首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Induced triploidy (3N) in salmon results from a blockage of maternal meiosis II, and hence provides a unique opportunity to study dosage effects on phenotypic variance. Chinook salmon families were bred using a paternal half-sib breeding design (62 females and 31 males) and half of each resulting family was treated to induce triploidy. The paired families were used to test for dosage effects (resulting from triploidy) on (1) the distribution and magnitude of phenotypic variation, (2) narrow-sense heritability and (3) maternal effects in fitness-related traits (i.e., survival, size-at-age, relative growth rate and serum lysozyme activity). Quantitative genetic analyses were performed separately for diploid and triploid family groups. Triploidization resulted in significantly higher levels of phenotypic variance and substantial differences in patterns of variance distribution for growth and survival-related traits, although the patterns were reversed for lysozyme activity. Triploids exhibited higher narrow sense heritability values relative to diploid Chinook salmon. However, maternal effects estimates were generally lower in triploids than in diploids. Thus, the dosage effects resulting from adding an extra set of chromosomes to the Chinook salmon genome are primarily additive. Somewhat counterintuitively, however, the relative magnitude of the combined effects of dominance, epistasis and maternal effects is not affected by dosage. Our results indicate that inheritance of fitness-related quantitative traits is profoundly affected by dosage effects associated with induced triploidy, and that triploidization can result in unpredictable performance and fitness outcomes.  相似文献   

3.
An approach frequently used to demonstrate a genetic basis for population-level phenotypic differences is to employ common garden rearing designs, where observed differences are assumed to be attributable to primarily additive genetic effects. Here, in two common garden experiments, we employed factorial breeding designs between wild and domestic, and among wild populations of Chinook salmon (Oncorhynchus tshawytscha). We measured the contribution of additive (V(A)) and maternal (V(M)) effects to the observed population differences for 17 life history and fitness-related traits. Our results show that, in general, maternal effects contribute more to phenotypic differences among populations than additive genetic effects. These results suggest that maternal effects are important in population phenotypic differentiation and also signify that the inclusion of the maternal source of variation is critical when employing models to test population differences in salmon, such as in local adaptation studies.  相似文献   

4.
While fish swimming behaviour has been extensively studied, the parental genetic basis of this critical behaviour has been rarely examined, especially past the earliest stages of development. We used a quantitative genetic breeding design to measure the critical swimming speed (U-crit) of offspring (15 and 18 weeks post-hatch) from 36 families of Chinook salmon (Oncorhynchus tshawytscha), a species with a nonresource-based mating system. We investigated the roles of dam, sire, and dam × sire on offspring U-crit, and estimated contributions of additive and nonadditive genetic effects and maternal effects to phenotypic variation in U-crit at both ages. We also used existing ‘high-survival’ and ‘low-survival’ lines of Chinook to determine if these two lines show differences in U-crit. At 15 weeks, there were no significant genetic effects, but at 18 weeks there were significant sire effects. Furthermore, additive genetic effects increased from 26 to 100 % from 15 to 18 weeks post-hatch. The two survival lines also showed differences in U-crit at 18 weeks post-hatch, with higher U-crit associated with “high-survival” sires. Collectively, the present study provides evidence for increasing importance of paternal identity (additive genetic variation) on swimming as juvenile offspring age. Given that mortality is high in young Pacific salmon and swimming ability is crucial, the sire effects could potentially shape survival though subsequent developmental stages. The change in the magnitude of effects in the present study indicates that future research should investigate genetic effects across multiple stages for better understanding of how phenotypic traits could respond to selection.  相似文献   

5.
Understanding the genetic architecture of phenotypic plasticity is required to assess how populations might respond to heterogeneous or changing environments. Although several studies have examined population‐level patterns in environmental heterogeneity and plasticity, few studies have examined individual‐level variation in plasticity. Here, we use the North Carolina II breeding design and translocation experiments between two populations of Chinook salmon to detail the genetic architecture and plasticity of offspring survival and growth. We followed the survival of 50 800 offspring through the larval stage and used parentage analysis to examine survival and growth through freshwater rearing. In one population, we found that additive genetic, nonadditive genetic and maternal effects explained 25%, 34% and 55% of the variance in larvae survival, respectively. In the second population, these effects explained 0%, 24% and 61% of the variance in larvae survival. In contrast, fry survival was regulated primarily by additive genetic effects, which indicates a shift from maternal to genetic effects as development proceeds. Fry growth also showed strong additive genetic effects. Translocations between populations revealed that offspring survival and growth varied between environments, the degree of which differed among families. These results indicate genetic differences among individuals in their degree of plasticity and consequently their ability to respond to environmental variation.  相似文献   

6.
Chinook salmon (Oncorhynchus tshawytscha) exhibit extreme differences in coloration of skin, eggs and flesh due to genetic polymorphisms affecting carotenoid deposition, where colour can range from white to bright red. A sympatric population of red and white Chinook salmon occurs in the Quesnel River, British Columbia, where frequencies of each phenotype are relatively equal. In our study, we examined evolutionary mechanisms responsible for the maintenance of the morphs, where we first tested whether morphs were reproductively isolated using microsatellite genotyping, and second, using breeding trials in seminatural spawning channels, we tested whether colour assortative mate choice could be operating to maintain the polymorphism in nature. Next, given extreme difference in carotenoid assimilation and the importance of carotenoids to immune function, we examined mate choice and selection between colour morphs at immune genes (major histocompatibility complex genes: MHC I‐A1 and MHC II‐B1). In our study, red and white individuals were found to interbreed, and under seminatural conditions, some degree of colour assortative mate choice (71% of matings) was observed. We found significant genetic differences at both MHC genes between morphs, but no evidence of MHC II‐B1‐based mate choice. White individuals were more heterozygous at MHC II‐B1 compared with red individuals, and morphs showed significant allele frequency differences at MHC I‐A1. Although colour assortative mate choice is likely not a primary mechanism maintaining the polymorphisms in the population, our results suggest that selection is operating differentially at immune genes in red and white Chinook salmon, possibly due to differences in carotenoid utilization.  相似文献   

7.
8.
Each year salmon and other fishes are caught and used for supportive breeding programs that attempt to augment natural populations that are threatened with extinction. These programs typically mate individuals randomly and as such they overlook the importance of genetic quality to offspring fitness and ultimately to ensuring population health. Here, we use Chinook salmon (Oncorhynchus tshawytscha) and a fully crossed quantitative genetic breeding design to partition genetic variance in offspring performance (growth and survival) to additive and non-additive genetic effects as well as maternal effects. We show that these three effects contribute about equally to the variation in survival, but only non-additive genetic and maternal effects contribute to variation in growth. Some of the genetic effects could be assigned to variation at the class IIB locus of the major histocompatibility complex, but the maternal effects were not associated with egg size and we found no relationship between dam phenotypic measures and offspring survival or growth. We also found no relationship between sire sexually selected characters and offspring survival or growth, which is inconsistent with a “good genes” hypothesis. Finally, we show that incorporation of genetic quality into supportive breeding programs can increase offspring growth or survival by between 3% and 19% during the endogenous feeding stage alone, and projections to adulthood suggest that survivorship could be over four fold higher. Electronic Supplementary Material  Supplementary material is available in the online version of this article at and is accessible for authorised users.  相似文献   

9.
Pitcher TE  Neff BD 《Molecular ecology》2006,15(9):2357-2365
The genes of the major histocompatibility complex (MHC) are found in all vertebrates and are an important component of individual fitness through their role in disease and pathogen resistance. These genes are among the most polymorphic in genomes and the mechanism that maintains the diversity has been actively debated with arguments for natural selection centering on either additive or nonadditive genetic effects. Here, we use a quantitative genetics breeding design to examine the genetic effects of MHC class IIB alleles on offspring survivorship in Chinook salmon (Oncorhynchus tshawytscha). We develop a novel genetic algorithm that can be used to assign values to specific alleles or genotypes. We use this genetic algorithm to show simultaneous additive and nonadditive effects of specific MHC class IIB alleles and genotypes on offspring survivorship. The additive effect supports the rare-allele hypothesis as a potential mechanism for maintaining genetic diversity at the MHC. However, contrary to the overdominance hypothesis, the nonadditive effect led to underdominance at one heterozygous genotype, which could instead reduce variability at the MHC. Our algorithm is an advancement over traditional animal models that only partition variance in fitness to additive and nonadditive genetic effects, but do not allocate these effects to specific alleles and genotypes. Additionally, we found evidence of nonrandom segregation during meiosis in females that promotes an MHC allele that is associated with higher survivorship. Such nonrandom segregation could further reduce variability at the MHC and may explain why Chinook salmon has one of the lowest levels of MHC diversity of all vertebrates.  相似文献   

10.
11.
12.
13.
14.
15.
16.
Life history variability includes phenotypic variation in morphology, age, and size at key stage transitions and arises from genotypic, environmental, and genotype-by-environment effects. Life history variation contributes to population abundance, productivity, and resilience, and management units often reflect life history classes. Recent evidence suggests that past Chinook salmon (Oncorhynchus tshawytscha) classifications (e.g., ‘stream’ and ‘ocean’ types) are not distinct evolutionary lineages, do not capture the phenotypic variation present within or among populations, and are poorly aligned with underlying ecological and developmental processes. Here we review recently reported variation in juvenile Chinook salmon life history traits and provide a refined conceptual framework for understanding the causes and consequences of the observed variability. The review reveals a broad continuum of individual juvenile life history pathways, defined primarily by transitions among developmental stages and habitat types used during freshwater rearing and emigration. Life history types emerge from discontinuities in expressed pathways when viewed at the population scale. We synthesize recent research that examines how genetic, conditional, and environmental mechanisms likely influence Chinook salmon life history pathways. We suggest that threshold models hold promise for understanding how genetic and environmental factors influence juvenile salmon life history transitions. Operational life history classifications will likely differ regionally, but should benefit from an expanded lexicon that captures the temporally variable, multi-stage life history pathways that occur in many Chinook salmon populations. An increased mechanistic awareness of life history diversity, and how it affects population fitness and resilience, should improve management, conservation, and restoration of this iconic species.  相似文献   

17.
We aim to ascertain the possible involvement of functional IL10 and TNF-α promoter polymorphisms on the susceptibility to Behçet’s syndrome (BS), to examine whether IL10 and TNF-α genotypes might work synergistically influencing susceptibility to BS. IL10 ?1082G/A, ?819C/T and ?592C/A and TNF ?308G/A polymorphisms were analyzed in 102 Turkish patients with BS and 102 healthy subjects by using amplification refractory mutation system-polymerase chain reaction (ARMS-PCR). We have found no significant associations between IL10 ?1082G/A, ?819C/T, ?592C/A, TNF-α ?308G/A polymorphisms and BS. Also, no significant correlation was found between IL10 GCC, ACC, ATA haplotypes, GCC+/GCC+, GCC+/GCC?, GCC?/GCC? genotypes. There was no significant association between combined TNF-α/IL10 genotypes and BS. Our study indicates that functional TNF-α, IL10 genotypes or combined TNF-α, IL10 genotypes do not play a role in BS susceptibility in Turkish BS patients.  相似文献   

18.
Variation in age at maturity is an important contributor to life history and demographic variation within and among species. The optimal age at maturity can vary by sex, and the ability of each sex to evolve towards its fitness optimum depends on the genetic architecture of maturation. Using GWAS of RAD sequencing data, we show that age at maturity in Chinook salmon exhibits sex‐specific genetic architecture, with age at maturity in males influenced by large (up to 20 Mb) male‐specific haplotypes. These regions showed no such effect in females. We also provide evidence for translocation of the sex‐determining gene between two different chromosomes. This has important implications for sexually antagonistic selection, particularly that sex linkage of adaptive genes may differ within and among populations based on chromosomal location of the sex‐determining gene. Our findings will facilitate research into the genetic causes of shifting demography in Chinook salmon as well as a better understanding of sex determination in this species and Pacific salmon in general.  相似文献   

19.
20.
Twelve MHC class I exon 2 sequences were uncovered in a sample from the endangered Sacramento River winter-run Chinook salmon in the central valley of California. Phylogenetic analysis of the 12 sequences indicates that the alleles descend from two of six major allelic lineages found among four Pacific salmon species. Nine of the 12 alleles belong to an allelic lineage that began diversifying 8 million years ago, just prior to the estimated time of Chinook speciation. The most recent common ancestor of all 12 winter-run alleles is estimated to be 15 million years ago, approximately 5 million years before the radiation of the Pacific salmon species. The average nonsynonymous distance among the peptide binding-region codons of exon 2 for the 12 alleles is significantly higher than the average synonymous distance in these codons. We estimate the symmetrical overdominant selection coefficient against homozygotes for this exon to be 0.038. Thus, strong positive and balancing selection has maintained functional diversity in the peptide-binding region of the exon over millions of years and this variation has not yet been substantially eliminated by increased genetic drift due to the recent dramatic decline in abundance of this Chinook salmon population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号