首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The modification of proteins by the small ubiquitin‐like modifier (SUMO) is known to regulate an increasing array of cellular processes. SUMOylation of the mitochondrial fission GTPase dynamin‐related protein 1 (DRP1) stimulates mitochondrial fission, suggesting that SUMOylation has an important function in mitochondrial dynamics. The conjugation of SUMO to its substrates requires a regulatory SUMO E3 ligase; however, so far, none has been functionally associated with the mitochondria. By using biochemical assays, overexpression and RNA interference experiments, we characterized the mitochondrial‐anchored protein ligase (MAPL) as the first mitochondrial‐anchored SUMO E3 ligase. Furthermore, we show that DRP1 is a substrate for MAPL, providing a direct link between MAPL and the fission machinery. Importantly, the large number of unidentified mitochondrial SUMO targets suggests a global role for SUMOylation in mitochondrial function, placing MAPL as a crucial component in the regulation of multiple conjugation events.  相似文献   

3.
Regulation of protein functions can be achieved by posttranslational protein modifications. One of the most studied modifications has been conjugation to ubiquitin, which mainly targets substrate proteins for degradation by the 26 S proteasome. Recently, SUMO/sentrin, a ubiquitin-like protein has been characterized. This evolutionary conserved protein is conjugated to specific proteins in a way similar, but not identical, to ubiquitin and seems also to be involved in the regulation of protein localization or function. An increasing number of SUMO/sentrin substrates are currently described. We focus here on three major substrates of modification by SUMO: RanGAP1, PML, and IkappaBalpha proteins. These different examples illustrate how SUMO conjugation may be involved in the control of the level of critical proteins within the cell or in the modulation of subcellular localization and nucleocytoplasmic trafficking.  相似文献   

4.
Reversible conjugation of the small ubiquitin modifier (SUMO) peptide to proteins (SUMOylation) plays important roles in cellular processes in animals and yeasts. However, little is known about plant SUMO targets. To identify SUMO substrates in Arabidopsis and to probe for biological functions of SUMO proteins, we constructed 6xHis-3xFLAG fused AtSUMO1 (HFAtSUMO1) controlled by the CaMV35S promoter for transformation into Arabidopsis Col-0. After heat treatment, an increased sumoylation pattern was detected in the transgenic plants. SUMO1-modified proteins were selected after two-dimensional gel electrophoresis (2-DE) image analysis and identified using matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). We identified 27 proteins involved in a variety of processes such as nucleic acid metabolism, signaling, metabolism, and including proteins of unknown functions. Binding and sumoylation patterns were confirmed independently. Surprisingly, MCM3 (At5G46280), a DNA replication licensing factor, only interacted with and became sumoylated by AtSUMO1, but not by SUMO1ΔGG or AtSUMO3. The results suggest specific interactions between sumoylation targets and particular sumoylation enzymes.  相似文献   

5.
Ubiquitin-dependent proteolytic control of SUMO conjugates   总被引:5,自引:0,他引:5  
Posttranslational protein modification with small ubiquitin-related modifier (SUMO) is an important regulatory mechanism implicated in many cellular processes, including several of biomedical relevance. We report that inhibition of the proteasome leads to accumulation of proteins that are simultaneously conjugated to both SUMO and ubiquitin in yeast and in human cells. A similar accumulation of such conjugates was detected in Saccharomyces cerevisiae ubc4 ubc5 cells as well as in mutants lacking two RING finger proteins, Ris1 and Hex3/Slx5-Slx8, that bind to SUMO as well as to the ubiquitin-conjugating enzyme Ubc4. In vitro, Hex3-Slx8 complexes promote Ubc4-dependent ubiquitylation. Together these data identify a previously unrecognized pathway that mediates the proteolytic down-regulation of sumoylated proteins. Formation of substrate-linked SUMO chains promotes targeting of SUMO-modified substrates for ubiquitin-mediated proteolysis. Genetic and biochemical evidence indicates that SUMO conjugation can ultimately lead to inactivation of sumoylated substrates by polysumoylation and/or ubiquitin-dependent degradation. Simultaneous inhibition of both mechanisms leads to severe phenotypic defects.  相似文献   

6.
An E3-like factor that promotes SUMO conjugation to the yeast septins   总被引:29,自引:0,他引:29  
Johnson ES  Gupta AA 《Cell》2001,106(6):735-744
  相似文献   

7.
SUMO1/Smt3, a ubiquitin-like protein modifier, is known to conjugate to other proteins and modulate their functions in various important processes. Similar to the ubiquitin conjugation system, SUMO/Smt3 is transferred to substrate lysine residues through the thioester cascade of E1 (activating enzyme) and E2 (conjugating enzyme). In our previous report (Takahashi, Y., Toh-e, A., and Kikuchi, Y. (2001) Gene 275, 223-231), we showed that Siz1/Ull1 (YDR409w) of budding yeast, a member of the human PIAS family containing a RING-like domain, is a strong candidate for SUMO1/Smt3 ligase because the SUMO1/Smt3 modification of septin components was abolished in the ull1 mutant and Ull1 associated with E2 (Ubc9) and the substrates (septin components) in immunoprecipitation experiments. Here we have developed an in vitro Smt3 conjugation system for a septin component (Cdc3) using purified recombinant proteins. In this system, Ull1 is additionally required as well as E1 (Sua1.Uba2 complex), E2 (Ubc9), and ATP. A cysteine residue of the RING-like domain was essential for the conjugation both in vivo and in vitro. Furthermore, a region containing the RING-like domain directly interacted with Ubc9 and Cdc3. Thus, this SUMO/Smt3 ligase functions as an adaptor between E2 and the target proteins.  相似文献   

8.
9.
Sumoylation, a post-translational regulatory process in plants   总被引:1,自引:0,他引:1  
The reversible conjugation of the small ubiquitin-related modifier (SUMO) peptide to protein substrates (sumoylation) is emerging as a major post-translational regulatory process in animals and other eukaryotes, including plants. Database annotation, and genetic and biochemical analyses indicate that components of the SUMO conjugation and deconjugation systems are conserved in plants such as Arabidopsis, rice, tomato, and Medicago. Specifically, Arabidopsis AtSUMO1/2 and SUMO E2 conjugation enzyme AtSCE1a are implicated in abscisic acid (ABA) responses and the ubiquitin-like SUMO protease 1 (ULP1) AtESD4 in flowering time regulation. The AtSIZ1 SUMO E3 ligase functions in phosphate starvation responses, cold tolerance, basal thermotolerance, salicylic acid (SA)-dependent pathogen defense, and flowering time regulation. Following is a brief overview of the current understanding of SUMO conjugation and deconjugation determinants, and biological processes that are regulated in plants.  相似文献   

10.
11.
SUMO proteins are small ubiquitin-like modifiers found in all eukaryotes that become covalently conjugated to other cellular proteins. The SUMO conjugation pathway is biochemically similar to ubiquitin conjugation, although the enzymes within the pathway act exclusively on SUMO proteins. This post-translational modification controls many processes. Here, I will focus on evidence that SUMOylation plays a critical role(s) in mitosis: Early studies showed a genetic requirement for SUMO pathway components in the process of cell division, while later findings implicated SUMOylation in the control of mitotic chromosome structure, cell cycle progression, kinetochore function and cytokinesis. Recent insights into the targets of SUMOylation are likely to be extremely helpful in understanding each of these aspects. Finally, growing evidence suggests that SUMOylation is a downstream target of regulation through Ran, a small GTPase with important functions in both interphase nuclear trafficking and mitotic spindle assembly.  相似文献   

12.
Degradation of intracellular proteins via the ubiquitin pathway involves several steps. In the initial event, ubiquitin becomes covalently linked to the protein substrate in an ATP-requiring reaction. Following ubiquitin conjugation, the protein moiety of the adduct is selectively degraded with the release of free and reusable ubiquitin. Ubiquitin modification of a variety of protein targets in the cell plays a role in basic cellular functions. Modification of core nucleosomal histones is probably involved in regulation of gene expression at the level of chromatin structure. Ubiquitin attachment to cell surface proteins may play roles in processes of cell-cell interaction and adhesion, and conjugation of ubiquitin to other yet to be identified protein(s) could be involved in the progression of cells through the cell cycle. Despite the considerable progress that has been made in the elucidation of the mode of action and cellular roles of the ubiquitin pathway, many major problems remain unsolved. A problem f central importance is the specificity in the ubiquitin ligation system. Why are certain proteins conjugated and committed for degradation, whereas other proteins are not? A free α-NH2 group is an important feature of the protein structure recognized by the ubiquitin conjugation system, and tRNA is required for the conjugation of ubiquitin to selective proteo-lytic substrates and for their subsequent degradation. These findings can shed light on some of the features of a substrate that render it susceptile to ubiquitin-mediated degradation.  相似文献   

13.
14.
15.
Sumoylation is a post-translational modification by which small ubiquitin-like modifiers (SUMO) are covalently conjugated to target proteins. This reversible pathway provides a rapid and efficient way to modulate the subcellular localization, activity and stability of a wide variety of substrates. Similar to its well-known cousin ubiquitin, SUMO co-localize with the neuronal inclusions associated with several neurodegenerative diseases, including multiple system atrophy, Huntington's disease and other related polyglutamine disorders. The identification of huntingtin, ataxin-1, tau and alpha-synuclein as SUMO substrates further supports the involvement of sumoylation in the pathogenesis of this family of neurological diseases. In addition to direct targeting of these constituent proteins, sumoylation also impacts other disease pathways such as oxidative stress, protein aggregation and proteasome-mediated degradation. This review highlights the recent advances in understanding the contributions of SUMO to neurodegeneration and the underlying pathogenic mechanisms of these diseases.  相似文献   

16.
17.
蛋白质SUMO化修饰研究进展   总被引:4,自引:0,他引:4  
SUMO(small ubiquitin-related modifier)是类泛素蛋白家族的重要成员之一,可与多种蛋白结合发挥相应的功能,其分子结构及SUMO化反应途径都与泛素类似,但二者功能完全不同。SUMO化修饰可参与转录调节、核转运、维持基因组完整性及信号转导等多种细胞内活动,是一种重要的多功能的蛋白质翻译后修饰方式。SUMO化修饰功能的失调可能导致某些疾病的发生。  相似文献   

18.
The ubiquitin-like protein NEDD8 is essential for activity of SCF-like ubiquitin ligase complexes. Here we identify and characterize NEDP1, a human NEDD8-specific protease. NEDP1 is highly conserved throughout evolution and equivalent proteins are present in yeast, plants, insects, and mammals. Bacterially expressed NEDP1 is capable of processing NEDD8 in vitro to expose the diglycine motif required for conjugation and can deconjugate NEDD8 from modified substrates. NEDP1 appears to be specific for NEDD8 as neither ubiquitin nor SUMO bearing COOH-terminal extensions are utilized as substrates. Inhibition studies and mutagenesis indicate that NEDP1 is a cysteine protease with sequence similarities to SUMO-specific proteases and the class of viral proteases typified by the adenovirus protease. In vivo NEDP1 deconjugates NEDD8 from a wide variety of substrates including the cullin component of SCF-like complexes. Thus NEDP1 is likely to play an important role in ubiquitin-mediated proteolysis by controlling the activity of SCF complexes.  相似文献   

19.
Small ubiquitin-like modifier 1 (SUMO1) is a member of the superfamily of ubiquitin-like proteins. Despite its structural similarity with ubiquitin, SUMO1 does not seem to play any role in protein degradation and its precise biological function is poorly understood. During our studies on heat-shock responses, we found that heat-shock stress increased SUMO1 conjugation in a dose-dependent manner. Intriguingly, SUMO1 conjugation resulted in decrease of intracellular ROS generation and protection cells from death under heat-shock stress. We showed that NADPH oxidase 2 (NOX2) is a target protein of sumoylation by SUMO1 using immunoprecipitation and is colocalized with SUMO1 at plasma membrane. Additionally, we demonstrated that the attenuation in intracellular ROS generation resulted from inhibition of NADPH oxidase complex (NOX) activity. These results suggested that SUMO1 plays an important role in modulation of NOX activity required for ROS generation.  相似文献   

20.
小泛素相关修饰物SUMO研究进展   总被引:8,自引:0,他引:8  
蛋白质翻译后修饰对改变蛋白功能、活性或定位都起着非常重要的作用,泛素及其相似蛋白的修饰是其中一种重要形式。与其他诸如磷酸化、乙酰化、糖基化等不同的是,泛素及其相似蛋白的修饰基团本身即是一个小的多肽,通过异肽键与靶蛋白Lys侧链ε-NH2相连,其中小泛素相关修饰物(small ubiquitin—related modifier,SUMO)与蛋白的共价连接是一种新的广泛存在的翻译后修饰形式。SUMO是广泛存在于真核生物中高度保守的蛋白家族,在脊椎动物中有三个SUMO基因,称为SUMO-1,-2,-3,与泛素在二级结构上极其相似,且催化修饰过程的酶体系也具有很高的同源性。然而,与泛素化介导的蛋白酶降解途径不同,SUMO化修饰发挥着更为广泛的功能,如核质转运、细胞周期调控、信号转导、转录活性调控等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号