首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Icariin is the major active ingredient in Herba epimedii which is a commonly used Chinese herbal medicine for the treatment of osteoporosis. The present study aims to evaluate the osteoprotective effect of Icariin in glucocorticoid-induced osteoporosis in vivo and investigate the effect of Icariin on glucocorticoid-induced osteocyte apoptosis in vitro. A total of 48 female Sprague–Dawley rats were used. Glucocorticoid-induced osteoporosis was induced by daily injections of dexamethasone (0.1 mg/kg, daily, s.c.) for 60 days, whereas sham animals were injected daily with vehicle. At the end of the osteoporosis development period, osteoporotic rats were randomized to receive: vehicle (n = 8), Icariin (5,125 mg/kg, i.g.; n = 8), or alendronate (0.03 mg/kg, s.c.; n = 8) for 12 weeks. Sham animals were treated with vehicle for 12 weeks. At the beginning and at the end of treatments, animals were examined for bone mineral density. Serum bone-alkaline phosphatase and carboxy-terminal collagen cross links were measured. Primary osteocytes were isolated, and apoptosis was determined by trypan-blue assay. Interaction between Icariin and estrogen receptor and prosurvival signaling pathways activated by Icariin were also investigated. Icariin showed a comparable efficacy with alendronate in increasing bone mass. Icariin significantly increased bone-alkaline phosphatase (bone formation marker) and reduced carboxy-terminal collagen cross links (bone resorption marker). In vitro studies demonstrated that Icariin significantly prevented GC-induced apoptosis in osteocytes by activating ERK signaling via estrogen receptor. Our results suggest that Icariin might exert osteoprotective effect by maintaining osteocyte viability, thereby, regulating bone remodeling. Furthermore, our study provides preclinical evidence for the efficacy of Icariin for management of Glucocorticoid-induced osteoporosis.  相似文献   

2.
Osteocyte apoptosis has been reported to play a central role in bone remodeling. In addition to apoptosis, other mechanisms may be involved in osteocyte loss. This study aimed to investigate the effect of necroptosis on osteocytes in ovariectomized (OVX) rats. Ninety-six female Sprague-Dawley rats were randomly divided into an OVX group and a sham group. At 0, 4, 8 and 12 weeks after surgery, specimens from each group (n = 12 each) were harvested. Bone mineral density (BMD) and body weight were measured. Transmission electron microscopy (TEM) and micro-CT were used to observe the changes in cellular morphology and bone microarchitecture induced by estrogen deficiency. Osteocyte apoptosis and necroptosis were evaluated via TUNEL and immunofluorescence staining for active caspase-3. At 8 weeks after ovariectomy, a greater number of osteocytes with typical necrotic morphological features were TUNEL positive but negative for active caspase-3. Western blotting, quantitative real-time PCR and immunofluorescence assessments demonstrated that the levels of receptor-interacting serine/threonine protein kinase 1 (RIP1) and RIP3 in osteocytes were significantly increased at 8 weeks after ovariectomy. These data are the first to suggest that necroptosis accelerates osteocyte loss under conditions of estrogen deficiency-induced osteoporosis in OVX rats. These findings provide evidence of a potential mechanism through which osteocyte necroptosis is associated with postmenopausal osteoporosis.  相似文献   

3.
Osteocyte viability may play a significant role in the maintenance and integrity of bone. Bone loss due to osteoporosis may be due in part to osteocyte cell death. We have identified a factor that will protect both osteoblasts and osteocytes from cell death due to agents known to be responsible for various forms of osteoporosis. Not only does estrogen preserve osteoblast and osteocyte viability, but so does a molecule called CD40Ligand. This molecule is expressed on activated T lymphocytes, human dendritic cells, and human vascular endothelial cells, whereas its receptor CD40 is expressed on normal epithelium, B cells, and dendritic cells. CD40Ligand protects osteoblasts and the MLO-Y4 osteocyte-like cells against apoptosis induced by glucocorticoids, tumor necrosis factor alpha or etoposide. As tumor necrosis factor a has been shown to be responsible for post-menopausal bone loss and glucocorticoids induce dramatic bone loss, this finding has important implications with regards to potential therapy for both post-menopausal and steroid-induced osteoporosis.  相似文献   

4.
Glucocorticoids are the main product of the adrenal cortex and participate in multiple cell functions as immunosupressors and modulators of neural function. Within the brain, glucocorticoid activity is mediated by high-affinity mineralocorticoid and low-affinity glucocorticoid receptors. Among brain cells, hippocampal cells are rich in glucocorticoid receptors where they regulate excitability and morphology. Also, elevated glucocorticoid levels suppress hippocampal neurogenesis in adults. The pineal neuroindole, melatonin, reduces the affinity of glucocorticoid receptors in rat brain and prevents glucocorticoid-induced apoptosis. Here, the ability of melatonin to prevent glucocorticoid-induced cell death in hippocampal HT22 cells was investigated in the presence of neurotoxins. Results showed that glucocorticoids reduce cellular growth and also enhance sensitivity to neurotoxins. We found a G(1) cell cycle arrest mediated by an increase of cyclin/cyclin-dependent kinase inhibitor p21(WAF1/CIP1) protein after dexamethasone treatment and incremental change in amyloid beta protein and glutamate toxicity. Melatonin prevents glucocorticoids inhibition of cell proliferation and reduces the toxicity caused by glucocorticoids when cells were treated with dexamethasone in combination with neurotoxins. Although, melatonin does not reduce glucocorticoid receptor mRNA or protein levels, it decreases receptor translocation to nuclei in these cells.  相似文献   

5.
6.
Osteocytes comprise a heterogenous population of terminally differentiated osteoblasts that direct bone remodeling in response to applied mechanical loading of bone. Increased osteocyte density accompanies the anabolic effect of PTH in vivo, whereas accelerated osteocyte death may be precipitated by estrogen deficiency or excess glucocorticoid exposure (conditions benefitted by intermittent PTH therapy) and by renal failure (where circulating intact PTH and, especially, PTH carboxylfragments are elevated). Osteocytes express type-1 PTH/ PTHrP receptors (PTH1Rs), which are fully activated by aminoterminal PTH fragments and couple to multiple signal transducers, including adenylyl cyclase and phospholipase C. Activation of PTH1Rs in osteocytes promotes gap junction-mediated intercellular coupling, increases expression of MMP-9, potentiates calcium influx via stretch-activated cation channels, amplifies the osteogenic response to mechanical loading in vivo, and regulates apoptosis. Control of osteocyte apoptosis by PTH1Rs is complex, in that intermittent PTH(1-34) administration reduces the fraction of vertebral apoptotic osteocytes at 1 month in adult mice but increases femoral metaphyseal osteocyte apoptosis at 1-2 weeks in young rats. In MLO-Y4 cells, PTH(1-34) prevents apoptosis otherwise induced within 6 hr by dexamethasone. In older studies, large doses of intact PTH(1-84) caused rapid "degenerative" morphologic changes in osteocytes, similar to those described in renal osteodystrophy. We isolated clonal conditionally immortalized osteocytic (OC) cell lines from mice homozygous for targeted ablation of the PTH1R gene. OC cells express abundant (2-3 x 10(6) per cell) receptors specific for the carboxyl(C)-terminus of intact PTH(1-84) ("CPTHRs") but, as expected, do not express PTH1Rs or respond to PTH(1-34). CPTHRs are expressed at much lower levels by other skeletally-derived cell lines. Several highly conserved ligand determinants of CPTHR binding have been identified, including PTH(24-27), PTH(53-54) and the sequence PTH(55-84), loss of which reduces binding affinity by over 100-fold. Human PTH(53-84), like PTH(1-84), PTH(24-84), and PTH(39-84), increases OC cell apoptosis. Ala-scanning mutagenesis to define sequences within PTH(55-84) important for binding and bioactivity is underway. We conclude that osteocytes may be important targets for CPTH fragments that are secreted by the parathyroid glands or generated by peripheral metabolism of intact PTH and that accumulate in blood, especially in renal failure. Studies of functional interplay between responses to CPTHRs and (transfected) PTH1Rs, using receptor-specific ligands in OC cells, should provide new insight into PTH regulation of osteocyte function and survival.  相似文献   

7.
Mechanical loading is known to promote osteocyte survival, whereas glucocorticoid treatment results in osteocyte apoptosis. Here, we report that BMP-7, which was secreted by osteocyte in response to mechanical loading, exerts anti-apoptotic effect against dexamethasone-induced apoptosis of osteocytes. We further show that the anti-apoptotic effect of BMP-7 is mainly mediated through receptor BMPR2 and is associated with the activation of PI3K/AKT/GSK3β pathway.  相似文献   

8.
9.
10.
Bcl2 subfamily proteins, including Bcl2 and Bcl-X(L), inhibit apoptosis. As osteoblast apoptosis is in part responsible for osteoporosis in sex steroid deficiency, glucocorticoid excess, and aging, bone loss might be inhibited by the upregulation of Bcl2; however, the effects of Bcl2 overexpression on osteoblast differentiation and bone development and maintenance have not been fully investigated. To investigate these issues, we established two lines of osteoblast-specific BCL2 transgenic mice. In BCL2 transgenic mice, bone volume was increased at 6 weeks of age but not at 10 weeks of age compared with wild-type mice. The numbers of osteoblasts and osteocytes increased, but osteoid thickness and the bone formation rate were reduced in BCL2 transgenic mice with high expression at 10 weeks of age. The number of BrdU-positive cells was increased but that of TUNEL-positive cells was unaltered at 2 and 6 weeks of age. Osteoblast differentiation was inhibited, as shown by reduced Col1a1 and osteocalcin expression. Osteoblast differentiation of calvarial cells from BCL2 transgenic mice also fell in vitro. Overexpression of BCL2 in primary osteoblasts had no effect on osteoclastogenesis in co-culture with bone marrow cells. Unexpectedly, overexpression of BCL2 in osteoblasts eventually caused osteocyte apoptosis. Osteocytes, which had a reduced number of processes, gradually died with apoptotic structural alterations and the expression of apoptosis-related molecules, and dead osteocytes accumulated in cortical bone. These findings indicate that overexpression of BCL2 in osteoblasts inhibits osteoblast differentiation, reduces osteocyte processes, and causes osteocyte apoptosis.  相似文献   

11.
12.
Age-related skeletal changes is closely associated with imbalanced bone remodeling characterized by elevated osteocyte apoptosis and osteoclast activation. Since osteocytes are the commander of bone remodeling, attenuating increased osteocyte apoptosis may improve age-related bone loss. Exosomes, derived from mesenchymal stem cells, hold promising potential for cell-free therapy due to multiple abilities, such as promoting proliferation and suppressing apoptosis. We aimed to explore the effect of exosomes derived from adipose mesenchymal stem cell (ADSCs-exo) on osteocyte apoptosis and osteocyte-mediated osteoclastogenesis in vitro. The osteocyte-like cell line MLO-Y4 was used as a model, and apoptosis was induced by hypoxia and serum deprivation (H/SD). Our results showed that ADSCs-exo noticeably reduced H/SD-induced apoptosis in MLO-Y4 cells via upregulating the radio of Bcl-2/Bax, diminishing the production of reactive oxygen species and cytochrome c, and subsequent activation of caspase-9 and caspase-3. Additionally, ADSCs-exo lowered the expression of RANKL both at the mRNA and protein levels, as well as the ratio of RANKL/OPG at the gene level. As determined by tartrate-resistant acid phosphatase staining, reduced osteoclastogenesis was further validated in bone marrow monocytes cultured under conditioned medium from exosome-treated MLO-Y4. Together, ADSCs-exo could antagonize H/SD induced osteocyte apoptosis and osteocyte-mediated osteoclastogenesis, indicating the therapeutic potential of ADSCs-exo in age-related bone disease.  相似文献   

13.
Growing evidence has shown that pulsed electromagnetic fields (PEMF) can modulate bone metabolism in vivo and regulate the activities of osteoblasts and osteoclasts in vitro. Osteocytes, accounting for 95% of bone cells, act as the major mechanosensors in bone for transducing external mechanical signals and producing cytokines to regulate osteoblastic and osteoclastic activities. Targeting osteocytic signaling pathways is becoming an emerging therapeutic strategy for bone diseases. We herein systematically investigated the changes of osteocyte behaviors, functions, and its regulation on osteoclastogenesis in response to PEMF. The osteocyte-like MLO-Y4 cells were exposed to 15 Hz PEMF stimulation with different intensities (0, 5, and 30 Gauss [G]) for 2 hr. We found that the cell apoptosis and cytoskeleton organization of osteocytes were regulated by PEMF with an intensity-dependent manner. Moreover, PEMF exposure with 5 G significantly inhibited apoptosis-related gene expression and also suppressed the gene and protein expression of the receptor activator of nuclear factor κB ligand/osteoprotegerin (RANKL/OPG) ratio in MLO-Y4 cells. The formation, maturation, and osteoclastic bone-resorption capability of in vitro osteoclasts were significantly suppressed after treated with the conditioned medium from PEMF-exposed (5 G) osteocytes. Our results also revealed that the inhibition of osteoclastic formation, maturation, and bone-resorption capability induced by the conditioned medium from 5 G PEMF-exposed osteocytes was significantly attenuated after abrogating primary cilia in osteocytes using the polaris siRNA transfection. Together, our findings highlight that PEMF with 5 G can inhibit cellular apoptosis, modulate cytoskeletal distribution, and decrease RANKL/OPG expression in osteocytes, and also inhibit osteocyte-mediated osteoclastogenesis, which requires the existence of primary cilia in osteocytes. This study enriches our basic knowledge for further understanding the biological behaviors of osteocytes and is also helpful for providing a more comprehensive mechanistic understanding of the effect of electromagnetic stimulation on bone and relevant skeletal diseases (e.g., bone fracture and osteoporosis).  相似文献   

14.
Reduced mechanical stress is a major cause of osteoporosis in the elderly, and the osteocyte network, which comprises a communication system through processes and canaliculi throughout bone, is thought to be a mechanosensor and mechanotransduction system; however, the functions of osteocytes are still controversial and remain to be clarified. Unexpectedly, we found that overexpression of BCL2 in osteoblasts eventually caused osteocyte apoptosis. Osteoblast and osteoclast differentiation were unaffected by BCL2 transgene in vitro. However, the cortical bone mass increased due to enhanced osteoblast function and suppressed osteoclastogenesis at 4 months of age, when the frequency of TUNEL-positive lacunae reached 75%. In the unloaded condition, the trabecular bone mass decreased in both wild-type and BCL2 transgenic mice at 6 weeks of age, while it decreased due to impaired osteoblast function and enhanced osteoclastogenesis in wild-type mice but not in BCL2 transgenic mice at 4 months of age. Rankl and Opg were highly expressed in osteocytes, but Rankl expression in osteoblasts but not in osteocytes was increased at unloading in wild-type mice but not in BCL2 transgenic mice at 4 months of age. Sost was locally induced at unloading in wild-type mice but not in BCL2 transgenic mice, and the dissemination of Sost was severely interrupted in BCL2 transgenic mice, showing the severely impaired osteocyte network. These findings indicate that the osteocyte network is required for the upregulation of Rankl in osteoblasts and Sost in osteocytes in the unloaded condition. These findings suggest that the osteocyte network negatively regulate bone mass by inhibiting osteoblast function and activating osteoclastogenesis, and these functions are augmented in the unloaded condition at least partly through the upregulation of Rankl expression in osteoblasts and that of Sost in osteocytes, although it cannot be excluded that low BCL2 transgene expression in osteoblasts contributed to the enhanced osteoblast function.  相似文献   

15.
16.
17.
Subchondral bone sclerosis is a well-recognised manifestation of osteoarthritis (OA). The osteocyte cell network is now considered to be central to the regulation of bone homeostasis; however, it is not known whether the integrity of the osteocyte cell network is altered in OA patients. The aim of this study was to investigate OA osteocyte phenotypic changes and its potential role in OA subchondral bone pathogenesis. The morphological and phenotypic changes of osteocytes in OA samples were investigated by micro-CT, SEM, histology, immunohistochemistry, TRAP staining, apoptosis assay and real-time PCR studies. We demonstrated that in OA subchondral bone, the osteocyte morphology was altered showing rough and rounded cell body with fewer and disorganized dendrites compared with the osteocytes in control samples. OA osteocyte also showed dysregulated expression of osteocyte markers, apoptosis, and degradative enzymes, indicating that the phenotypical changes in OA osteocytes were accompanied with OA subchondral bone remodelling (increased osteoblast and osteoclast activity) and increased bone volume with altered mineral content. Significant alteration of osteocytes identified in OA samples indicates a potential regulatory role of osteocytes in subchondral bone remodelling and mineral metabolism during OA pathogenesis.  相似文献   

18.
A mutation in the D-loop of the second zinc finger of the DNA-binding domain of the human glucocorticoid receptor (hGR), A458T (GR(dim)), has been suggested to be essential for dimerization and DNA binding of the GR, and genetically altered GR(dim) mice survive, whereas murine GR knockout mice die. Interestingly, thymocytes isolated from the GR(dim) mice were reported to be resistant to glucocorticoid-induced apoptosis. To further evaluate the dim mutations in glucocorticoid-induced apoptosis, we stably expressed either the hGR(dim) (A458T) or the hGR(dim4) (A458T, R460D, D462C, and N454D) mutant receptors in human osteosarcoma (U-2 OS) cells that are devoid of hGR and unresponsive to glucocorticoids. We analyzed these cell lines by comparison with a stable expression hGRα U-2 OS cell line, which undergoes apoptosis after glucocorticoid treatment. Transient reporter gene assays with glucocorticoid response element-driven vectors revealed that the hGR(dim) mutation had diminished steroid responsiveness and cells carrying the hGR(dim4) mutation were unresponsive to steroid, whereas glucocorticoid-induced nuclear factor κB repression was unaffected by either mutation. Interestingly, both the hGR(dim) and hGR(dim4) receptors readily formed dimers as measured by immunoprecipitation. Examination of GR-mediated apoptosis showed that hGR(dim) cells were only partially resistant to apoptosis, whereas hGR(dim4) cells were completely resistant to glucocorticoid-induced cell death despite remaining sensitive to other apoptotic stimuli. Global gene expression analysis revealed that hGR(dim4) cells widely regulated gene expression but differentially regulated apoptotic mRNA when compared with cells expressing wild-type hGRα. These studies challenge conclusions drawn from previous studies of GR dim mutants.  相似文献   

19.
The beta 2-adrenergic receptor from mouse 3T3-L1 cells is up-regulated through genetic mechanisms by glucocorticoids and butyrate. To study the genetic regulation of these receptors, we sequenced a 5 kb region of genomic DNA from 3T3-L1 cells, containing the beta-adrenergic receptor gene and approx. 1.5 kb of both 5' and 3' flanking sequences. The sequence contained one copy of an 8 bp consensus sequence which can confer phorbol ester-responsiveness to genes. Phorbol esters attenuated the up-regulation of beta 2-adrenergic receptors by glucocorticoids but not by butyrate. This effect was probably due to a phorbol ester-induced decrease in glucocorticoid receptor number. Using methylation-sensitive restriction enzymes, we examined the methylation of a CG-rich region occurring 5' to the gene and did not detect any changes in methylation of this region upon dexamethasone or butyrate treatment. A total of 16 putative glucocorticoid response elements were found which may mediate the glucocorticoid-induced increase in beta 2-adrenergic receptors. A comparison of the regulatory sequences of the two beta-adrenergic receptor subtypes from human and mouse confirms the observed physiological controls of receptor subtype expression and offers an explanation as to why the subtypes differ in genetic regulation.  相似文献   

20.
Alcohol induced osteoporosis is characterized by a bone mass decrease and microarchitecture alterations. Having observed an excess in osteocyte apoptosis, we aimed to assess the bone tissue biochemistry, particularly in the osteocyte and its environment. For this purpose, we used a model of alcohol induced osteoporosis in rats. Bone sections of cortical bone were investigated using synchrotron UV-microspectrofluorescence at subcellular resolution. We show that bone present three fluorescence peaks at 305, 333 and 385 nm, respectively corresponding to tyrosine, tryptophan and collagen. We have determined that tyrosine/collagen and tryptophan/collagen ratios were higher in the strong alcohol consumption group. Tryptophan is related to the serotonin metabolism involved in bone formation, while tyrosine is involved in the activity of tyrosine kinases and phosphatases in osteocytes. Our experiment represents the first combined synchrotron UV microspectroscopy analysis of bone tissue with a quantitative biochemical characterization in the osteocyte and surrounding matrix performed separately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号