首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During 2,3,5,6-tetramethylpyrazine production from glucose by Bacillus strains, a novel product was detected and identified as 2,4,5-trimethylimidazole (TMI) by GC/MS. TMI appeared in the culture medium only after glucose had been depleted and then increased to 0.25–0.31 g l−1 in 90–120 h. When the ammonium source was changed from (NH4)2SO4 to (NH4)2HPO4, only about one tenth of TMI was detected. Although the mechanistic events largely remain unclear, both microbial strains tested demonstrated similar dynamic processes of TMI production, suggesting that TMI formation is a genuine feature of Bacillus species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Several levan hyperproducing mutants of Zymomonas mobilis strains were selected by mutagenesis with N-methyl-N-nitro-nitrosoguanidine and caffeine. Highest levan production (41 g l–1) was obtained with a mutant strain HL 29 in a culture medium containing 200 g sucrose l–1 and 0.5 g (NH4)2SO4 l–1 stored at 7 °C for 29 days. This is the first report describing the levan synthesis by Z. mobilis at 7 °C.  相似文献   

3.
Different pH control agents (NaOH/H2SO4—SodSulp, NaOH/CH3COOH—SodAcet, NH4OH/CH3COOH—AmmoAcet and NH4OH/H2SO4—AmmoSulp) were used to investigate their effects on growth, enzyme production (alkaline protease and amylase), and entomotoxicity of Bacillus thuringiensis var. kurstaki HD-1 (Btk) against eastern spruce budworm larvae (Choristoneura fumiferana) using starch industry wastewater (SIW) as a raw material in a 15-l fermentor. AmmoSulp and SodSulp were found to be the best pH control agents for alkaline protease and amylase production, respectively; whereas, the fermented broth obtained by using SodAcet as pH control agents recorded the highest delta-endotoxin production of 1043.0 mg/l and entomotoxicity value 18.4 × 109 SBU/l. Entomotoxicity of re-suspended centrifuged pellet in one-tenth of original volume in case of SodAcet as pH control agents was 26.7 × 109 SBU/l and was the highest value compared to three other pH control agents.  相似文献   

4.
Of 105 isolates screened for growth on plates containing olive mill wastewater (OMW), five were selected and identified as Pichia fermentans (Y1, Y4) and Candida sp. (Y2, Y11, and Y18). On the basis of their ability to use phenol at 716 mg l−1, strains Y2 (15% reduction) and Y4 (18% reduction) were then used to detoxify stored OMW under various operational conditions. Yeast treatment of OMW increased the pH and, in the best conditions (aeration and no glucose addition), the COD decreased (47%) and phytotoxicity was also decreased (56%) probably due to the changes in the composition of phenolic compounds.  相似文献   

5.
To produce glucoamylase efficiently as a recombinant protein, E. coli was grown with 20 g (NH4)2SO4 l–1 which removed proteolytic activity but did not effect cell growth. Growth in M9 medium with 20 g (NH4)2SO4 l–1 produced 11 U glucoamylase ml–1 compared to 7 U ml–1 without addition. Furthermore, the glucoamylase activity was maintained at about 9 U ml–1.  相似文献   

6.
Geotrichum candidum is a yeast-like filamentous fungus that has attracted industrial interest. The present work investigated G. candidum biomass production in agro-industrial wastewaters (olive mill wastewater (OMW) and cheese whey (CW)) as the only substrate. Different solid media (Sabouraud dextrose agar (SDA), CW, OMW, and OMW/CW mixtures in different proportions) were tested. OMW/CW mixtures proved to be suitable for optimal mycelia growth of G. candidum with a very high hyphae density. The highest fungal and expansion rate growth of 83 ± 1 mm and 12.4 day−1, respectively, were obtained on a 20:80 mixture of OMW/CW, which was incubated for 7 days. This optimal mixture was used to study the biomass production and the OMW decolorization ability of G. candidum in the presence of CW in liquid medium. Liquid cultures were also conducted in OMW and CW separately. After 5 days of incubation, fungal biomass reached 9.26 g l−1 in the OMW/CW mixture and only 2.83 g l−1 in CW, while no biomass production was observed in OMW alone. OMW decolorization and dephenolization by G. candidum also improved in the presence of CW with a decolorization efficiency of 54.5% and a total phenolic reduction of 55.3%, compared with the control which yielded values of about 10% and 15%, respectively. These results suggested that OMW/CW—as the only substrate—could be used as a cost-effective medium to produce G. candidum biomass, without the need for water dilution or supplementation with other nutriments.  相似文献   

7.
The use of date juice as a substrate for single cell protein production was investigated. Four strains of Saccharomyces cerevisiae and two strains of Candida utilis were examined as possible production cultures. The criteria used for screening the organisms were total cell count, total protein and decrease in soluble solids. S. cerevisiae ATCC 4111 gave the highest protein and cell production. The optimum substrate concentration was 4 - 5% soluble solids. At this concentration, 55% of the sugars was utilized. Cell mass after 12 h fermentation was 4.86 g l−1. The harvested and freeze-dried cells contained 8.6% nitrogen. The best combination of nutrient supplementation was found to be 0.25% (NH4)2HPO4 and 0.1% FeNH4(SO4)2; addition of MgSO4 and (NH4)2SO4 did not increase cell production.  相似文献   

8.
An intracellular S-adenosylmethionine synthetase (SAM-s) was purified from the fermentation broth of Pichia pastoris GS115 by a sequence chromatography column. It was purified to apparent homogeneity by (NH4)2SO4 fractionation (30–60%), anion exchange, hydrophobic interaction, anion exchange and gel filtration chromatography. HPLC showed the purity of purified SAM-s was 91.2%. The enzyme was purified up to 49.5-fold with a final yield of 20.3%. The molecular weight of the homogeneous enzyme was 43.6 KDa, as determined by electro-spray ionization mass spectrometry (ESI-MS). Its isoelectric point was approximately 4.7, indicating an acidic character. The optimum pH and temperature for the enzyme reaction were 8.5 and 35 °C, respectively. The enzyme was stable at pH 7.0–9.0 and was easy to inactivate in acid solution (pH ≤ 5.0). The temperature stability was up to 45 °C. Metal ions, such as, Mn2+ and K+ at the concentration of 5 mM had a slight activation effect on the enzyme activity and the Mg2+ activated the enzyme significantly. The enzyme activity was strongly inhibited by heavy metal ions (Cu2+ and Ag2+) and EDTA. The purified enzyme from the transformed Pichia pastoris synthesized S-adenosylmethionine (SAM) from ATP and l-methionine in vitro with a K m of 120 and 330 μM and V max of 8.1 and 23.2 μmol/mg/min for l-methionine and ATP, respectively.  相似文献   

9.
The influence of (NH4)2SO4 concentration and dilution rate (D) on actual and potential H2 photoproduction has been studied in ammonium-limited chemostat cultures of Rhodobacter capsulatus B10. The actual H2 production in a photobioreactor was maximal (approx. 80 ml h−1 l−1) at D = 0.06 h−1 and 4 mM (NH4)2SO4. However, it was lower than the potential H2 evolution (calculated from hydrogen evolution rates in incubation vials), which amounted to 100–120 ml h−1 l−1 at D = 0.03–0.08 h−1. Taking into account the fact that H2 production in the photobioreactor under these conditions was not limited by light or lactate, another limiting (inhibiting) factor should be sought. One possibility is an inhibition of H2 production by the H2 accumulated in the gas phase. This is apparent from the non-linear kinetics of H2 evolution in the vials or from its inhibition by the addition of H2; initial rates were restored in both cases after the vials had been refilled with argon. The actual H2 production in the photobioreactor at D = 0.06 h−1 was shown to increase from approximately 80 ml h−1 l−1 to approximately 100 ml h−1 l−1 under an argon flow at 100 ml min−1. Under maximal H2 production rates in the photobioreactor, up to 30% of the lactate feedstock was utilised for H2 production and 50% for biomass synthesis. Received: 22 April 1997 / Received revision: 14 July 1997 / Accepted: 27 July 1997  相似文献   

10.
Wang W  Yue H  Yuan Q  Wang W 《Amino acids》2009,36(2):231-233
Catalyzed by phenylalanine ammonia-lyase from Rhodotorula glutinis, 2% trans-cinnamic acid and 0.5 mol/l (15NH4)2SO4 was bioconverted to 15NL-phenylalanine. The yield and the purity of 15NL-phenylalanine reached 71 and 99.3%, respectively. The results showed that 96% of 15N was labeled on the l-phenylalanine and 88% of (15NH4)2SO4 was recovered. The present paper provides a new and economic way for biosynthesis of 15NL-phenylalanine.  相似文献   

11.
Kinetics of kojic acid fermentation by Aspergillus flavus Link 44-1 using various sources of carbon [glucose, xylose, sucrose, starch, maltose, lactose or fructose] and nitrogen [NH4Cl, (NH4)2S2O8, (NH4)2NO3, yeast extract or peptone] were analyzed using models based on logistic and Luedeking–Piret equations. The highest kojic acid production (39.90 g l−1) in submerged batch fermentation was obtained when 100 g l−1 glucose was used as a carbon source. Organic nitrogen sources such as peptone and yeast extract were favorable for kojic acid production as compared to inorganic nitrogen sources. Yeast extract at 5 g l−1 was optimal. The optimal carbon to nitrogen (C/N) ratio for kojic acid fermentation was 93.3. In a resuspended cell system, the rate of glucose conversion to kojic acid by cell-bound enzymes increased with increasing glucose concentration up to 70 g l−1, suggesting that the reaction followed the Michaelis–Menten enzyme kinetic model. The value of K m and V max for the reaction was 18.47 g l−1 glucose and 0.154 g l−1 h−1, respectively. Journal of Industrial Microbiology & Biotechnology (2000) 25, 20–24. Received 13 October 1999/ Accepted in revised form 02 April 2000  相似文献   

12.
A new isolate of Trichoderma atroviride has been shown to grow on low rank coal as the sole carbon source. T. atroviride ES11 degrades ∼82% of particulate coal (10 g l−1) over a period of 21 days with 50% reduction in 6 days. Glucose (5 g l−1) as a supplemented carbon source enhanced the coal solubilisation efficiency of T. atroviride ES11, while 10 and 20 g l−1 glucose decrease coal solubilisation efficiency. Addition of nitrogen [1 g l−1 (NH4)2SO4] to the medium also increased the coal solubilisation efficiency of T. atroviride ES11. Assay results from coal-free and coal-supplemented cultures suggested that several intracellular enzymes are possibly involved in coal depolymerisation processes some of which are constitutive (phenol hydroxylase) and others that were activated or induced in the presence of coal (2,3-dihydrobiphenyl-2,3-diol dehydrogenase, 3,4-dihydro phenanthrene-3,4-diol dehydrogenase, 1,2-dihydro-1,2-dihydroxynaphthalene dehydrogenase, 1,2-dihydro-1,2-dihydroxyanthracene dehydrogenase). GC-MS analysis of chloroform extracts obtained from coal degrading T. atroviride ES11 cultures showed the formation of only a limited number of specific compounds (4-hydroxyphenylethanol, 1,2-benzenediol, 2-octenoic acid), strongly suggesting that the intimate association between coal particles and fungal mycelia results in rapid and near-quantitative transfer of coal depolymerisation products into the cell. An erratum to this article can be found at  相似文献   

13.
Fermentation of biomass derived synthesis gas to ethanol is a sustainable approach that can provide more usable energy and environmental benefits than food-based biofuels. The effects of various medium components on ethanol production by Clostridium ragsdalei utilizing syngas components (CO:CO2) were investigated, and corn steep liquor (CSL) was used as an inexpensive nutrient source for ethanol production by C. ragsdalei. Elimination of Mg2+, NH4 + and PO4 3− decreased ethanol production from 38 to 3.7, 23 and 5.93 mM, respectively. Eliminating Na+, Ca2+, and K+ or increasing Ca2+, Mg2+, K+, NH4 + and PO4 3− concentrations had no effect on ethanol production. However, increased Na+ concentration (171 mM) inhibited growth and ethanol production. Yeast extract (0.5 g l−1) and trace metals were necessary for growth of C. ragsdalei. CSL alone did not support growth and ethanol production. Nutrients limiting in CSL were trace metals, NH4 + and reducing agent (Cys: cysteine sulfide). Supplementation of trace metals, NH4 + and CyS to CSL (20 g l−1, wet weight basis) yielded better growth and similar ethanol production as compared to control medium. Using 10 g l−1, the nutritional limitation led to reduced ethanol production. Higher concentrations of CSL (50 and 100 g l−1) were inhibitory for cell growth and ethanol production. The CSL could replace yeast extract, vitamins and minerals (excluding NH4 +). The optimized CSL medium produced 120 and 50 mM of ethanol and acetate, respectively. The CSL could provide as an inexpensive source of most of the nutrients required for the syngas fermentation, and thus could improve the economics of ethanol production from biomass derived synthesis gas by C. ragsdalei.  相似文献   

14.
The mechanism of transbranchial excretion of total ammonia of brackish-water acclimated shore crabs, Carcinus maenas was examined using isolated, perfused gills. Applying physiological gradients of NH4Cl (100–200 μmol · l−1) directed from the haemolymph space to the bath showed that the efflux of total ammonia consisted of two components. The saturable component (excretion of NH4 +) greatly exceeded the linear component (diffusion of NH3). When an outwardly directed gradient (200 μmol · l−1) was applied, total ammonia in the perfusate was reduced by more than 50% during a single passage of saline through the gill. Effluxes of ammonia along the gradient were sensitive to basolateral dinitrophenol, ouabain, and Cs+ and to apical amiloride. Acetazolamide (1 mmol · l−1 basolateral) or Cl-free conditions had no substantial effects on ammonia flux, which was thus independent of both carbonic anhydrase mediated pH regulation and osmoregulatory NaCl uptake. When an inwardly directed gradient (200 μmol · l−1) was employed, influx rates were about 10-fold smaller and unaffected by basolateral ouabain (5 mmol · l−1) or dinitrophenol (0.5 mmol · l−1). Under symmetrical conditions (100 μmol · l−1 NH4Cl on both sides) ammonia was actively excreted against the gradient of total ammonia, which increased strongly during the experiment and against the gradient of the partial pressure of NH3. The active excretion rate was reduced to 7% of controls by basolateral dinitrophenol (0.5 mmol · l−1), to 44% by basolateral ouabain (5 mmol · l−1), to 46% by Na+-free conditions and to 42% by basolateral Cs+ (10 mmol · l−1), indicating basolateral membrane transport of NH4 + via the Na+/K+-ATPase and K+-channels and a second active, apically located, Na+ independent transport mechanism of NH4 +. Anterior gills, which are less capable of active ion uptake than posterior gills, exhibited even increased rates of active excretion of ammonia. We conclude that, under physiological conditions, branchial excretion of ammonia is a directed process with a high degree of effectiveness. It even allows active extrusion against an inwardly directed gradient, if necessary. Accepted: 11 March 1998  相似文献   

15.
The present study investigated the effect of nitrogen source (NH4+; NO3) at different concentrations on the accumulation of biomass and secondary metabolites in adventitious root cultures of Hypericum perforatum L. Cultures were initiated in shake flasks by using half-strength Murashige and Skoog (MS) medium with B5 vitamins, 1.0 mg l−1 indole-3-butyric acid, 0.1 mg l−1 kinetin, 3% (w/v) sucrose, and different ratios of ammonium and nitrate (0:30, 5:25, 10:20, 15:15, 20:10, 25:5, and 30:0 mM, using NH4Cl and KNO3). The cultures were maintained in darkness. The medium supplemented with 5:25 (mM) NH4+/NO3 resulted in the optimum accumulation of biomass and total phenols and flavonoids. The antioxidant potential of a methanolic extract, measured as the 1, 1-diphenyl-2-picrylhydrazyl and 2, 2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activities, of H. perforatum adventitious roots showed that antioxidant activity was high from root extracts that were grown on higher concentrations of NO3 nitrogen (15, 20, and 25 mM). Further, assessment of hydrogen peroxide (H2O2) and malondialdehyde content of the root extracts revealed that cultures supplemented with higher levels of NO3 nitrogen (15–30 mM) were under oxidative stress, which boosted the levels of secondary metabolites in the adventitious roots. These results suggest that optimal adventitious root biomass could be achieved with the supplementation of cultures with 5:25 ratios of MS nitrogen sources.  相似文献   

16.
氮沉降对温带森林土壤甲烷氧化菌的影响   总被引:1,自引:0,他引:1  
张丹丹  莫柳莹  陈新  张丽梅  徐星凯 《生态学报》2017,37(24):8254-8263
大量研究显示氮沉降影响森林甲烷吸收量,但其中的微生物驱动机制仍缺乏研究。基于长白山典型温带森林长期氮沉降模拟实验平台样地,采用定量PCR和克隆测序技术,研究了长期施加不同形态氮((NH_4)_2SO_4、NH_4Cl和KNO_3)处理下森林土壤甲烷氧化菌的数量和群落组成随季节变化的特征。结果表明,夏季,森林土壤甲烷氧化菌pmo A基因丰度在不同施氮处理之间无显著性差异(每克干土1.54×10~6-3.20×10~6拷贝数);秋季,pmo A基因丰度在施加NH_4Cl和(NH_4)_2SO_4处理小区(每克干土1.93×10~5-7.6×10~5拷贝数)与对照(每克干土(4.03×10~6±1.2×10~6)拷贝数)相比有所降低,尤其在(NH_4)_2SO_4处理小区(每克干土(4.61×10~5±2.61×10~5)拷贝数)显著降低;无论夏季还是秋季,施加不同形态氮处理土壤甲烷氧化菌均以Type I型为主(相对丰度在70.6%-85.4%之间),并以Methylobacter-group(Type I)为优势类群,占Type I型的55.1%-91.7%;Methylobacter-group(Type I)的相对丰度在夏季不同形态氮处理土壤样品中无显著差异,但秋季样品中在施加(NH_4)_2SO_4(52.7%±6.5%)和NH_4Cl(56.1%±8.9%)的处理显著低于对照土壤(77.0%±2.9%),Methylococcus-group(Type I)的相对丰度则在(NH_4)_2SO_4和NH_4Cl处理土壤呈增加的趋势。这些结果表明铵态氮肥添加对温带森林土壤甲烷氧化菌的生长具有抑制作用并导致其群落结构发生改变,受夏季温度和水分的影响,这种抑制作用在秋季表现更明显,而NO_3~--N添加对土壤甲烷氧化菌的群落组成和丰度无显著影响。这些结果解释了以往观测到的施铵态氮肥显著降低秋季温带林地土壤甲烷净吸收量,而在夏季无显著影响的观测结果,解释了长期氮沉降影响森林土壤甲烷吸收的微生物机制。  相似文献   

17.
Studies on the feasibility of using delignified oil palm empty-fruit-bunch (OPEFB) fibres as a substrate for cellulase production by Chaetomium globosum strain 414 were carried out in shake-flask cultures containing different types and concentrations of nitrogen source. Peptone, as nitrogen source, gave maximum production of all the three main components of the cellulase complex (endoglucanase or carboxymethylcellulase, cellobiohydrolase or filter-paper-hydrolysing enzyme and β-glucosidase), followed by yeast extract, urea, KNO3 and (NH4)2SO4. The maximum specific growth rate (μmax) of C. globosum strain 414 grown in medium containing OPEFB and peptone was 0.038 h−1. In all the fermentations, the fungus was able to produce all the three cellulases with significant amounts of β-glucosidase, except when using (NH4)2SO4 as nitrogen source, where β-glucosidase was not produced. With 6 g/l peptone and 10 g/l delignified OPEFB fibres, the fungus produced maximum concentrations of FPase, carboxymethylcellulase and β-glucosidase: 1.4, 30.8 and 9.8 U/ml, giving productivities of 10, 214 and 24 U l−1h−1, respectively. The cellulase mixture, partially purified by ammonium sulphate precipitation, was able to hydrolyse delignified OPEFB fibres, converting about 68 % of the cellulosics to reducing sugars after 5 days. Received: 17 June 1996 / Received revision: 18 November 1996 / Accepted: 23 November 1996  相似文献   

18.
The ability ofCarnobacterium spp. originally isolated from vacuum-packed, sugar-salted fish to catabolize arginine was examined. All strains were able to produce citrulline, ornithine, and NH3 from arginine, presumably by the arginine deiminase pathway. The metabolism of arginine was concurrent with acid production from glucose for one strain ofCarnobacterium sp. but delayed for one strain ofCarnobacterium piscicola. The arginine catabolism was not inhibited in the presence of 2% glucose for three strains of carnobacteria during growth in test broth and/or shrimp extract. Growth as well as arginine catabolism was delayed for two strains of carnobacteria by lowering the temperature from 9°C to 4°C. A similar result was obtained by incubating one strain ofC. piscicola in CO2. None of the compoundsl-citrulline,l-ornithine hydrochloride, and (NH4)2SO4 had any effect on growth or arginine catabolism of this strain. Neither did pH of the medium affect the time for initiation of arginine catabolism.  相似文献   

19.
In barley (Hordeum vulgare L.) seedlings, the rate of root growth, osmotic pressure (Π), hydraulic conductance (L p), and longitudinal (δl) and transverse (δD/D) extensibility of root cells were measured. The seedlings were grown on Knop solution with nitrate or without nitrate with addition of 5–10 mM NH4+ or 0.5–1.0 mM glutamate. Root growth retardation on the 1st–4th days of exposure to NH4+ was determined by a decrease in δl in the zone of elongation, whereas root thickening was evidently related to an increase in Π. Biphasic dynamics of δl in the presence of NH4+ was imitated by medium acidification near the root surface to pH 3.7, which confirms a conclusion, we have done earlier, about a non-monotonous pH-dependence of longitudinal extensibility. Root growth retardation during the first day of exposure to Glu was also determined by a decrease in the δl, which was, however, accompanied by an increase in the δD/D and L p. Fast Glu-induced changes of measured root parameters were imitated by root exposure to oryzalin, ionomycin, and inhibitors of the H+-pump. It was supposed that a decrease in δl in the presence of NH4+ and Glu was related to cortical microtubule disorganization with the involvement of cytosolic calcium Cacyt2+. A decrease in the δD/D and L p in the presence of NH4+ was related to apoplast acidification and a high activity of the plasmalemmal H+-pump. An increase in the δD/D and L p in the presence of Glu indicates the inhibition of the plasmalemmal H+-pump. On the 2nd–4th days of exposure to Glu, root growth ceased, as distinct from treatment with NH4+. This complete root growth inhibition by Glu was possibly related to a rapid uptake of Ca2+ through Glu-sensitive Ca2+-channels, Ca2+-dependent inhibition of the plasmalemmal H+-pump, and a decrease in mitotic activity.  相似文献   

20.
Treponema denticola convertedl-ornithine, a product ofl-arginine catabolism, to putrescine via a decarboxylation reaction and to proline via a deamination reaction. Ornithine decarboxylation byT. denticola extracts was stimulated by pyridoxal 5′-phosphate. In the absence of pyridoxal 5′-phosphate, (NH4)2SO4-fractionated extracts converted ornithine to proline and ammonia. This activity was not stimulated by α-keto acids, nicotinamide adenine dinucleotide, reduced nicotinamide adenine dinucleotide or ADP. Neither ornithine δ-transaminase (l-ornithine: 2-oxoacid aminotransferase, EC 2.6.1.13) nor Δ1 reductase [l-proline: NAD(P) 5-oxidoreductase, EC 1.5.1.2.] activity was detectable in cell extracts. These results indicate that formation of proline from ornithine inT. denticola is catalyzed by an enzyme system analogous to the ornithine cyclase (deaminating) ofClostridium sporogenes. Exogenous ornithine inhibited the growth ofT. denticola. Thus, in addition to generating putrescine and proline, the ornithine dissimilatory pathways may serve to prevent accumulation of inhibitory concentrations of ornithine in the spirochete's environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号