首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Riley BS  Li X 《AAPS PharmSciTech》2011,12(1):114-118
Quality by design (QbD) and process analytical technology (PAT) have become priorities for the Center for Drug Evaluation and Research (CDER) at the Food and Drug Administration (FDA). Numerous recent initiatives within CDER and FDA have had the objective of encouraging the pharmaceutical industry to utilize QbD and PAT in their product development and manufacturing processes. Although sterile products may be a minority compared to non-sterile dosage forms (e.g., solid orals), their absolute requirement for sterility make design and control of the manufacturing processes extremely critical. This emphasis on the manufacturing process makes the sterile drug product an obvious target for QbD and PAT. Although the FDA encourages QbD submissions, the utilization of QbD and PAT for sterile products so far is still limited. This paper will examine the present state of QbD and PAT for sterile products and review some examples currently in use. Additional potential applications of QbD and PAT for sterile product development and manufacturing will also be discussed.  相似文献   

2.
In 2012, the Quality-by-Design and Product Performance Focus Group of AAPS conducted a survey to assess the state of adoption and perception of Quality-by-Design (QbD). Responses from 149 anonymous individuals from industry—including consultants—(88%), academia (7%), and regulatory body (4%), were collected. A majority of respondents (54% to 76%) reported high frequency of utilization of several tools and most QbD elements outlined by International Conference on Harmonization Q8, with design of experiments, risk assessment, and the quality target product profile ranked as the top three. Over two thirds of respondents agreed that the benefits of QbD included both the positive impact it can have on the patient (78%), as well as on internal processes such as knowledge management (85%), decision making (79%), and lean manufacture (71%). However, more than 50% from industry were neutral about or disagreed with QbD leading to a better return on investment. This suggests that, despite the recognized scientific, manufacture, and patient-related benefits, there is not yet a clearly articulated business case for QbD available. There was a difference of opinion between industry and regulatory agency respondents as to whether a QbD-based submission resulted in increased efficiency of review. These contrasting views reinforce the idea that QbD implementation can benefit from further dialog between industry and regulatory authorities. A majority of respondents from academia indicated that QbD has influenced their research. In total, the results indicate the broad adoption of QbD but also suggest we are yet in a journey and that the process of gathering all experience and metrics required for connecting and demonstrating QbD benefits to all stakeholders is still in progress.  相似文献   

3.
Quality by design (QbD) is a scheme for the development, manufacture, and approval of pharmaceutical products. The end goal of QbD is to ensure product quality by building it into the manufacturing process. The main regulatory bodies are encouraging its implementation to the manufacture of all new pharmaceuticals including biological products. Monoclonal antibodies (mAbs) are currently the leading products of the biopharmaceutical industry. It has been widely reported that glycosylation directly influences the therapeutic mechanisms by which mAbs function in vivo. In addition, glycosylation has been identified as one of the main sources of monoclonal antibody heterogeneity, and thus, a critical parameter to follow during mAb manufacture. This article reviews the research on glycosylation of mAbs over the past 2 decades under the QbD scope. The categories presented under this scope are: (a) definition of the desired clinical effects of mAbs, (b) definition of the glycosylation‐associated critical quality attributes (glycCQAs) of mAbs, (c) assessment of process parameters that pose a risk for mAb glycCQAs, and (d) methods for accurately quantifying glycCQAs of mAbs. The information available in all four areas leads us to conclude that implementation of QbD to the manufacture of mAbs with specific glycosylation patterns will be a reality in the near future. We also foresee that the implementation of QbD will lead to the development of more robust and efficient manufacturing processes and to a new generation of mAbs with increased clinical efficacy. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

4.
Quality by design (QbD) is a systematic approach that begins with predefined objectives and emphasizes product and process understanding and process control. It is an approach based on principles of sound science and quality risk management. As the food processing industry continues to embrace the idea of in-line, online, and/or at-line sensors and real-time characterization for process monitoring and control, the existing gaps with regard to our ability to monitor multiple parameters/variables associated with the manufacturing process will be alleviated over time. Investments made for development of tools and approaches that facilitate high-throughput analytical and process development, process analytical technology, design of experiments, risk analysis, knowledge management, and enhancement of process/product understanding would pave way for operational and economic benefits later in the commercialization process and across other product pipelines. This article aims to achieve two major objectives. First, to review the progress that has been made in the recent years on the topic of QbD implementation in processing of food products and second, present a case study that illustrates benefits of such QbD implementation.  相似文献   

5.
This study describes the application of quality by design (QbD) principles to the development and implementation of a major manufacturing process improvement for a commercially distributed therapeutic protein produced in Chinese hamster ovary cell culture. The intent of this article is to focus on QbD concepts, and provide guidance and understanding on how the various components combine together to deliver a robust process in keeping with the principles of QbD. A fed-batch production culture and a virus inactivation step are described as representative examples of upstream and downstream unit operations that were characterized. A systematic approach incorporating QbD principles was applied to both unit operations, involving risk assessment of potential process failure points, small-scale model qualification, design and execution of experiments, definition of operating parameter ranges and process validation acceptance criteria followed by manufacturing-scale implementation and process validation. Statistical experimental designs were applied to the execution of process characterization studies evaluating the impact of operating parameters on product quality attributes and process performance parameters. Data from process characterization experiments were used to define the proven acceptable range and classification of operating parameters for each unit operation. Analysis of variance and Monte Carlo simulation methods were used to assess the appropriateness of process design spaces. Successful implementation and validation of the process in the manufacturing facility and the subsequent manufacture of hundreds of batches of this therapeutic protein verifies the approaches taken as a suitable model for the development, scale-up and operation of any biopharmaceutical manufacturing process.  相似文献   

6.
Understanding the product and process variable on the final product performance is an essential part of the quality-by-design (QbD) principles in pharmaceutical development. The hard capsule is an established pharmaceutical dosage form used worldwide in development and manufacturing. The empty hard capsules are supplied as an excipient that is filled by pharmaceutical manufacturers with a variety of different formulations and products. To understand the potential variations of the empty hard capsules as an input parameter and its potential impact on the finished product quality, a study was performed investigating the critical quality parameters within and in between different batches of empty hard gelatin capsules. The variability of the hard capsules showed high consistency within the specification of the critical quality parameters. This also accounts for the disintegration times, when automatic endpoint detection was used. Based on these data, hard capsules can be considered as a suitable excipient for product development using QbD principles.  相似文献   

7.
Process intensification is necessary to create economical processes. Cleavage reaction is one of the critical unit operations in peptide manufacturing processes as it involves cutting of concatemer expressed to obtain monomer. In this paper, solubilization and cleavage reaction have been merged into a single unit operation so as to allow for simultaneous solubilization and cleavage. Critical variables such as urea concentration, calcium chloride concentration, pH, and enzyme loading were optimized using quality by design (QbD) principles. The subsequent RP-HPLC unit operation was also intensified with respect to elution gradient and product stability in elution buffer so as to facilitate direct freeze-drying and storage. The proposed three-step process was analysed for its economics and compared with the previous generation process, showing significant improvements including a 21% reduction in batch time, 27% increase in productivity, and 30% reduction in manufacturing cost. The work illustrates the effectiveness of applying QbD principles and process intensification for creation of a more efficient manufacturing bioprocess.  相似文献   

8.
《Trends in biotechnology》2014,32(6):329-336
Increasingly elaborate and voluminous datasets are generated by the (bio)pharmaceutical industry and are a major challenge for application of PAT and QbD principles. Multivariate data analysis (MVDA) is required to delineate relevant process information from large multi-factorial and multi-collinear datasets. Here the key role of MVDA for industrial (bio)process data is discussed, with a focus on progress and limitations of MVDA as a PAT solution for biopharmaceutical cultivation processes. MVDA based models were proven useful and should be routinely implemented for bioprocesses. It is concluded that although the highest level of PAT with process control within its design space in real-time during manufacturing is not reached yet, MVDA will be central to reach this ultimate objective for cell cultivations.  相似文献   

9.
《MABS-AUSTIN》2013,5(5):881-890
Regulatory agencies have recently recommended a Quality by Design (QbD) approach for the manufacturing of therapeutic molecules. A QbD strategy requires deep understanding at the molecular level of the attributes that are crucial for safety and efficacy and for insuring that the desired quality of the purified protein drug product is met at the end of the manufacturing process. A mass spectrometry (MS)-based approach to simultaneously monitor the extensive array of product quality attributes (PQAs) present on therapeutic molecules has been developed. This multi-attribute method (MAM) uses a combination of high mass accuracy / high resolution MS data generated by Orbitrap technology and automated identification and relative quantification of PQAs with dedicated software (Pinpoint). The MAM has the potential to replace several conventional electrophoretic and chromatographic methods currently used in Quality Control to release therapeutic molecules. The MAM represents an optimized analytical solution to focus on the attributes of the therapeutic molecule essential for function and implement QbD principles across process development, manufacturing and drug disposition.  相似文献   

10.
With the quality by design (QbD) initiative, regulatory authorities demand a consistent drug quality originating from a well-understood manufacturing process. This study demonstrates the application of a previously published mechanistic chromatography model to the in silico process characterization (PCS) of a monoclonal antibody polishing step. The proposed modeling workflow covered the main tasks of traditional PCS studies following the QbD principles, including criticality assessment of 11 process parameters and establishment of their proven acceptable ranges of operation. Analyzing effects of multi-variate sampling of process parameters on the purification outcome allowed identification of the edge-of-failure. Experimental validation of in silico results demanded approximately 75% less experiments compared to a purely wet-lab based PCS study. Stochastic simulation, considering the measured variances of process parameters and loading material composition, was used to estimate the capability of the process to meet the acceptance criteria for critical quality attributes and key performance indicators. The proposed workflow enables the implementation of digital process twins as QbD tool for improved development of biopharmaceutical manufacturing processes.  相似文献   

11.
In this age of technology, the vision of manufacturing industries built of smart factories is not a farfetched future. As a prerequisite for Industry 4.0, industrial sectors are moving towards digitalization and automation. Despite its tremendous growth reaching a sales value of worth $188 billion in 2017, the biopharmaceutical sector distinctly lags in this transition. Currently, the challenges are innovative market disruptions such as personalized medicine as well as increasing commercial pressure for faster and cheaper product manufacturing. Improvements in digitalization and data analytics have been identified as key strategic activities for the next years to face these challenges. Alongside, there is an emphasis by the regulatory authorities on the use of advanced technologies, proclaimed through initiatives such as Quality by Design (QbD) and Process Analytical Technology (PAT). In the manufacturing sector, the biopharmaceutical domain features some of the most complex and least understood processes. Thereby, process models that can transform process data into more valuable information, guide decision‐making, and support the creation of digital and automated technologies are key enablers. This review summarizes the current state of model‐based methods in different bioprocess related applications and presents the corresponding future vision for the biopharmaceutical industry to achieve the goals of Industry 4.0 while meeting the regulatory requirements.  相似文献   

12.
Continuous biopharmaceutical manufacturing is currently a field of intense research due to its potential to make the entire production process more optimal for the modern, ever-evolving biopharmaceutical market. Compared to traditional batch manufacturing, continuous bioprocessing is more efficient, adjustable, and sustainable and has reduced capital costs. However, despite its clear advantages, continuous bioprocessing is yet to be widely adopted in commercial manufacturing. This article provides an overview of the technological roadblocks for extensive adoptions and points out the recent advances that could help overcome them. In total, three key areas for improvement are identified: Quality by Design (QbD) implementation, integration of upstream and downstream technologies, and data and knowledge management. First, the challenges to QbD implementation are explored. Specifically, process control, process analytical technology (PAT), critical process parameter (CPP) identification, and mathematical models for bioprocess control and design are recognized as crucial for successful QbD realizations. Next, the difficulties of end-to-end process integration are examined, with a particular emphasis on downstream processing. Finally, the problem of data and knowledge management and its potential solutions are outlined where ontologies and data standards are pointed out as key drivers of progress.  相似文献   

13.
Biotech unit operations are often characterized by a large number of inputs (operational parameters) and outputs (performance parameters) along with complex correlations among them. A typical biotech process starts with the vial of the cell bank, ends with the final product, and has anywhere from 15 to 30 such unit operations in series. Besides the above‐mentioned operational parameters, raw material attributes can also impact process performance and product quality as well as interact among each other. Multivariate data analysis (MVDA) offers an effective approach to gather process understanding from such complex datasets. Review of literature suggests that the use of MVDA is rapidly increasing, fuelled by the gradual acceptance of quality by design (QbD) and process analytical technology (PAT) among the regulators and the biotech industry. Implementation of QbD and PAT requires enhanced process and product understanding. In this article, we first discuss the most critical issues that a practitioner needs to be aware of while performing MVDA of bioprocessing data. Next, we present a step by step procedure for performing such analysis. Industrial case studies are used to elucidate the various underlying concepts. With the increasing usage of MVDA, we hope that this article would be a useful resource for present and future practitioners of MVDA. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:967–973, 2014  相似文献   

14.
The goal of quality by design (QbD) in cell culture manufacturing is to develop manufacturing processes which deliver products with consistent critical quality attributes (CQAs). QbD approaches can lead to better process understanding through the use of process parameter risk ranking and statistical design of experiments (DOE). The QbD process starts with an analysis of process parameter risk with respect to CQAs and key performance indicators (KPIs). Initial DOE study designs and their factor test ranges are based on the outcomes of the process parameter risk ranking exercises. Initial DOE studies screen factors for significant influences on CQAs as well as characterize responses for process KPIs. In the case study provided here, multifactor process characterization studies using a scale-down model resulted in significant variation in charge heterogeneity of a monoclonal antibody (MAb) as measured by ion-exchange chromatography (IEC). Iterative DOE studies, using both screening and response surface designs, were used to narrow the operating parameter ranges so that charge heterogeneity could be controlled to an acceptable level. The data from the DOE studies were used to predict worst-case conditions, which were then verified by testing at those conditions. Using the approach described here, multivariate process parameter ranges were identified that yield acceptable CQA levels and that still provide operational flexibility for manufacturing.  相似文献   

15.
Process analytical technology (PAT) tools such as Raman Spectroscopy have become established tools for real time measurement of CHO cell bioreactor process variables and are aligned with the QbD approach to manufacturing. These tools can have a significant impact on process development if adopted early, creating an end-to-end PAT/QbD focused process. This study assessed the impact of Raman based feedback control on early and late phase development bioreactors by using a Raman based PLS model and PAT management system to control glucose in two CHO cell line bioreactor processes. The impact was then compared to bioreactor processes which used manual bolus fed methods for glucose feed delivery. Process improvements were observed in terms of overall bioreactor health, product output and product quality. Raman controlled batches for Cell Line 1 showed a reduction in glycation of 43.4% and 57.9%, respectively. Cell Line 2 batches with Raman based feedback control showed an improved growth profile with higher VCD and viability and a resulting 25% increase in overall product titer with an improved glycation profile. The results presented here demonstrate that Raman spectroscopy can be used in both early and late-stage process development and design for consistent and controlled glucose feed delivery.  相似文献   

16.
Many patents for the first biologicals derived from recombinant technology and, more recently, monoclonal antibodies (mAbs) are expiring. Naturally, biosimilars are becoming an increasingly important area of interest for the pharmaceutical industry worldwide, not only for emergent countries that need to import biologic products. This review shows the evolution of biosimilar development regarding regulatory, manufacturing bioprocess, comparability, and marketing. The regulatory landscape is evolving globally, whereas analytical structure and functional analyses provide the foundation of a biosimilar development program. The challenges to develop and demonstrate biosimilarity should overcome the inherent differences in the bioprocess manufacturing and physicochemical and biological characterization of a biosimilar compared to several lots of the reference product. The implementation of approaches, such as Quality by Design (QbD), will provide products with defined specifications in relation to quality, purity, safety, and efficacy that were not possible when the reference product was developed. Actually, the need to prove comparability to the reference product by the biosimilar industry has increased the knowledge about the product and the production‐process associated by the use of powerful analytical tools. The technological challenges to make copies of biologic products while attending regulatory and market demands are expected to help innovation in the direction of attaining more productive manufacturing processes. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1139–1149, 2015  相似文献   

17.
Quality by Design (QbD) is a new approach to the development of recombinant therapeutic protein products that promotes a better understanding of the product and its manufacturing process. The first step in the QbD approach consists in identifying the critical quality attributes (CQA), i.e., those quality attributes of the product that have an impact on its clinical efficacy or safety. CQAs are identified through a science-based risk assessment taking into consideration a combination of clinical and nonclinical data obtained with the molecule or other similar molecules or platform products, as well as the published literature. The purpose of this article is to perform a comprehensive review of the published literature, supporting an assessment of the impact on safety and efficacy of the quality attributes commonly encountered in recombinant therapeutic proteins, more specifically those produced in mammalian cell expression systems. Quality attributes generally observed in biopharmaceutical proteins including product-related impurities and substances, process-related impurities, product attributes, and contaminants are evaluated one by one for their impact on biological activity, pharmacokinetics and pharmacodynamics, immunogenicity, and overall safety/toxicity.  相似文献   

18.
《MABS-AUSTIN》2013,5(3):451-455
Quality by design (QbD) is an innovative approach to drug development that has started to be implemented into the regulatory framework, but currently mainly for chemical drugs. The recent marketing authorization of the first monoclonal antibody developed using extensive QbD concepts in the European Union paves the way for future further regulatory approvals of complex products employing this cutting-edge technological concept. In this paper, we report and comment on insights and lessons learnt from the non-public discussions in the European Medicines Agency's Biologicals Working Party and Committee for Medicinal Products for Human Use on the key issues during evaluation related to the implementation of an extensive QbD approach for biotechnology-derived medicinal products. Sharing these insights could prove useful for future developments in QbD for biotech products in general and monoclonal antibodies in particular.  相似文献   

19.
Quality by design (QbD) is an innovative approach to drug development that has started to be implemented into the regulatory framework, but currently mainly for chemical drugs. The recent marketing authorization of the first monoclonal antibody developed using extensive QbD concepts in the European Union paves the way for future further regulatory approvals of complex products employing this cutting-edge technological concept. In this paper, we report and comment on insights and lessons learnt from the non-public discussions in the European Medicines Agency''s Biologicals Working Party and Committee for Medicinal Products for Human Use on the key issues during evaluation related to the implementation of an extensive QbD approach for biotechnology-derived medicinal products. Sharing these insights could prove useful for future developments in QbD for biotech products in general and monoclonal antibodies in particular.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号