首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了解小熊猫(Ailurus fulgens)小脑皮层的结构特征,观察神经丝蛋白抗体RT-97、角质细胞生长因子(KGF)及Bax蛋白在小脑皮层中的表达,利用组织学方法和免疫组织化学方法观察了小熊猫小脑皮层的显微结构,检测了RT-97、KGF和Bax蛋白的表达.结果表明,小脑皮层从外向内依次可分为分子层、Purkinje细胞层、颗粒层3层.RT-97在小熊猫小脑皮层Purkinje细胞层、颗粒层中神经细胞的轴突、分子层中颗粒细胞的轴突及小脑髓质中有阳性表达;KGF在小脑皮层分子层、Purkinje细胞层和颗粒细胞层及髓质中均有阳性表达;Bax蛋白在小脑皮层分子层、Purkinje细胞层和颗粒细胞层中有阳性表达.RT-97、KGF和Bax蛋白在小脑皮层神经结构的构筑中可能发挥着不同的功能.  相似文献   

2.
宋海燕  刘再群  郑磊 《四川动物》2012,31(2):232-235,239,337
采用普通染色及免疫组化SABC染色法研究皖西白鹅小脑皮质的发育和多巴胺受体1(DRD1)阳性细胞在其发育中的表达.结果表明,小脑皮质在胚龄13 d(E13)由外向内分为外颗粒层(EGL)、浦肯野细胞层(PCL)和内颗粒层(IGL),E19由外向内分为EGL、分子层(ML)、PCL和IGL.随发育天数的增加,EGL的厚度和细胞层次呈先升后降的变化趋势,细胞密度逐渐下降;ML厚度逐渐增大,在E24到E28时增值最大;浦肯野细胞(PC)在E13、E19、E24和E28时随胚龄增大逐渐增大,在E28后趋于稳定,细胞密度随着发育天数的增加逐渐下降,在小脑皮质发育中还发现有一部分PC呈多层排列,且细胞层次逐渐变少;IGL厚度呈先升后降的变化趋势,细胞密度呈上升趋势.外颗粒层和内颗粒层在E13、E19、E24和E28时有DRD1阳性细胞表达,分子层在E24、E28、日龄7 d(P7)和15d(P15)有阳性细胞表达,PC在所检测的6个时段均有阳性表达.研究表明,小脑皮质的发育主要与细胞增殖、迁移和凋亡有关,外颗粒层的逐渐消失是以细胞迁移和凋亡为主,多层PC逐渐退化成单层是与细胞凋亡和正常突触联系的建立有关;DRD1在皖西白鹅小脑皮质发育中对外颗粒层细胞和PC起着重要作用.  相似文献   

3.
S100在猫小脑中的分布及其表达的年龄相关性变化   总被引:2,自引:1,他引:1  
用免疫组织化学ABC法标记S100免疫阳性(S100-IR)细胞,观察S100蛋白在青年猫和老年猫小脑中的分布,探讨其表达的年龄相关变化及意义。光镜下计数颗粒层和髓质中S100-IR细胞密度及浦肯野细胞(PC)层阳性细胞线密度。结果显示,颗粒层和髓质中S100-IR细胞密度较小、分布均匀,PC层阳性细胞相对密集,分子层未见阳性反应;阳性细胞胞浆深染。与青年猫相比,老年猫小脑颗粒层、髓质和PC层中S100-IR细胞密度显著增加(P<0.01),胞体较大,阳性较强。表明S100-IR细胞在小脑中的分布具区域性差异,呈明显的年龄相关性增生,推测其增生对衰老神经元的丢失起保护作用。  相似文献   

4.
A comparative study of the distribution of a simple esterase and acetylcholinesterase in the cerebellar cortex of mouse and bat has been made. The Purkinje layer is intensely positive for simple esterase in both species. The granular and molecular layers showed mild to moderate activity in mouse and intense activity in bat. Acetylcholinesterase in cerebellar layers of bat is more intense than in mouse. In bat cerebellum, acetylcholinesterase is observed in the dendrites of Purkinje cells, but not in their cell bodies. Acetylcholinesterase was not found in Purkinje cells of mouse.  相似文献   

5.
Light and electron microscopic analyses of the cerebellar cortex were carried out in inbred trembler mutants of Barred Plymouth Rock (BPR), crossbred trembler (CBT) and crossbred normal (CBN) chickens 6 and 34 days after hatching. The size of the cerebellum of BPR was markedly reduced, but the pattern of fissures appeared essentially normal. Both the molecular and granular layer in the BPR were much thinner than in the CBT and CBN. Ectopic Purkinje cells were observed in the molecular and granular layers, and even in the medulla. The Purkinje cells were more intensely stained in Nissl preparations than those of CBT and CBN. By 34 days, most of the Purkinje cells, which were reduced in size, contained spherical and swollen mitochondria, an undeveloped Golgi apparatus, and many stacks of rough endoplasmic reticulum (ER). The basket cells were reduced in size and exhibited a decrease in stacks of rough ER and an increase in the area of the Golgi apparatus. They contained the swollen mitochondria that were observed in the Purkinje cells. The granule cells were reduced in size, and showed a decrease in the number of cell organelles. The disorder appeared to be intrinsic to Purkinje cells since many types of degeneration were observed in the BPR Purkinje cells.  相似文献   

6.
Abstract— At birth in the rat brain the Thy-1 antigen was present at 10% of the adult level and increased rapidly to reach near adult levels after 3 weeks. Localization studies by immunofluorescence on sections of rat cerebellar cortex during this period showed that at day 5 there was weak fluorescence associated mainly with the molecular layer and some fibre-like structures in the centre of the folium; no fluorescence was found around the cells of external granular layer. From 5 to 16 days there was a rapid increase in Thy-1 immunofluorescence with noticeably higher levels associated with the white matter than the molecular layer. However, by 21 days the reverse was found' with lower levels in white matter than in the molecular layer with a similar distribution to that observed previously in adult rat cerebellum. Small rings and patches of fluorescence were observed in the molecular and granular layers. The results indicated that Thy-1 was present on axons, mature neurons and their processes. In addition, Thy-1 immunofluorescence was found in the pia-arachnoid until around day 16.  相似文献   

7.
Glutamate Decarboxylase Activities in Single Vertebrate Neurons   总被引:5,自引:3,他引:2  
An enzymatic microassay method for glutamate decarboxylase (GAD) and gamma-aminobutyric acid (GABA) was improved to a degree yielding high sensitivity and low blank. Single cell bodies of anterior horn cells and dorsal root ganglion cells were dissected out from the freeze-dried sections of rabbit and chicken spinal cords and Purkinje cell bodies from those of rabbit cerebellum. A minute amount of GABA, present in single neurons or synthesized by GAD in single neurons, was enzymatically converted to NADPH. The NADPH was amplified 10,000-350,000-fold and measured, using an enzymatic amplification reaction (NADP cycling). GAD was contained in all Purkinje cell bodies and its average activity was four- to fivefold higher than those of the molecular and granular layers of rabbit cerebellum. The GABA concentration was threefold higher in Purkinje cell bodies than in these layers. GAD activity, at a level similar to that in the cerebellar layers, was found in almost all the cell bodies of anterior horn cells from rabbit and chicken. GABA was detected in 40% of rabbit neurons and not in chicken neurons. Dorsal root ganglion cells from both species contained no measurable GAD or GABA.  相似文献   

8.
为探讨青年猫和老年猫小脑皮质GABA能神经元及其表达的年龄相关性变化,利用Nissl染色显示小脑皮质结构及神经元,免疫组织化学ABC法标记GABA免疫阳性神经元。光镜下观察,采集图像,并利用图像分析软件对分子层、蒲肯野细胞层和颗粒层神经元及GABA免疫阳性神经元及其灰度值进行分析统计。结果显示,GABA免疫阳性神经元、阳性纤维及终末在青年猫和老年猫小脑皮质各层均有分布。与青年猫相比,老年猫分子层、蒲肯野细胞层神经元和GABA免疫阳性神经元密度及其GABA免疫阳性反应强度均显著下降(P<0.01),颗粒层神经元密度和GABA免疫阳性强度也显著下降(P<0.01),但其GABA免疫阳性神经元密度无显著变化(P>0.05);蒲肯野细胞的胞体萎缩,阳性树突分枝减少。因此认为,衰老过程中猫小脑皮质GABA能神经元的丢失和GABA表达的下降,可能是老年个体运动协调、精确调速和运动学习等能力下降的重要原因之一。  相似文献   

9.
The localization of acetylcholinesterase (AChE) was studied in the cerebellar cortex of the crossbred trembler chickens by means of histo- and cytochemical methods. No essential differences between the crossbred normal and the crossbred trembler chickens were observed. The common results were as follows: Under a light microscope AChE activity was predominantly evident in the molecular layer, and secondly in the granular layer. AChE was ultrastructurally distributed principally in the cisternae of rough endoplasmic reticulum (ER) and in a part of nuclear envelope of the Purkinje, the Golgi and some of the basket and granule cells, and in a portion of the sacculus of the Golgi apparatus of the Purkinje cell only. In dendrites and the initial axon of the Purkinje cells the smooth ER also showed AChE activity. Although dendritic terminals of the Golgi cells contained AChE reaction products, the axon terminal did not. Some of the afferent terminal fibers forming the cerebellar glomerulus exhibited weakly a positive AChE reaction, while others in the vicinity did not show any AChE activity at all. However, the enzyme reaction product was localized in the intercellular spaces between a presynaptic afferent terminal and the postsynaptic granule cell dendritic terminals in the glomerulus. In addition, AChE activity was found in the form of spots in the intercellular spaces of both molecular and granular layers.  相似文献   

10.
Monoclonal antibody (MAb) HNK-1 recognizes a carbohydrate epitope present in certain glycolipids, glycoproteins, and proteoglycans. Five different fixation methods, together with biochemical analyses of the antigens, were evaluated to study immunocytochemical localization of this epitope in layers of adult rat cerebellum; 4% paraformaldehyde/0.5% cetylpyridinium chloride was found to be optimal for overall immunoreactivity, and the antigens were apparent in all cerebellar layers. To differentially localize HNK-1-reactive carbohydrate epitope on proteins vs lipids in cerebellar layers, we tested the effect of 0.2%, 2%, or 4% glutaraldehyde combined with 2% paraformaldehyde (GT/PF) on HNK-1 and other MAb-reactive protein and lipid antigens; 2% or 4% GT/PF significantly reduced or abolished immunoreactivity of MAb HNK-1 and 5F9 (reacting with microtubule-associated protein 2) with cerebellar proteins analyzed on Western blots, but did not decrease HNK-1 reactivity to lipid antigens on HPTLC blots. In cerebellar tissue sections, HNK-1 and 5F9 immunoreactivity was reduced after 2% or 4% GT/PF fixation. However, significant amounts of HNK-1 immunoreactivity remained in molecular layer and deep cerebellar nuclei. GT/PF fixation did not cause significant changes in immunoreactivity patterns of other carbohydrate lipid antigens, such as those that react with MAb A2B5, 7A, and WCC4. Therefore, carbohydrate epitope on lipids, as opposed to that on proteins, may be preferentially detectable by immunocytochemistry after fixation with 2% or 4% GT/PF. The selective localization of HNK-1-reactive carbohydrate in the molecular layer and deep cerebellar nuclei with 2% or 4% GT/PF fixation correlates well with the observed presence of HNK-1-reactive lipids in these areas but not in the granular layer and white matter, as determined by microdissection of the individual layers and biochemical analysis. The application of 2% or 4% GT/PF fixation as a general method for differentiating the same carbohydrate epitope on proteins vs lipids in immunocytochemistry for other tissues and other antibodies remains to be further evaluated.  相似文献   

11.
Despite our fine-grain anatomical knowledge of the cerebellar cortex, electrophysiological studies of circuit information processing over the last fifty years have been hampered by the difficulty of reliably assigning signals to identified cell types. We approached this problem by assessing the spontaneous activity signatures of identified cerebellar cortical neurones. A range of statistics describing firing frequency and irregularity were then used, individually and in combination, to build Gaussian Process Classifiers (GPC) leading to a probabilistic classification of each neurone type and the computation of equi-probable decision boundaries between cell classes. Firing frequency statistics were useful for separating Purkinje cells from granular layer units, whilst firing irregularity measures proved most useful for distinguishing cells within granular layer cell classes. Considered as single statistics, we achieved classification accuracies of 72.5% and 92.7% for granular layer and molecular layer units respectively. Combining statistics to form twin-variate GPC models substantially improved classification accuracies with the combination of mean spike frequency and log-interval entropy offering classification accuracies of 92.7% and 99.2% for our molecular and granular layer models, respectively. A cross-species comparison was performed, using data drawn from anaesthetised mice and decerebrate cats, where our models offered 80% and 100% classification accuracy. We then used our models to assess non-identified data from awake monkeys and rabbits in order to highlight subsets of neurones with the greatest degree of similarity to identified cell classes. In this way, our GPC-based approach for tentatively identifying neurones from their spontaneous activity signatures, in the absence of an established ground-truth, nonetheless affords the experimenter a statistically robust means of grouping cells with properties matching known cell classes. Our approach therefore may have broad application to a variety of future cerebellar cortical investigations, particularly in awake animals where opportunities for definitive cell identification are limited.  相似文献   

12.
Chen  Suzanne  Gil  Orlando  Ren  Yu Qin  Zanazzi  George  Salzer  James L.  Hillman  Dean E. 《Brain Cell Biology》2001,30(11):927-937
We investigated the temporal expression of the neural cell adhesion molecule, neurotrimin, in the rat cerebellum and the brainstem from birth to adulthood using immunoreactive labeling. A wave of expression accompanied the development of projection pathways extending from brainstem nuclei (pons/inferior olive) through the cerebellar peduncles into the arbor vitae and disappeared with myelination by P14. Immuno-EM revealed expression of neurotrimin on the surface of unmyelinated axons but not on astrocytes or oligodendroglia. With the development of the molecular and internal granular layers, intense labeling occurred on the surface of parallel fiber bundles, granule cells and mossy fibers. With synaptogenesis, each excitatory junction was labeled by the immunoreaction. By P21, neurotrimin reactivity decreased on the surfaces of neuronal somata, dendrites and axons but remained at excitatory synaptic contact sites in both the molecular and granular layers. The spatial-temporal expression pattern of neurotrimin suggests that this adhesion molecule plays a role in axonal fasciculation of specific cerebellar systems and may also be involved in the formation of excitatory synapses and their stabilization into adulthood.  相似文献   

13.
We have correlated the times of appearance of the neural cell adhesion molecule (N-CAM), the neuron-glia cell adhesion molecule (Ng-CAM), and the extracellular matrix protein, cytotactin, during the development of the chicken cerebellar cortex, and have shown that these molecules make different functional contributions to granule cell migration. Immunofluorescent staining showed distinct spatiotemporal expression sequences for each adhesion molecule. N-CAM was present at all times in all layers. However, the large cytoplasmic domain polypeptide of N-CAM was always absent from the external granular layer and was enriched in the molecular layer as development proceeded. Ng-CAM began to be expressed in the premigratory granule cells just before migration and later disappeared from cell bodies but remained on parallel fibers. Cytotactin, which is synthesized by glia and not by neurons, appeared first in a speckled pattern within the external granular layer and later appeared in a continuous pattern along the Bergmann glia; it was also enriched in the molecular layer. After we established their order of appearance, we tested the separate functions of these adhesion molecules in granule cell migration by adding specific antibodies against each molecule to cerebellar explant cultures that had been labeled with tritiated thymidine and then measuring the differential distribution of labeled cells in the forming layers. Anti-N-CAM showed marginal effects. In contrast, anti-Ng-CAM arrested most cells in the external granular layer, while anti-cytotactin arrested most cells in the molecular layer. Time course analyses combined with sequential addition of different antibodies in different orders showed that anti-Ng-CAM had a major effect in the early period (first 36 h in culture) and a lesser effect in the second part of the culture period, while anti-cytotactin had essentially no effect at the earlier time but had major effects at a later period (18-72 h in culture). The two major stages of cerebellar granule cell migration thus appear to be differentially affected by distinct adhesion molecules of different cellular origins, binding mechanisms, and overall distributions. The results indicated that local cell surface modulation of adhesion molecules of different specificities at defined stages and sites is essential to the formation of cerebellar cortical layers.  相似文献   

14.
Ghrelin, the endogenous ligand for the growth hormone secretagogue receptor, has been found in the cerebellum of many vertebrates and in the gastrointestinal tract of African ostrich chicks, but little is known about its distribution in the cerebellum of the African ostrich. In the present study, the distribution and morphological characteristics of ghrelin-producing cells in the cerebellum of the African ostrich were investigated using immunohistochemistry. The results indicate that the cerebellum is divided into two sections: the outer cerebellar cortex and the inner medulla of cerebellum. The cerebellar cortex comprises a molecular layer, a Purkinje cell layer and a granular layer; ghrelin-immunopositive (ghrelin-ip) cells were localized throughout the entire cerebellum, but sparsely in the medulla. The greatest number of ghrelin-ip cells was found in the stratum granulosum, and the density decreased gradually from the molecular layer to the Purkinje cell layer in the cerebellar cortex. The ghrelin-ip cells were fusiform or irregular polygons and their cytoplasm was stained intensely. These results clearly demonstrate the presence of ghrelin-ip cells in the cerebellum of the African ostrich. It is speculated that ghrelin may have a physiological function in the cerebellum.  相似文献   

15.
目的:研究人体小脑神经元的发育过程。方法:应用体视学方法,对18例不同时期人体小脑组织Golgi染色后进行观察,观测小脑皮质分层出现的时间,观测并计算神经元的数密度、体密度和表面积密度。结果:6月龄时,小脑皮质出现较明显的分子层、蒲肯野细胞层和颗粒层;星形细胞、篮状细胞、蒲肯野细胞、颗粒细胞和高尔基细胞的的数密度随月龄/年龄的增长而减少,体密度和表面积密度随月龄/年龄的增长而增加,但这些减小和增大是不等速的,6-8月龄变化最明显。结论:人体小脑神经元的发育呈现快慢交替、不均速发展,6~8月是小脑神经元发育的重要时期。  相似文献   

16.
The cerebellum has long been recognized as the primary center of motor coordination in the central nervous system. Cerebellar neuropeptides have been postulated to be involved in such motor coordination, though this role is not fully understood. We herein investigated the localization of novel neuropeptide, “manserin” in the adult rat cerebellum. Punctate signals of manserin immunoreactivity were observed in the granular layer of the rat cerebellum. Manserin signals were also observed in the fibers and fiber terminals in the granular layer as well as the molecular layer. Manserin did not localize in Purkinje cells. Interestingly, cerebellar manserin was preferentially colocalized with unipolar brush cells, a class of excitatory granular layer interneuron, which are known to be involved in vestibullocerebellar functions. These results indicate that manserin plays pivotal roles in the cerebellar functions.  相似文献   

17.
Neurotrophins (NTs) and their specific Trk‐receptors are key molecules involved in the regulation of survival, proliferation, and differentiation of central nervous system during development and adulthood in vertebrates. In the present survey, we studied the expression and localization of neurotrophins and their Trk‐receptors in the cerebellum of teleost fish Danio rerio (zebrafish). Teleostean cerebellum is composed of a valvula, body and vestibulolateral lobe. Valvula and body show the same three‐layer structure as cerebellar cortex in mammals. The expression of NTs and Trk‐receptors in the whole brain of zebrafish has been studied by Western blotting analysis. By immunohistochemistry, the localization of NTs has been observed mainly in Purkinje cells; TrkA and TrkB‐receptors in cells and fibers of granular and molecular layers. TrkC was faintly detected. The occurrence of NTs and Trk‐receptors suggests that they could have a synergistic action in the cerebellum of zebrafish. J. Morphol. 277:725–736, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
We studied the structures of the cerebellar cortex of young adult and old cats for age-related changes, which were statistically analysed. Nissl staining was used to visualize the cortical neurons. The immunohistochemical method was used to display glial fibrillary acidic protein (GFAP)-immunoreactive (IR) astrocytes and neurofilament-immunoreactive (NF-IR) neurons. Under the microscope, the thickness of the cerebellar cortex was measured; and the density of neurons in all the layers as well as that of GFAP-IR cells in the granular layer was analysed. Compared with young adult cats, the thickness of the molecular layer and total cerebellar cortex was significantly decreased in old cats, and that of the granular layer increased. The density of neurons in each layer was significantly lower in old cats than in young adult ones. Astrocytes in old cats were significantly denser than in young adult ones, and accompanied by evident hypertrophy of the cell bodies and enhanced immunoreaction of GFAP substance. Purkinje cells (PCs) in old cats showed much fewer NF-IR dendrites than those in young adults. The above findings indicate a loss of neurons and decrease in the number of dendrites of the PCs in the aged cerebellar cortex, which might underlie the functional decline of afferent efficacy and information integration in the senescent cerebellum. An age-dependent enhancement of activity of the astrocytes may exert a protective effect on neurons in the aged cerebellum  相似文献   

19.
Abstract: The monoclonal antibody 4C5 recognizes a neuron-specific surface antigen (4C5 antigen) in the CNS and PNS of the rat. In the present study we investigated the expression of 4C5 antigen in the developing cerebellum of the rat and the functional role of this molecule during cerebellar morphogenesis. Immunoblotting and immunohistochemistry in sections of cerebellar cortex revealed an age-dependent decrease in the expression of the 4C5 antigen. In cerebellar primary cell cultures, 4C5 immunoreactivity was detected both on granule and on Purkinje neurons. Granule cell migration was inhibited in cerebellar explants derived from 8-day-old rats and cultured for 2 days in the presence of antibodies against the 4C5 antigen. Electron microscope immunocytochemistry revealed that in 8-day-old rat cerebellum, 4C5 immunoreactivity was localized on the cell bodies of granule neurons in the external and internal granular layers and on parallel fibers in the developing molecular layer as well as at contact sites between these cellular elements. It was not detected on Bergmann glia. These results suggest strongly that the 4C5 antigen is involved in granule cell migration during cerebellar development, possibly via neuron-neuron interactions.  相似文献   

20.
Keratinocytes of the upper granular layers contain unique round-to-oval granules, 100-500 nm in diameter, in their peripheral cytoplasm. These granules (known as membrane coating granules [MCG], or lamellar granules) fuse with the apical cell surface of uppermost granular cells and discharge their contents into the intercellular space, where they are believed to play a role in establishing the permeability barrier of the epidermis and possibly in regulating the orderly desquamation of terminally differentiated keratinocytes. Using two monoclonal antibodies originally prepared against hair follicle antigens, we have identified a 25K epidermal protein in association with both MCG-like granules in the peripheral cytoplasm of granular cells as well as MCG-derived intercellular material. This protein is relatively basic (pI greater than 8), largely aqueous soluble, methionine deficient, and is relatively abundant in epidermis (comprising up to approximately 0.1% of soluble proteins). Its distribution is restricted to the granular layer of keratinized (cornified) stratified squamous epithelia. The identification of this protein component opens new avenues for studying the molecular mechanisms underlying the establishment of permeability barrier and/or regulation of desquamation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号