首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundUnderstanding the effects of graphene-based nanomaterials on lipid membranes is critical to determine their environmental impact and their efficiency in the biomedical context. Graphene has been reported to favourably interact with biological and model lipid membranes.MethodsWe report on a systematic coarse-grained molecular dynamics study of the interaction modes of graphene nanometric flakes with POPC/cholesterol liposome membranes. We have simulated graphene layers with a variety of sizes and oxidation degrees, and we have analyzed the trajectories, the interaction modes, and the energetics of the observed phenomena.ResultsThree interaction modes are reported. Graphene can be transiently adsorbed onto the liposome membrane and/or inserted in its hydrophobic region. Inserted nanosheets prefer a perpendicular orientation, and tilt in order to maximize the contact with phospholipid tails while avoiding the contact with cholesterol molecules. When placed between two liposomes, graphene facilitates their fusion in a single vesicle.ConclusionsGraphene can be temporary adsorbed on the liposome before insertion. Bilayer curvature has an influence on the orientation of inserted graphene particles. Cholesterol molecules are depleted from the surrounding of graphene particles. Graphene layers may catalyse membrane fusion by bypassing the energy barrier required in stalk formation.General significanceNanometric graphene layers can be adsorbed/inserted in lipid-based membranes in different manners and affect the cholesterol distribution in the membrane, implying important consequences on the structure and functionality of biological cell membranes, and on the bioaccumulation of graphene in living organisms. The graphene-mediated mechanism opens new possibilities for vesicle fusion in the experimental context.  相似文献   

2.
Scrupulous design and smart hybridization of bespoke electrode materials are of great importance for the advancement of sodium ion batteries (SIBs). Graphene‐based nanocomposites are regarded as one of the most promising electrode materials for SIBs due to the outstanding physicochemical properties of graphene and positive synergetic effects between graphene and the introduced active phase. In this review, the recent progress in graphene‐based electrode materials for SIBs with an emphasis on the electrode design principle, different preparation methods, and mechanism, characterization, synergistic effects, and their detailed electrochemical performance is summarized. General design rules for fabrication of advanced SIB materials are also proposed. Additionally, the merits and drawbacks of different fabrication methods for graphene‐based materials are briefly discussed and summarized. Furthermore, multiscale forms of graphene are evaluated to optimize electrochemical performance of SIBs, ranging from 0D graphene quantum dots, 2D vertical graphene and reduced graphene oxide sheets, to 3D graphene aerogel and graphene foam networks. To conclude, the challenges and future perspectives on the development of graphene‐based materials for SIBs are also presented.  相似文献   

3.
Hydrogen (H2) has been deemed as the most promising and valuable alternative to nonrenewable fossil fuels. Photocatalytic and electrocatalytic water splitting are considered to be the most efficient and environmentally friendly approaches for the sustainable H2 evolution reaction (HER). Graphene with a 3D framework has been utilized for the HER due to its unique structure and properties, including its hierarchical network, large specific surface area, diverse pore distribution, outstanding light absorption ability, and excellent electrical conductivity. The large specific surface area and hierarchically porous structure of 3D graphene can not only maximize the exposure of active sites but also promote electron transfer and gas product diffusion. In addition, the free‐standing 3D graphene monolith is easily recycled compared with powder phase support, which can prevent the loss of active catalysts. By making full use of the aforementioned merits, 3D graphene‐based composite materials show great promise as high‐performance catalysts toward photocatalytic and electrocatalytic HER. In this review, recent advances in fabricating 3D graphene‐based composite materials and their applications in both photocatalytic and electrocatalytic HER are summarized and discussed. Furthermore, the current challenges and future vision associated with the design, fabrication, and integration of 3D graphene‐based composite materials toward HER are put forward.  相似文献   

4.
Low dimensional materials have attracted great research interest from both theoretical and experimental point of views. These materials exhibit novel physical and chemical properties due to the confinement effect in low dimensions. The experimental observations of graphene open a new platform to study the physical properties of materials restricted to two dimensions. This featured article provides a review on the novel properties of quasi one-dimensional (1D) material known as graphene nanoribbon. Graphene nanoribbons can be obtained by unzipping carbon nanotubes (CNT) or cutting the graphene sheet. Alternatively, it is also called the finite termination of graphene edges. It gives rise to different edge geometries, namely zigzag and armchair, among others. There are various physical and chemical techniques to realize these materials. Depending on the edge type termination, these are called the zigzag and armchair graphene nanoribbons (ZGNR and AGNR). These edges play an important role in controlling the properties of graphene nanoribbons. The present review article provides an overview of the electronic, transport, optical, and magnetic properties of graphene nanoribbons. However, there are different ways to tune these properties for device applications. Here, some of them, such as external perturbations and chemical modifications, are highlighted. Few applications of graphene nanoribbon have also been briefly discussed.  相似文献   

5.
In the field of nanotechnology, silver nanoparticles have been considered a promising antibacterial material for a century. The potential applications of graphene-based materials are increasingly recognized for their special physico-chemical and biological properties. In particular, graphene and graphene oxide as the foundation of nanocomposites have garnered much interest among researchers in many fields. In this review, we concentrate on different aspects of silver nanoparticle composites with graphene and graphene oxide, focusing on their synthesis methods, special characteristics, and antibacterial properties; we also briefly discuss limitations and future research.  相似文献   

6.
High hydrogen capacity (up to 2.6 wt%) is reported for highly aligned structures of Graphene oxide‐Multiwalled carbon nanotubes composite at room temperature. It is demonstrated that the scalable liquid crystal route can be employed as a new method to prepare unique 3‐D framework of graphene oxide layers with proper interlayer spacing as building blocks for cost‐effective high‐capacity hydrogen storage media. The strong synergistic effect of the intercalation of MWCNTs as 1‐D spacers within graphene oxide frameworks resulted in unrivalled high hydrogen capacity at ambient temperature. The mechanisms involved in the intercalation procedure are fully discussed. The main concept behind intercalating one‐dimensional spacers in between giant GO sheets represents a versatile and highly scalable route to fabricate devices with superior hydrogen uptake.  相似文献   

7.
We perform atomistic simulations to study the failure behavior of graphene-based pressure sensor, which is made of a graphene nanoflake suspended over a well in a silicon-carbide substrate and clamped on its surrounding edge by the covalent bonds between the graphene flake and the substrate. Two distinct types of mechanical failure are identified: the first one is characterized by complete detachment of the graphene nanoflake from the silicon-carbide substrate via breaking the covalent bonds between the carbon atoms of the graphene flake and the silicon atoms of the substrate; the second type is characterized by the rupture of the graphene nanoflake via breaking the carbon-carbon bonds within the graphene. The type of mechanical failure is determined by the clamped area between the graphene flake and the substrate. The failure pressure can be tuned by changing the clamped area and the well radius. A model is proposed to explain the transition between the two types of failure mode. The present work provides a quantitative framework for the design of graphene-based pressure sensors.  相似文献   

8.
We propose a modulating plasmonic structure device which is composed of a single layer graphene above the silicon Bragg grating with the silica spacer layer. This graphene-based plasmonic modulation provides a broad stop-band with high tunability in the mid-infrared region of the transmission spectra achieved by altering the geometrical parameters of the silicon grating and the gate voltage. By engineering, a phase discontinuity into the graphene-based Bragg grating, we can selectively open a transmission window in the previous stop-band spectra. These proposed graphene-based structures are easy to fabricate and operate, which have potential applications as ultra-compact high-sensitivity sensors.  相似文献   

9.
Graphene and quasi‐2D graphene‐like materials with an ultrathin thickness have been investigated as a new class of nanoscale materials due to their distinctive properties. A novel “molecular tools‐assistances” strategy is developed to fabricate two kinds of graphene‐based electrodes, ultrathin Fe‐doped MnO2 network coverage–graphene composites (G‐MFO) and ultrathin MoS2 network coverage–graphene composites (G‐MoS2) with special hierarchical structures. Such structures enable a large contact interface between the active materials and graphene and thus fully exploit the synergistic effect from both the high specific capacitance of MFO or MoS2 and the superb conductivity of graphene. Benefiting from their unique structural features, G‐MFO and G‐MoS2 films directly use as free‐standing electrodes for flexible asymmetric supercapacitors with a nonaqueous gel electrolyte. The device achieves a high energy/power density, superior flexibility, good rate capability as well as outstanding performance stability even at a high temperature. This work represents a promising prototype to design new generation of hybrid supercapacitors for future energy storage devices.  相似文献   

10.
任文杰  滕应 《生态学杂志》2014,25(9):2723-2732
石墨烯是当前研究最热的碳纳米材料,具有独特的理化特性,在各领域具有广阔的应用前景.随着其生产和使用量的不断增大,石墨烯不可避免地会进入到环境中,从而给生态环境和人类健康带来风险.深入理解石墨烯在环境中的行为和归趋,探讨石墨烯对污染物环境行为的影响,对于科学客观评价石墨烯的环境风险具有十分重要的意义.本文对石墨烯的环境行为及其对污染物迁移归趋的影响进行了综述,主要介绍了石墨烯在水环境中的胶体特性和稳定性,以及在多孔介质中的迁移,重点探讨了石墨烯与重金属和有机物之间的相互作用,并从吸附机理、石墨烯与土壤组分之间的相互作用、石墨烯对污染物在环境中迁移及生物有效性的影响、石墨烯的定量方法等方面对该研究领域的前景和重点进行了展望,以期为该领域的深入研究提供借鉴并拓展新的思路.  相似文献   

11.
Wang  Pengwei  Tang  Chaojun  Yan  Zhendong  Wang  Qiugu  Liu  Fanxin  Chen  Jing  Xu  Zhijun  Sui  Chenghua 《Plasmonics (Norwell, Mass.)》2016,11(2):515-522
Plasmonics - Recently, graphene plasmons with an excellent tenability by doping or gating have been drawing increasing interest. In this work, we designed graphene-based superlens to achieve...  相似文献   

12.
Far-infrared part of electromagnetic spectrum and its technological details have been highly sought after due to its myriad applications including imaging, spectroscopy, industry control, and communication. However, lack of efficient components of electronic and photonic sources/detectors working in this particular spectrum has impeded its widespread application. One of the bottlenecks lies in the compact far-infrared polarization-sensitive resonator/modulator in compatible with pixel-detector for far-infrared spectroscopy. In this work, we demonstrate strong electric resonance response in perforated graphene sheet at this particular electromagnetic region. The results demonstrate inherently different natures for the strong electromagnetic response between graphene-based and metallic metamaterials. Unlike the metallic metamaterials relying on the geometrical inductance for magnetic response, the electric resonance caused by localized dipole/multipolar modes is found to be dominated in graphene and thus enabling sub-wavelength confinement of electromagnetic field. The Babinet’s principle is proposed to be applied for broadband far-infrared modulation and resonant filters design of graphene-based metamaterial. The active tunable electric resonance through electrostatic doping on the graphene-based patterns provides efficient route for compact biosensing, far-infrared imaging, and detection.  相似文献   

13.
Electroactive materials have been investigated as next-generation neuronal tissue engineering scaffolds to enhance neuronal regeneration and functional recovery after brain injury. Graphene, an emerging neuronal scaffold material with charge transfer properties, has shown promising results for neuronal cell survival and differentiation in vitro. In this in vivo work, electrospun microfiber scaffolds coated with self-assembled colloidal graphene, were implanted into the striatum or into the subventricular zone of adult rats. Microglia and astrocyte activation levels were suppressed with graphene functionalization. In addition, self-assembled graphene implants prevented glial scarring in the brain 7 weeks following implantation. Astrocyte guidance within the scaffold and redirection of neuroblasts from the subventricular zone along the implants was also demonstrated. These findings provide new functional evidence for the potential use of graphene scaffolds as a therapeutic platform to support central nervous system regeneration.  相似文献   

14.
Graphene oxide‐based nanomaterials are promising for enzyme immobilization due to the possibilities of functionalizing surface. Polyethylenimine‐grafted graphene oxide was constructed as a novel scaffold for immobilization of formate dehydrogenase. Compared with free formate dehydrogenase and graphene oxide adsorbed formate dehydrogenase, thermostability, storage stability, and reusability of polyethylenimine‐grafted graphene oxide‐formate dehydrogenase were enhanced. Typically, polyethylenimine‐grafted graphene oxide‐formate dehydrogenase remained 47.4% activity after eight times’ repeat reaction. The immobilized capacity of the polyethylenimine‐grafted graphene oxide was 2.4‐folds of that of graphene oxide. Morphological and functional analysis of polyethylenimine‐grafted graphene oxide‐formate dehydrogenase was performed and the assembling mechanism based on multi‐level interactions was studied. Consequently, this practical and facile strategy will likely find applications in biosynthesis, biosensing, and biomedical engineering.  相似文献   

15.
Graphene‐containing nanomaterials have emerged as important candidates for electrode materials in lithium‐ion batteries (LIBs) due to their unique physical properties. In this review, a brief introduction to recent developments in graphene‐containing nanocomposite electrodes and their derivatives is provided. Subsequently, synthetic routes to nanoparticle/graphene composites and their electrochemical performance in LIBs are highlighted, and the current state‐of‐the‐art and most recent advances in the area of graphene‐containing nanocomposite electrode materials are summarized. The limitations of graphene‐containing materials for energy storage applications are also discussed, with an emphasis on anode and cathode materials. Potential research directions for the future development of graphene‐containing nanocomposites are also presented, with an emphasis placed on practicality and scale‐up considerations for taking such materials from benchtop curiosities to commercial products.  相似文献   

16.

Graphene nanoscroll introduced recently is another form of a graphene-based two-dimensional material, which is especially attractive in nanoelectronic applications. As carriers can travel ballistically or semi-ballistically, they can reach high-speed and energy if the channel length is enough. Therefore, they can collide and result in an excessive current called ionisation current. As a result, it is important to study this mechanism carefully. In this paper, we propose an analytical approach to calculate an ionisation coefficient.

  相似文献   

17.
Blood compatible graphene/heparin conjugate through noncovalent chemistry   总被引:1,自引:0,他引:1  
Lee da Y  Khatun Z  Lee JH  Lee YK  In I 《Biomacromolecules》2011,12(2):336-341
Blood compatible graphene/heparin conjugate is simply formulated through noncovalent interaction between chemically reduced graphene and heparin. Charge repulsion of negatively charged heparin on graphene plates renders hydrophobic graphene to be solublized in aqueous media without any precipitation or aggregation even after 6 months. Unfractioned heparin (UFH) with higher molecular weight was effective for graphene solubilization while low molecular weight heparin (LMWH) was not. Noncovalently interacting heparin chains on graphene plates preserve their anticoagulant activity after conjugation with graphene. Graphene/UFH conjugate shows much enhanced anti factor Xa (FXa) activity of 29.6 IU/mL compared with pristine graphene oxide (GO; 1.03 IU/mL).  相似文献   

18.
Graphene has drawn attention as a substrate for stem cell culture and has been reported to stimulate the differentiation of multipotent adult stem cells. Here, we report that graphene enhances the cardiomyogenic differentiation of human embryonic stem cells (hESCs) at least in part, due to nanoroughness of graphene. Large-area graphene on glass coverslips was prepared via the chemical vapor deposition method. The coating of the graphene with vitronectin (VN) was required to ensure high viability of the hESCs cultured on the graphene. hESCs were cultured on either VN-coated glass (glass group) or VN-coated graphene (graphene group) for 21 days. The cells were also cultured on glass coated with Matrigel (Matrigel group), which is a substrate used in conventional, directed cardiomyogenic differentiation systems. The culture of hESCs on graphene promoted the expression of genes involved in the stepwise differentiation into mesodermal and endodermal lineage cells and subsequently cardiomyogenic differentiation compared with the culture on glass or Matrigel. In addition, the culture on graphene enhanced the gene expression of cardiac-specific extracellular matrices. Culture on graphene may provide a new platform for the development of stem cell therapies for ischemic heart diseases by enhancing the cardiomyogenic differentiation of hESCs.  相似文献   

19.
Plasma Physics Reports - Conditions of substrate-free syntheses of graphene and graphene-based systems based on conversion of liquid and gaseous carbon precursors in helium, nitrogen, and argon...  相似文献   

20.
Graphene has attracted substantial attention due to its advantageous materialistic applicability. In the present study, we tested the biocompatibility of graphene films synthesized by chemical vapor deposition with electrogenic primary adult cardiac cells (cardiomyocytes) by measuring the cell properties such as cell attachment, survival, contractility and calcium transients. The results show that the graphene films showed stable cell attachment and excellent biocompatibility with the electrogenic cardiomyocytes, suggesting their useful applications for future cell biology studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号