首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Light limitations to algal growth in tropical ecosystems   总被引:1,自引:0,他引:1  
1. Spatial and temporal variations in algal concentrations are controlled in many aquatic ecosystems by the availability of solar irradiance, rather that nutrients or grazing. In such light limiting conditions, changes in the optical or hydrological characteristics of the water column will directly impact biomass concentrations. Here we develop and test an approach based on the relationship between available solar irradiance within the mixed layer and algal biomass concentrations. 2. As with most nutrient/biomass relationships, an increase in available solar energy favours an increase in biomass when light limitation prevails. The ratio between light/biomass is then used to determine a critical light requirement that can be used to estimate critical depth and compensation irradiance and open the way to exploring how changes in mixing depth and vertical attenuation may influence algal biomass concentrations. 3. This approach is used to describe real conditions in two disparate algal communities; the phytoplankton community in Lake Victoria, East Africa and the microphytobenthos community in the lacustrine system of Esteros del Iberá (South America). 4. Differences in the critical light requirement were used to examine the relative efficiency of the algal communities in their use of available solar energy. The tropical phytoplankton community showed similar energetic requirements to theoretical estimates and were found to be less efficient when compared with the phytobenthos community.  相似文献   

2.
Organic solar cells have the potential to become the cheapest form of electricity, beating even silicon photovoltaics. This article summarizes the state of the art in the field, highlighting research challenges, mainly the need for an efficiency increase as well as an improvement in long-term stability. It discusses possible current and future applications, such as building integrated photovoltaics or portable electronics. Finally, the environmental footprint of this renewable energy technology is evaluated, highlighting the potential to be the energy generation technology with the lowest carbon footprint of all.  相似文献   

3.
Several emerging technologies are aiming to meet renewable fuel standards, mitigate greenhouse gas emissions, and provide viable alternatives to fossil fuels. Direct conversion of solar energy into fungible liquid fuel is a particularly attractive option, though conversion of that energy on an industrial scale depends on the efficiency of its capture and conversion. Large-scale programs have been undertaken in the recent past that used solar energy to grow innately oil-producing algae for biomass processing to biodiesel fuel. These efforts were ultimately deemed to be uneconomical because the costs of culturing, harvesting, and processing of algal biomass were not balanced by the process efficiencies for solar photon capture and conversion. This analysis addresses solar capture and conversion efficiencies and introduces a unique systems approach, enabled by advances in strain engineering, photobioreactor design, and a process that contradicts prejudicial opinions about the viability of industrial photosynthesis. We calculate efficiencies for this direct, continuous solar process based on common boundary conditions, empirical measurements and validated assumptions wherein genetically engineered cyanobacteria convert industrially sourced, high-concentration CO2 into secreted, fungible hydrocarbon products in a continuous process. These innovations are projected to operate at areal productivities far exceeding those based on accumulation and refining of plant or algal biomass or on prior assumptions of photosynthetic productivity. This concept, currently enabled for production of ethanol and alkane diesel fuel molecules, and operating at pilot scale, establishes a new paradigm for high productivity manufacturing of nonfossil-derived fuels and chemicals.  相似文献   

4.
Light penetration depth in high-densityChlorella cultures can be successfully estimated by Beer-Lambert's law. The efficiency of light energy absorption by algal cultures was so high that algal cells near the illuminating surface shade the cells deep in the culture. To exploit the potential of high-density algal cultures, this mutual shading should be eliminated or minimized. However, providing more light energy will not ease the situation and it will simply drop the overall light utilization efficiency.  相似文献   

5.
The light saturation effect imposes a serious limitation on the efficiency with which solar energy can be utilized in outdoor algal cultures. One solution proposed to reduce the intensity of incident solar radiation and overcome the light saturation effect is "spatial dilution of light" (i.e., distribution of the impinging photon flux on a greater photosynthetic surface area), but consistent experimental data supporting a significant positive influence of spatial light dilution on the productivity and the photosynthetic efficiency of outdoor algal cultures have never been reported. We used a coiled tubular reactor and compared a near-horizontal straight tubular reactor and a near-horizontal flat panel in outdoor cultivation of the cyanobacterium Arthrospira (Spirulina) platensis under defined operating conditions for optimum productivity. The photosynthetic efficiency achieved in the tubular systems was significantly higher because their curved surface "diluted" the impinging solar radiation and thus reduced the light saturation effect. This interpretation was supported by the results of experiments carried out in the laboratory under continuous artificial illumination using both a flat and a curved chamber reactor. The study also showed that, when the effect of light saturation is eliminated or reduced, productivity and solar irradiance are linearly correlated even at very high diurnal irradiance values, and supported findings that outdoor algal cultures are light-limited even during bright summer days. It was also observed that, besides improving the photosynthetic efficiency of the culture, spatial dilution of light also leads to higher growth rates and lowers the cellular content of accessory pigments; that is, it reduces mutual shading in the culture. The inadequacy of using volumetric productivity as the sole criterion for comparing reactors of different surface-to-volume ratio and of the areal productivity for evaluating the performance of elevated photobioreactors operated outdoors is stressed; it is furthermore suggested that the photosynthetic efficiency achieved by the culture also be calculated to provide a suitable parameter for comparison of different algal cultivation systems operated under similar climatic conditions. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

6.
该文概述了管道式光生物反应器在设计上对性能的要求,对影响光生物反应器培养效率的各种生长条件如光能利用效率、CO2利用效率、环境温度、溶解氧等问题进行了探讨,指出高效并可自动调节的藻液循环混合系统对于高密度海藻培养是非常重要的,提出了能否自动清洗光生物反应器内壁是判断光生物反应器是否可用于工业化生产的关键。  相似文献   

7.
Artificial photosynthesis provides a blueprint to harvest solar energy to sustain the future energy demands. Solar‐driven water splitting, converting solar energy into hydrogen energy, is the prototype of photosynthesis. Various systems have been designed and evaluated to understand the reaction pathways and/or to meet the requirements of potential applications. In solar‐to‐hydrogen conversion, electrocatalytic hydrogen and oxygen evolution reactions are key research areas that are meaningful both theoretically and practically. To utilize hydrogen energy, fuel cell technology has been extensively investigated because of its high efficiency in releasing chemical energy. In this review, general concepts of the photosynthesis in green plants are discussed, different strategies for the light‐driven water splitting proposed in laboratories are introduced, the progress of electrocatalytic hydrogen and oxygen evolution reactions are reviewed, and finally, the reactions in hydrogen fuel cells are briefly discussed. Overall, the mass and energy circulation in the solar‐hydrogen‐electricity circle are delineated. The authors conclude that attention from scientists and engineers of relevant research areas is still highly needed to eliminate the wide disparity between the aspirations and realities of artificial photosynthesis.  相似文献   

8.
Microalgal based biofuels are discussed as future sustainable energy source because of their higher photosynthetic and water use efficiency to produce biomass. In the context of climate CO2 mitigation strategies, algal mass production is discussed as a potential CO2 sequestration technology which uses CO2 emissions to produce biomass with high-oil content independent on arable land. In this short review, it is presented how complete energy balances from photon to harvestable biomass can help to identify the limiting processes on the cellular level. The results show that high productivity is always correlated with high metabolic costs. The overall efficiency of biomass formation can be improved by a photobioreactor design which is kinetically adapted to the rate-limiting steps in cell physiology. However, taking into account the real photon demand per assimilated carbon and the energy input for biorefinement, it becomes obvious that alternative strategies must be developed to reach the goal of a real CO2 sequestration.  相似文献   

9.
The global population is expected to increase by approximately 3 billion people by 2050. With this increase in population, industry, transportation the cost of fossil fuels will grow dramatically. New technologies are needed for fuel extraction using feedstocks that do not threaten food security, cause minimal or no loss of natural habitat and soil carbon. At the same time, waste management has to be improved and environmental pollution should be minimized or eliminated. Liquid biofuels such as lignocellulosic‐based ethanol from plant biomass and algal‐based biodiesel are sustainable, alternative biofuels that could stabilize national security and provide clean energy for future generations. Ideally, the technology should also foster recycling of agricultural feedstocks and improve soil fertility and human health. This article provides updated information on the energy potential and breadth of liquid biofuel biotechnology.  相似文献   

10.
In the quest for renewable resources, algae are increasingly receiving attention. Their high growth rate, high CO2 fixation and their lack of requirement for fertile soil surface represent several advantages as compared to conventional (energy) crops. Through their ability to store large amounts of oils, they qualify as a source for biodiesel. Algal biomass, however, can also be used as such, namely as a substrate for anaerobic digestion. In the present research, we investigated the use of algae for energy generation in a stand‐alone, closed‐loop system. The system encompasses an algal growth unit for biomass production, an anaerobic digestion unit to convert the biomass to biogas and a microbial fuel cell to polish the effluent of the digester. Nutrients set free during digestion can accordingly be returned to the algal growth unit for a sustained algal growth. Hence, a system is presented that continuously transforms solar energy into energy‐rich biogas and electricity. Algal productivities of 24–30 ton VS ha?1 year?1 were reached, while 0.5 N m3 biogas could be produced kg?1 algal VS. The system described resulted in a power plant with a potential capacity of about 9 kW ha?1 of solar algal panel, with prospects of 23 kW ha?1. Biotechnol. Bioeng. 2009;103: 296–304. © 2009 Wiley Periodicals, Inc.  相似文献   

11.
For mass production of microalgae outdoors to be justified as a significant commercial entity, solar energy should be utilized at a much higher efficiency, yielding greatly increased photosynthetic productivity than presently obtained. Development of photobioreactors to provide an answer for this challenge rests at the root and the very future of this biotechnology. Most available Photobioreactors yield increased volumetric outputs of cell mass, but the areal yield which relates to the photosynthetic efficiency is rather similar to that obtained in the basically inefficient open raceway, the most prevalent commercial reactor today. The key for efficient utilization of the super saturating solar irradiance existing outdoors rests in distributing it, in effect, to as large a number of cells per given volume in as high a frequency as possible. This unfolds the design principles underlying efficient utilization of high irradiance for photoautotrophic production of cell mass: Reactors should be maximally exposed to sun light, have a narrow light-path coupled with a safe mixing system designed to create fast, turbulent streaming for moving the algal cells in and out of the photic volume at maximal frequency. Reactors designed along these principles may support ultrahigh cell densities resulting in high volumetric as well as areal yields, hopefully expanding thereby the economic basis of microalgal biotechnology.  相似文献   

12.

We need electrical energy for our various daily life activities, and the existing fossil fuel will serve the purpose for a limited period only. Therefore, we need to look at alternate energy resources for long-term sustainable growth. Solar energy has been considered as one of the potential viable alternate sources of non-conventional energy. Solar photon harvesting is a technique where solar photon energy is being converted to electrical energy using solar cell devices. However, the solar power conversion efficiency is usually seen to be poor limiting the applications to large extent. Improving solar cell efficiency has, thus, been a great challenge to researchers who are actively working in this field. Various technological aspects are being looked at to improve efficiency, and out of them, plasmonic light trapping technique has been considered as one of the promising techniques. In the past years, considerable research efforts are being made towards the design and execution of the solar cell devices and to understand the mechanisms of performance enhancement. The present review outlines briefly the recent progress of plasmonic solar cell efficiency improvement that has happened, especially, for last 5–6 years. Plasmonic solar cells made of Si (silicon), GaAs (gallium arsenide); plasmonic dye-sensitized solar cells; plasmonic polymer (organic) solar cells and perovskite solar cells are mainly discussed along with the critical aspects that may influence the device performance.

  相似文献   

13.
By means of finite-difference time-domain (FDTD) numerical method, we investigate the possibility to enhance the light absorption in solar cells by employing different nanostructures. The solar cells are made of 100-nm-thick amorphous silicon (α-Si). The impacts of gold nanohole arrays, dielectric nanosphere arrays, and gold nanoparticle arrays on the light absorption are simulated, compared, and analyzed. The results show that gold nanohole arrays functioning as the back reflective layer, dielectric nanosphere arrays, and gold nanoparticle arrays can significantly enhance the light absorption for the solar cells, and the former two can increase the short-circuit current by more than 40 %, showing a great potential to improve the utilization efficiency of solar energy.  相似文献   

14.
Photosynthesis is the source of our food and fiber. Increasing world population, economic development, and diminishing land resources forecast that a doubling of productivity is critical in meeting agricultural demand before the end of this century. A starting point for evaluating the global potential to meet this goal is establishing the maximum efficiency of photosynthetic solar energy conversion. The potential efficiency of each step of the photosynthetic process from light capture to carbohydrate synthesis is examined. This reveals the maximum conversion efficiency of solar energy to biomass is 4.6% for C3 photosynthesis at 30 degrees C and today's 380 ppm atmospheric [CO2], but 6% for C4 photosynthesis. This advantage over C3 will disappear as atmospheric [CO2] nears 700 ppm.  相似文献   

15.
李泞吕  赵方凯  陈利顶 《生态学报》2023,43(10):4284-4293
建筑屋顶作为闲置的土地资源已成为光伏发电重要的潜在空间,屋顶光伏发电是脱碳电力供应的主要方式,将在实现城市碳中和进程中发挥重要作用。对建筑屋顶光伏发电潜力进行精确评估将有助于分布式光伏的科学规划和合理布局,提升土地利用效率。旨在对建筑屋顶光伏发电潜力影响因素和评估方法,以及光伏发电潜力主要评估模型进行系统性阐述,比较分析不同评估方法的优缺点,总结未来研究的重点方向。现有研究表明,建筑屋顶光伏发电潜力评估已从经验取值发展为定量空间分析,评估尺度、评估精度和评估成本已经成为不同评估方法综合权衡的重点。现有三种评估方法中,采样法计算成本和数据成本较低,但评估结果不确定性较大、精度较低;全面评估法评估精度较高,但数据获取成本和计算成本较高;机器学习法能够高效挖掘大数据潜力,且算法性能显著提升,因而相较于其他方法更适宜大尺度建筑屋顶光伏发电潜力评估。当前建筑屋顶光伏发电潜力评估仍然存在大尺度精细评估缺乏、评估结果不确定性大以及评估模型计算量大等问题。未来研究重点应关注三个方面:1)建立适宜不同区域的高精度简化模型并完善技术潜力评估模型;2)阐明建筑屋顶光伏发电潜力的影响因素,为代表性建筑分类体系...  相似文献   

16.
Perovskite solar cells have delivered power conversion efficiency beyond 22% in less than seven years, implying the potential for the paradigm shift of low‐cost photovoltaics with high efficiency and low embedded energy. Besides the “perovskite fever,” the development of new hole transport materials (HTM), especially dopant‐free HTMs, is another research hotspot. This is because the currently used HTMs, such as spiro‐OMeTAD derivatives, require additional chemical doping process to ensure sufficient conductivity and proper ionic potential level for efficient hole transport and collection. However, the commonly used dopants are volatile and hygroscopic which not only increase the complexity and cost of device fabrication but also deteriorate the device stability. So far, there have been several reviews on new HTMs, but review or analysis on dopant‐free HTMs is scarce. In this review, all reported dopant‐free HTMs are categorized into four primary different types and lessons will be learned during the separate discussions. The stability test behavior of all the intrinsic HTMs will be evaluated directly. In the end, the correlations between the properties of the intrinsic HTMs and parameters of the devices will be plotted to shed light on the future direction of development of this field.  相似文献   

17.
Solar‐driven interfacial vaporization by localizing solar‐thermal energy conversion to the air–water interface has attracted tremendous attention due to its high conversion efficiency for water purification, desalination, energy generation, etc. However, ineffective integration of hybrid solar thermal devices and poor material compliance undermine extensive solar energy exploitation and practical outdoor use. Herein, a 3D organic bucky sponge that has a combination of desired chemical and physical properties, i.e., broadband light absorbing, heat insulative, and shape‐conforming abilities that render efficient photothermic vaporization and energy generation with improved operational durability is reported. The highly compressible and readily reconfigurable solar absorber sponge not only places less constraints on footprint and shape defined fabrication process but more importantly remarkably improves the solar‐to‐vapor conversion efficiency. Notably, synergetic coupling of solar‐steam and solar‐electricity technologies is realized without trade‐offs, highlighting the practical consideration toward more impactful solar heat exploitation. Such solar distillation and low‐grade heat‐to‐electricity generation functions can provide potential opportunities for fresh water and electricity supply in off‐grid or remote areas.  相似文献   

18.
Biofuels made from algal biomass are being considered as the most suitable alternative energy in current global and economical scenario. Microalgae are known to produce and accumulate lipids within their cell mass which is similar to those found in many vegetable oils. The efficient lipid producer algae cell mass has been reported to contain more than 30% of their cell weight as lipids. According to US DOE microalgae have the potential to produce 100 times more oil per acre land than any terrestrial plants. This article reviews up to date literature on the composition of algae, mechanism of oil droplets, triacylglycerol (TAG) production in algal biomass, research and development made in the cultivation of algal biomass, harvesting strategies, and recovery of lipids from algal mass. The economical challenges in the production of biofuels from algal biomass have been discussed in view of the future prospects in the commercialisation of algal fuels.  相似文献   

19.
Microbial solar cells (MSCs) are recently developed technologies that utilize solar energy to produce electricity or chemicals. MSCs use photoautotrophic microorganisms or higher plants to harvest solar energy, and use electrochemically active microorganisms in the bioelectrochemical system to generate electrical current. Here, we review the principles and performance of various MSCs in an effort to identify the most promising systems, as well as the bottlenecks and potential solutions, for "real-life" MSC applications. We present an outlook on future applications based on the intrinsic advantages of MSCs, specifically highlighting how these living energy systems can facilitate the development of an electricity-producing green roof.  相似文献   

20.
The main function of the photosynthetic process is to capture solar energy and to store it in the form of chemical 'fuels'. Increasingly, the photosynthetic machinery is being used for the production of biofuels such as bio-ethanol, biodiesel and bio-H2. Fuel production efficiency is directly dependent on the solar photon capture and conversion efficiency of the system. Green algae (e.g. Chlamydomonas reinhardtii ) have evolved genetic strategies to assemble large light-harvesting antenna complexes (LHC) to maximize light capture under low-light conditions, with the downside that under high solar irradiance, most of the absorbed photons are wasted as fluorescence and heat to protect against photodamage. This limits the production process efficiency of mass culture. We applied RNAi technology to down-regulate the entire LHC gene family simultaneously to reduce energy losses by fluorescence and heat. The mutant Stm3LR3 had significantly reduced levels of LHCI and LHCII mRNAs and proteins while chlorophyll and pigment synthesis was functional. The grana were markedly less tightly stacked, consistent with the role of LHCII. Stm3LR3 also exhibited reduced levels of fluorescence, a higher photosynthetic quantum yield and a reduced sensitivity to photoinhibition, resulting in an increased efficiency of cell cultivation under elevated light conditions. Collectively, these properties offer three advantages in terms of algal bioreactor efficiency under natural high-light levels: (i) reduced fluorescence and LHC-dependent heat losses and thus increased photosynthetic efficiencies under high-light conditions; (ii) improved light penetration properties; and (iii) potentially reduced risk of oxidative photodamage of PSII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号