexes (polyplexes) with sizes in the range of 60-200 nm are formed at polymer/pDNA charge ratios (N/P) of 5 and above. When the PGAGs are complexed with Cy5-labeled pDNA (Cy5-pDNA) at N/P ratios of 10 and 25, between 80 and 95% of HeLa cells were positive for Cy5 fluorescence, indicating effective cellular internalization of the polyplexes. The toxicity of both PGAA and PGAG polyplexes was studied via MTT assays, and over 95% cell survival was observed at N/P ratios of 5, 10, 15, 20, 25, and 30 in HeLa cells. Transgene expression was examined via luciferase assays at various N/P ratios in the absence and presence of serum. In the absence of serum, the PGAG polyplexes revealed similar transgene expression when compared to polyplexes formed with their analogous PGAA structures. In the presence of serum, one analog (Gg) consisting of galactarate copolymerized with the guanidine monomer yielded gene expression similar to the positive control, Glycofect Transfection Reagent. This new series of guanidine-containing oligomers are promising as a new design strategy to incorporate an alternative charge center type within the backbone of glycopolymer-based nucleic acid delivery vehicles.  相似文献   

17.
Brain tissue has become a challenging therapeutic target, in part because of failure of conventional treatments of brain tumors and a gradually increasing number of neurodegenerative diseases. Because antisense oligonucleotides are readily internalized by neuronal cells in culture, these compounds could possibly serve as novel therapeutic agents to meet such a challenge. In previous in vitro work using cell culture systems, we have demonstrated that intracellular delivery requires a vector such as cationic liposomes since free oligonucleotides remain largely trapped in the endocytic pathway following cellular uptake. Here we studied the cellular uptake properties of oligonucleotides by explants of rat brain (brain slices), and by in vivo brain tissue after administration of oligonucleotides by bolus injection. In contrast to in vitro uptake, we show that in brain slices oligonucleotides were taken up by neuronal and nonneuronal cells, irrespective of their assembly with cationic liposomes. In either case, a diffuse distribution of oligonucleotides was seen in the cytosol and/or nucleus. Uptake of oligonucleotides by brain slices as a result of membrane damage, potentially arising from the isolation procedure, could be excluded. Interestingly, internalization was inhibited following treatment of the tissue with antibody GN-2640, directed against a nucleic acid channel, present in rat kidney cells. Our data support the view that an analogous channel is present in brain tissue, allowing entry of free oligonucleotides but not plasmids. Indeed, for delivery of the latter and accomplishment of effective transfection, cationic lipids were needed for gene translocation into both brain slices and brain tissue in vivo. These data imply that for antisense therapy to become effective in brain, cationic lipid-mediated delivery will only be needed for specific cell targeting but not necessarily for delivery per se to accomplish nuclear deposition of oligonucleotides into brain cells and subsequent down-regulation of disease-related targets.  相似文献   

18.
Virus-mediated gene delivery has been, to date, the most successful and efficient method for gene therapy. However, this method has been challenged because of serious safety concerns. Over the past decade, mesoporous silica nanoparticles (MSNs) have attracted much attention for intracellular delivery of nucleic acids. Delivery of cellular plasmid DNA (pDNA) is designed to replace the function of a defective gene and restore its normal function in the cell. Delivery of small interfering RNAs (siRNAs) can selectively knockdown genes by targeting specific mRNAs. The biocompatibility and unique structures of MSNs make these nanoparticles ideal candidates to act as biomolecule carriers. This concise review highlights current progress in the field of nucleic acid delivery using MSNs, specifically for delivery of pDNA, siRNA, and combinatorial delivery of nucleic acids and drugs. The review describes important design parameters presently being applied to MSNs to administer drugs and therapeutic nucleic acids.  相似文献   

19.
Successful intracellular delivery of various bioactive molecules has been reported using cell-permeating peptides (CPPs) as delivery vectors. To determine the effects of CPPs on the cellular uptake of immunoglobulin Fab fragment, conjugates of a radio-iodinated Fab fragment with CPPs (CPP-(125)I-Fab) derived from HIV-1 TAT, HIV-1 REV, and Antennapedia (ANP) were prepared. These vectors are rich in basic amino acids, and their strong adsorption on cell surfaces often results in overestimation of internalized peptides. Cell wash with an acidic buffer (0.2M glycine-0.15M NaCl, pH 3.0) was thus employed in this study to remove cell-surface adsorbed CPP-(125)I-Fab conjugates. This procedure enabled clearer understanding of the methods of internalization of CPP-(125)I-Fab conjugates. The kinetics of internalization of REV-(125)I-Fab conjugate was rapid, and a considerable fraction of REV-(125)I-Fab was taken up by HeLa cells as early as 5 min after administration. It was also shown that cellular uptake of these conjugates was significantly inhibited in the presence of endocytosis/ macropinocytosis inhibitors, in the order REV-(125)I-Fab > or = TAT-(125)I-Fab > or = ANP-(125)I-Fab; this order was the same as for effectiveness of intracellular delivery. Simultaneous cell washing with phosphate-buffered saline (PBS) and this acidic buffer effectively separated the internalized conjugates from the cell-surface-adsorbed ones, and considerable differences were observed in these amounts dependent on the employed CPPs.  相似文献   

20.
Nonviral gene carriers must associate with and become internalized by cells in order to mediate efficient transfection. Methods to quantitatively measure and distinguish between cell association and internalization of delivery vectors are necessary to characterize the trafficking of vector formulations. Here, we demonstrate the utility of nitro-2,1,3-benzoxadiazol-4-yl (NBD)-labeled oligonucleotides for discrimination between bound and internalized gene carriers associated with cells. Dithionite quenches the fluorescence of extracellular NBD-labeled material, but is unable to penetrate the cell membrane and quench internalized material. We have verified that dithionite-mediated quenching of extracellular materials occurs in both polymer- and lipid-based gene delivery systems incorporating NBD-labeled oligonucleotides. By exploiting this property, the efficiencies of cellular binding and internalization of lipid- and polymer-based vectors were studied and correlated to their transfection efficiencies. Additionally, spatiotemporal information regarding binding and internalization of NBD-labeled gene carriers can be obtained using conventional wide-field fluorescence microscopy, since dithionite-mediated quenching of extracellular materials reveals the intracellular distribution of gene carriers without the need for optical sectioning. Hence, incorporation of environmentally sensitive NBD-oligos into gene carriers allows for facile assessment of binding and internalization efficiencies of vectors in live cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号