首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
There are many liver diseases that could be treated with delivery of therapeutics such as DNA, proteins, or small molecules. Nanoparticles are often proposed as delivery vectors for such therapeutics; however, achieving nanoparticle accumulations in the therapeutically relevant hepatocytes is challenging. In order to address this issue, we have synthesized polymer coated, fluorescent iron oxide nanoparticles that bind and deliver DNA, as well as produce contrast for magnetic resonance imaging (MRI), fluorescence imaging, and transmission electron microscopy (TEM). The composition of the coating can be varied in a facile manner to increase the quantity of poly(ethylene glycol) (PEG) from 0% to 5%, 10%, or 25%, with the aim of reducing opsonization but maintaining DNA binding. We investigated the effect of the nanoparticle coating on DNA binding, cell uptake, cell transfection, and opsonization in vitro. Furthermore, we exploited MRI, fluorescence imaging, and TEM to investigate the distribution of the different formulations in the liver of mice. While MRI and fluorescence imaging showed that each formulation was heavily taken up in the liver at 24 h, the 10% PEG formulation was taken up by the therapeutically relevant hepatocytes more extensively than either the 0% PEG or the 5% PEG, indicating its potential for delivery of therapeutics to the liver.  相似文献   

2.
细胞因子作为DNA疫苗佐剂的研究进展   总被引:4,自引:0,他引:4  
细胞因子是机体细胞(主要指免疫细胞)产生的一类具有广泛生物学活性的异质性肽类调节因子,在体内能激活免疫活性细胞,对免疫应答的产生和调节有重要作用。近年来,大量研究表明细胞因子可作为DNA疫苗佐剂来增强疫苗的免疫效果。简要综述了细胞因子作为DNA疫苗免疫佐剂的研究进展。  相似文献   

3.
Alkaloids represent an important group of molecules that have immense pharmacological potential. Benzophenanthridine alkaloids are one such class of alkaloids known for their myriad pharmacological activities that include potential anticancer activities. Chelerythrine is a premier member of the benzophenanthridine family of the isoquinoline group. This alkaloid is endowed with excellent medicinal properties and exhibits antibacterial, antimicrobial and anti-inflammatory properties. The molecular basis of its therapeutic activity is considered due to its nucleic acid binding capabilities. This review focuses on consolidating the current status on the nucleic acid binding properties of chelerythrine that is essential for the rational design and development of this alkaloid as a potential drug. This work reviews the interaction of chelerythrine with different natural and synthetic nucleic acids like double- and single-stranded DNAs, heat-denatured DNA, quadruplex DNA, double- and single-stranded RNA, tRNA and triplex and quadruplex RNA. The review emphasizes on the mode, specificity, conformational aspects and energetics of the binding that is particularly helpful for developing nucleic acid targeted therapeutics. The fundamental results discussed in this review will greatly benefit drug development for many diseases and serve as a database for the design of futuristic benzophenanthridine-based therapeutics.  相似文献   

4.
Rolling circle amplification (RCA) is a powerful tool for the construction of DNA nanomaterials such as hydrogels, high-performance scaffolds and DNA nanoflowers (DNFs), hybrid materials formed of DNA and magnesium pyrophosphate. Such DNA nanomaterials have great potential in therapeutics, imaging, protein immobilisation, and drug delivery, yet limited chemistry is available to expand their functionality. Here, we present orthogonal strategies to produce densely modified RCA products and DNFs. We provide methods to selectively modify the DNA component and/or the protein cargo of these materials, thereby greatly expanding the range of chemical functionalities available to these systems. We have used our methodology to construct DNFs bearing multiple surface aptamers and peptides capable of binding to cancer cells that overexpress the HER2 oncobiomarker, demonstrating their potential for diagnostic and therapeutic applications.  相似文献   

5.
New perspectives on the design of cytokines and growth factors   总被引:3,自引:0,他引:3  
A combination of molecular modelling, conventional epitope scanning and combinatorial techniques, such as phage display and DNA shuffling, has greatly improved our understanding of ligand-receptor interactions. It has therefore been possible to develop powerful cytokine-growth factor antagonists and new designer cytokines, with altered receptor specificities or with greatly enhanced biological activity. Recently, small circular peptides that mimic or block the effects of natural cytokines and growth factors have been developed; such small peptides are likely to open new avenues in therapeutics.  相似文献   

6.
DNA damage response (DDR) serves as an integrated cellular network to detect cellular stress and react by activating pathways responsible for halting cell cycle progression, stimulating DNA damage repair, and initiating apoptosis. Efficient DDR protects cells from genomic instability while defective DDR can allow DNA lesions to go unrepaired, causing permanent mutations that will affect future generations of cells and possibly cause disease conditions such as cancer. Therefore, DDR mechanisms must be tightly regulated in order to ensure organismal health and viability. One major way of DDR regulation is ubiquitination, which has been long known to control DDR protein localization, activity, and stability. The reversal of this process, deubiquitination, has more recently come to the forefront of DDR research as an important new angle in ubiquitin-mediated regulation of DDR. As such, deubiquitinases have emerged as key factors in DDR. Importantly, deubiquitinases are attractive small-molecule drug targets due to their well-defined catalytic residues that provide a promising avenue for developing new cancer therapeutics. This review focuses on the emerging roles of deubiquitinases in various DNA repair pathways.  相似文献   

7.
Current concepts in cancer vaccine strategies   总被引:5,自引:0,他引:5  
Monzavi-Karbassi B  Kieber-Emmons T 《BioTechniques》2001,30(1):170-2, 174, 176 passim
Cancer vaccines are entering a new phase of popularity, in part because of the recognition of when a therapeutic vaccine is most effective and the identification of appropriate target antigens. New technologies, most notably gene transfection into dendritic cell and DNA vaccination approaches, have spurred further clinical evaluations. While many researchers consider humoral responses as not being viable for large tumors, these responses may play a role in regulating micrometastases (i.e., adjuvant setting). The recent approval of antibodies as therapeutics for cancer treatment has lent to the viability of this therapy concept. The success of carbohydrate-conjugate vaccines in bacterial systems has also renewed interest in developing such vaccines for cancer immunotherapy. Carbohydrates can be further converted into peptide/protein mimetics with several of these mimetics in clinical trials. These mimetic forms can be manipulated into DNA vaccine types that may be combined into DNA cassettes that contain CTL-associated epitopes to further define a novel strategy for future vaccine development.  相似文献   

8.
Epigenetic modification of DNA leads to changes in gene expression. DNA methyltransferases (DNMTs) comprise a family of nuclear enzymes that catalyze the methylation of CpG dinucleotides, resulting in an epigenetic methylome distinguished between normal cells and those in disease states such as cancer. Disrupting gene expression patterns through promoter methylation has been implicated in many malignancies and supports DNMTs as attractive therapeutic targets. This review focuses on the rationale of targeting DNMTs in cancer, the historical approach to DNMT inhibition, and current marketed hypomethylating therapeutics azacytidine and decitabine. In addition, we address novel DNMT inhibitory agents emerging in development, including CP-4200 and SGI-110, analogs of azacytidine and decitabine, respectively; the oligonucleotides MG98 and miR29a; and a number of reversible inhibitors, some of which appear to be selective against particular DNMT isoforms. Finally, we discuss future opportunities and challenges for next-generation therapeutics.  相似文献   

9.
A network of pro-inflammatory cytokines is a central feature in the pathophysiology of cutaneous inflammatory diseases. Thus, the delineation of precise roles for particular cytokines and the development of cytokine-directed therapeutics have become areas of intense investigation. While anti-TNF therapeutics have proven to be effective for the treatment of psoriasis, clinical investigations have now begun with other cytokine-directed therapies, such as those targeting IFN-g, IL-12p40, and IL-18. In addition to therapeutics that target cytokines directly, strategies that target cytokine signaling pathways are in development too. In this short review, we summarize key findings from a recent workshop on cytokines as potential therapeutic targets for inflammatory skin diseases.  相似文献   

10.
11.
Methodologies to detect DNA sequences with high sensitivity and specificity have tremendous potential as molecular diagnostic agents. Most current methods exploit the ability of single-stranded DNA (ssDNA) to base pair with high specificity to a complementary molecule. However, recent advances in robust techniques for recognition of DNA in the major and minor groove have made possible the direct detection of double-stranded DNA (dsDNA), without the need for denaturation, renaturation, or hybridization. This review will describe the progress in adapting polyamides, triplex DNA, and engineered zinc finger DNA-binding proteins as dsDNA diagnostic systems. In particular, the sequence-enabled reassembly (SEER) method, involving the use of custom zinc finger proteins, offers the potential for direct detection of dsDNA in cells, with implications for cell-based diagnostics and therapeutics.  相似文献   

12.
New class of polymers for the delivery of macromolecular therapeutics   总被引:8,自引:0,他引:8  
Cationic polymers show promise for the in vitro and in vivo delivery of macromolecular therapeutics. Known cationic polymers, e.g., poly(L)lysine (PLL) and polyethylenimine (PEI), have been employed in native and modified forms for the delivery of plasmid DNA (pDNA) and reveal varying levels of toxicity. Here, we report the preparation of a new class of cationic polymers that are specifically designed to deliver macromolecular therapeutics. Linear, cationic, beta-cyclodextrin (beta-CD)-containing polymers (CD-polymers) are synthesized by copolymerizing difunctionalized beta-CD monomers (AA) with other difunctionalized comonomers (BB) such that an AABBAABB product is formed. The beta-CD polymers are able to bind approximately 5 kbp pDNA above polymer to DNA (+/-) charge ratios of 1.5, compact the bound pDNA into particles of approximately 100-150 nm in size at charge ratios above 5+/-, and transfect cultured cells at charge ratios above 10+/-. In vitro transfections with the new beta-CD-polymers are comparable to the best results obtained in our hands with PEI and Lipofectamine. Some cell line-dependent toxicities are observed for serum-free transfections; however, no toxicity is revealed at charge ratios as high as 70+/- in transfections conducted in 10% serum. Single IV and IP doses as high as 200 mg/kg in mice showed no mortalities.  相似文献   

13.
BackgroundLow pH induced nucleic acid polymorphism and the interaction of naturally occurring small molecules with different polymorphic forms of DNA have been the focus in developing new drugs. Recent studies have revealed that low pH plays an active role in growth and development of cancer cells. Our target is to find whether and how the indoloquinoline alkaloid cryptolepine (CRP) interact with different polymorphic forms of natural DNA, in hope to explore this group of alkaloids as new therapeutics.MethodsMultiple spectroscopic techniques that include UV–visible absorption spectrophotometry, fluorimetry, CD spectroscopy along with thermal melting studies were employed to characterize the interaction between the alkaloid cryptolepine with the B and protonated forms of DNA.Results & conclusionsCryptolepine has been found to interact with either forms of DNA. The nature of binding is non-cooperative in both cases. Data show that the affinity of CRP to B form of DNA is relatively higher than that for the protonated form of DNA. Circular dichroic studies reveal that the alkaloid converts the left handed protonated DNA into bound right handed form. Fluorescence quenching experiments reveal that cryptolepine intercalates within the DNA base pairs. Thermal melting studies show that the alkaloid stabilises the DNA structures.General significanceSuch non-B DNA structures are often present at the ‘mutation hotspots’ that are associated with genetic instability related diseases such as cancer. The ability of cryptolepine to interact to such non-B DNA structures makes it a useful substrate in the designing of potential chemotherapeutic agents.  相似文献   

14.
New metal complexes as potential therapeutics   总被引:5,自引:0,他引:5  
The many activities of metal ions in biology have stimulated the development of metal-based therapeutics. Cisplatin, as one of the leading metal-based drugs, is widely used in treatment of cancer, being especially effective against genitourinary tumors such as testicular. Significant side effects and drug resistance, however, have limited its clinical applications. Biological carriers conjugated to cisplatin analogs have improved specificity for tumor tissue, thereby reducing side effects and drug resistance. Platinum complexes with distinctively different DNA binding modes from that of cisplatin also exhibit promising pharmacological properties. Ruthenium and gold complexes with antitumor activity have also evolved. Other metal-based chemotherapeutic compounds have been investigated for potential medicinal applications, including superoxide dismutase mimics and metal-based NO donors/scavengers. These compounds have the potential to modulate the biological properties of superoxide anion and nitric oxide.  相似文献   

15.
Current therapies for treating systemic lupus erythematosus (SLE) mainly rely upon nonspecific and toxic immunosuppression by corticosteroids and cytotoxics. Although biologics hold promise, many agents have yet to prove clinical efficiency in controlled trials, with further limitations related to safety and cost. The primary self-specificity in SLE is double-stranded (ds) DNA. Studying anti-dsDNA antibodies in animal models of lupus and SLE patients identified a neurotoxic and nephrotoxic subset, including the nephritogenic mouse monoclonal anti-dsDNA antibody R4 that crossreacts with a sequence present in subunits of the N-methyl-d-aspartate receptor. In this review, anti-dsDNA antibodies as a pathogenic factor in SLE and recent efforts for the creation of highly specific, nontoxic therapeutics against an extremely pathogenic subset of such antibodies is discussed.  相似文献   

16.
Despite some advances in targeted therapeutics of human cancers, curative cancer treatment still remains a tremendous challenge due to the occurrence of drug resistance. A variety of underlying resistance mechanisms to targeted cancer drugs have recently revealed that the dual-target therapeutic strategy would be an attractive avenue. Compared to drug combination strategies, one agent simultaneously modulating two druggable targets generally shows fewer adverse reactions and lower toxicity. As a consequence, the dual-target small molecule has been extensively explored to overcome drug resistance in cancer therapy. Thus, in this review, we focus on summarizing drug resistance mechanisms of cancer cells, such as enhanced drug efflux, deregulated cell death, DNA damage repair, and epigenetic alterations. Based upon the resistance mechanisms, we further discuss the current therapeutic strategies of dual-target small molecules to overcome drug resistance, which will shed new light on exploiting more intricate mechanisms and relevant dual-target drugs for future cancer therapeutics.  相似文献   

17.
Previous studies have shown DNA re-replication can be induced in cells derived from human cancers under conditions in which it is not possible for cells derived from normal tissues. Because DNA re-replication induces cell death, this strategy could be applied to the discovery of potential anticancer therapeutics. Therefore, an imaging assay amenable to high-throughput screening was developed that measures DNA replication in excess of four genomic equivalents in the nuclei of intact cells and indexes cell proliferation. This assay was validated by screening a library of 1,280 bioactive molecules on both normal and tumor-derived cells where it proved more sensitive than current methods for detecting excess DNA replication. This screen identified known inducers of excess DNA replication, such as inhibitors of microtubule dynamics, and novel compounds that induced excess DNA replication in both normal and cancer cells. In addition, two compounds were identified that induced excess DNA replication selectively in cancer cells and one that induced endocycles selectively in cancer cells. Thus, this assay provides a new approach to the discovery of compounds useful for investigating the regulation of genome duplication and for the treatment of cancer.  相似文献   

18.
Alloimmunization is a crippling concern in the management of patients undergoing administration of protein therapeutics as evidenced in replacement therapy and other treatment procedures. Several issues in the genesis and modulation of such deleterious immune responses have been studied. While authors have focused on the downstream events of the specific immune response and suggested modification of protein therapeutics to eliminate epitopes that interact with B cell receptors, T cell receptors, or MHCII molecules, the mechanisms underlying Ag interaction with APCs, a step upstream of immune effectors, have been grossly neglected. We wish to emphasize that the recent knowledge in understanding the capacities of an APC to handle an Ag and the importance of the surrounding microenvironment in this process are crucial for designing novel protein therapeutics with reduced immunogenicity.  相似文献   

19.
HDAC inhibition in lupus models   总被引:1,自引:0,他引:1  
Systemic lupus erythematosus (SLE) is a prototypic autoimmune inflammatory disease characterized by the production of autoantibodies directed against nuclear antigens such as nucleosomes, DNA and histone proteins found within the body's cells and plasma. Autoantibodies may induce disease by forming immune complexes that lodge in target organs or by crossreacting with targeted antigens and damaging tissue. In addition to autoantibody production, apoptotic defects and impaired removal of apoptotic cells contribute to an overload of autoantigens that initiate an autoimmune response. Besides the well-recognized genetic susceptibility to SLE, environmental and epigenetic factors play a crucial role in disease pathogenesis as evidenced by monozygotic twins typically being discordant for disease. Changes in DNA methylation and histone acetylation alter gene expression and are thought to contribute to the epigenetic deregulation in disease. In SLE, global and gene-specific DNA methylation changes have been demonstrated to occur. Additionally, aberrant histone acetylation is evident in individuals with SLE. Moreover, histone deacetylase inhibitors (HDACi) have been shown to reverse the skewed expression of multiple genes involved in SLE. In this review, we discuss the implications of epigenetic alterations in the development and progression of SLE, and how therapeutics designed to alter histone acetylation status may constitute a promising avenue to target disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号