首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Completion of the genome analysis followed by extensive comprehensive studies on a variety of genes and gene families of rice (Oryza sativa) resulted in rapid accumulation of information concerning the presence of many complex traits that are governed by a number of genes of distinct functions in this most important crop cultivated worldwide. The genetic and molecular biological dissection of many important rice phenotypes has contributed to our understanding of the complex nature of the genetic control with respect to these phenotypes. However, in spite of the considerable advances made in the field, details of genetic control remain largely unsolved, thereby hampering our exploitation of this useful information in the breeding of new rice cultivars. To further strengthen the field application of the genome science data of rice obtained so far, we need to develop more powerful genomics-assisted methods for rice breeding based on information derived from various quantitative trait loci (QTL) and related analyses. In this review, we describe recent progresses and outcomes in rice QTL analyses, problems associated with the application of the technology to rice breeding and their implications for the genetic study of other crops along with future perspectives of the relevant fields.Key words: QTL, near-isogenic lines, chromosome segment substitution lines, marker-assisted selection, map-based cloning  相似文献   

2.
辐射诱变育种所需年限短、变异率高、后代性状稳定快,在作物遗传育种中已广泛应用.本文统计了我国近10年来利用辐射诱变技术培育的在生产应用上发挥重要作用的部分优良新品种18个,说明通过辐射诱变可加速水稻变异,丰富水稻遗传图谱,为培育高产、优质、抗病水稻新品种提供更多类型种质资源.此外总结了利用辐射诱变获得的各种类型突变,包...  相似文献   

3.
The reversible inhibition of DNA repair is a novel approach to maximize genetic diversity within a plant's genome in order to generate offspring exhibiting important de novo output traits. This process is based on the inhibition of the evolutionarily conserved mismatch repair (MMR) system. In this process, a human dominant negative MMR gene allele is introduced into the germline of a target plant, yielding progeny that can be screened to identify variants with commercially important agronomic output traits. Using this novel strategy, we generated MMR-deficient Arabidopsis thaliana plants that showed genome-wide instability of nucleotide repeats associated with chromosomal microsatellites, in addition to base substitution mutations. Functional screenings of the MMR-deficient Arabidopsis offspring identified variants expressing selectable traits (ethylene insensitivity and salt tolerance), as well as plants exhibiting altered morphologic traits (albinos and dwarfs). We determined by segregation analyses of variant plants that the de novo phenotypes were due to both recessive and dominant genetic mutations. Mutations caused by MMR deficiency showed a different spectrum compared with those derived using ethylmethane sulphonate (EMS) mutagenesis. Our finding demonstrates the feasibility of using reversible MMR deficiency via transient expression of a single human gene product to enhance genetic diversity in plants.  相似文献   

4.
The availability of diversified germplasm resources is the most important for developing improved rice varieties with higher seed yield or tolerance to various biotic or abiotic stresses. Here we report an efficient tool to create increased variations in rice by maize Ac/Ds transposon (a gene trap system) insertion mutagenesis. We have generated around 20,000 Ds insertion rice lines of which majority are homozygous for Ds element. We subjected these lines to phenotypic and abiotic stress screens and evaluated these lines with respect to their seed yields and other agronomic traits as well as their tolerance to drought, salinity and cold. Based on this evaluation, we observed that random Ds insertions into rice genome have led to diverse variations including a range of morphological and conditional phenotypes. Such differences in phenotype among these lines were accompanied by differential gene expression revealed by GUS histochemical staining of gene trapped lines. Among the various phenotypes identified, some Ds lines showed significantly higher grain yield compared to wild-type plants under normal growth conditions indicating that rice could be improved in grain yield by disrupting certain endogenous genes. In addition, several 1,000s of Ds lines were subjected to abiotic stresses to identify conditional mutants. Subsequent to these screens, over 800 lines responsive to drought, salinity or cold stress were obtained, suggesting that rice has the genetic potential to survive under abiotic stresses when appropriate endogenous genes were suppressed. The mutant lines that have higher seed yielding potential or display higher tolerance to abiotic stresses may be used for rice breeding by conventional backcrossing combining with molecular marker-assisted selection. In addition, by exploiting the behavior of Ds to leave footprints upon remobilization, we have shown an alternative strategy to develop new rice varieties without foreign DNA sequences in their genome. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
食药用菌诱变育种研究进展   总被引:1,自引:0,他引:1  
诱变育种是一项借助诱变剂人为的诱导突变,创造出杂交育种中无法创制的新性状的育种技术。自然界中的突变只有0.1%,而诱变育种可以提高到3%左右,比自然突变高100倍以上。诱变技术已经在食药用菌育种中广为利用,本文针对诱变育种的原理、方法、在食药用菌中的应用情况进行了阐述,最后为食药用菌诱变育种的进一步发展进行了探讨和展望,这为利用诱变技术进行食药用菌品种的选育提供了理论依据和参考。  相似文献   

6.
Genetic and molecular dissection of quantitative traits in rice   总被引:58,自引:0,他引:58  
Recent progress in the generation of a molecular genetic map and markers for rice has made possible a new phase of mapping individual genes associated with complex traits. This type of analysis is often referred to as quantitative trait locus (QTL) analysis. Increasing numbers of QTL analyses are providing enormous amounts of information about QTLs, such as the numbers of loci involved, their chromosomal locations and gene effects. Clarification of genetic bases of complex traits has a big impact not only on fundamental research on rice plant development, but it also has practical benefits for rice breeding. In this review, we summarize recent progress of QTL analysis of several complex traits in rice. A strategy for positional cloning of genes at QTLs is also discussed.  相似文献   

7.
Molecular evidence on the origin and evolution of glutinous rice   总被引:26,自引:0,他引:26  
Olsen KM  Purugganan MD 《Genetics》2002,162(2):941-950
Glutinous rice is a major type of cultivated rice with long-standing cultural importance in Asia. A mutation in an intron 1 splice donor site of the Waxy gene is responsible for the change in endosperm starch leading to the glutinous phenotype. Here we examine an allele genealogy of the Waxy locus to trace the evolutionary and geographical origins of this phenotype. On the basis of 105 glutinous and nonglutinous landraces from across Asia, we find evidence that the splice donor mutation has a single evolutionary origin and that it probably arose in Southeast Asia. Nucleotide diversity measures indicate that the origin of glutinous rice is associated with reduced genetic variation characteristic of selection at the Waxy locus; comparison with an unlinked locus, RGRC2, confirms that this pattern is specific to Waxy. In addition, we find that many nonglutinous varieties in Northeast Asia also carry the splice donor site mutation, suggesting that partial suppression of this mutation may have played an important role in the development of Northeast Asian nonglutinous rice. This study demonstrates the utility of phylogeographic approaches for understanding trait diversification in crops, and it contributes to growing evidence on the importance of modifier loci in the evolution of domestication traits.  相似文献   

8.
Generating a new variety of plant with erect-leaf is a critical strategy to improve rice grain yield, as plants with this trait can be dense-planted. The erect-leaf is a significant morphological trait partially regulated by Brassinosteroids (BRs) in rice plants. So far, only a few genes can be used for molecular breeding in rice. Here, we identified OsBAK1 as a potential gene to alter rice architecture. Based on rice genome sequences, four closely related homologs of Arabidopsis BAK1 ( AtBAK1 ) gene were amplified. Phylogenetic analysis and suppression of a weak Arabidopsis mutant bri1-5 indicated that OsBAK1 (Os08g0174700) is the closest relative of AtBAK1. Genetic, physiological, and biochemical analyses all suggest that the function of OsBAK1 is conserved with AtBAK1 . Overexpression of a truncated intracellular domain of OsBAK1 , but not the extracellular domain of OsBAK1 , resulted in a dwarfed phenotype, similar to the rice BR-insensitive mutant plants. The expression of OsBAK1 changed important agricultural traits of rice such as plant height, leaf erectness, grain morphologic features, and disease resistance responses. Our results suggested that a new rice variety with erect-leaf and normal reproduction can be generated simply by suppressing the expression level of OsBAK1 . Therefore, OsBAK1 is a potential molecular breeding tool for improving rice grain yield by modifying rice architecture.  相似文献   

9.
Understanding the molecular mechanisms underlying complex phenotypes requires systematic analyses of complicated metabolic networks and contributes to improvements in the breeding efficiency of staple cereal crops and diagnostic accuracy for human diseases. Here, we selected rice (Oryza sativa) heterosis as a complex phenotype and investigated the mechanisms of both vegetative and reproductive traits using an untargeted metabolomics strategy. Heterosis-associated analytes were identified, and the overlapping analytes were shown to underlie the association patterns for six agronomic traits. The heterosis-associated analytes of four yield components and plant height collectively contributed to yield heterosis, and the degree of contribution differed among the five traits. We performed dysregulated network analyses of the high- and low-better parent heterosis hybrids and found multiple types of metabolic pathways involved in heterosis. The metabolite levels of the significantly enriched pathways (especially those from amino acid and carbohydrate metabolism) were predictive of yield heterosis (area under the curve = 0.907 with 10 features), and the predictability of these pathway biomarkers was validated with hybrids across environments and populations. Our findings elucidate the metabolomic landscape of rice heterosis and highlight the potential application of pathway biomarkers in achieving accurate predictions of complex phenotypes.

Specific metabolic pathways (especially those from amino acid and carbohydrate metabolism) underlie heterosis of six agronomic traits in rice.  相似文献   

10.
The clustered regularly interspaced short palindromic repeats(CRISPR)-associated endonuclease 9(CRISPR/Cas9) system has emerged as a promising technology for specific genome editing in many species. Here we constructed one vector targeting eight agronomic genes in rice using the CRISPR/Cas9 multiplex genome editing system. By subsequent genetic transformation and DNA sequencing, we found that the eight target genes have high mutation efficiencies in the T_0 generation. Both heterozygous and homozygous mutations of all editing genes were obtained in T_0 plants. In addition, homozygous sextuple, septuple, and octuple mutants were identified. As the abundant genotypes in T_0 transgenic plants, various phenotypes related to the editing genes were observed. The findings demonstrate the potential of the CRISPR/Cas9 system for rapid introduction of genetic diversity during crop breeding.  相似文献   

11.
Kernel length in rice (Oryza sativa L.) is controlled by various quantitative trait loci of which GS3 is the most important, being responsible for 80–90% of the variation in kernel length. A mutation in the second exon of this gene has been reported to be associated with maximum variations in the kernel length. We have developed a simple PCR-based marker system named DRR-GL which targets the functional nucleotide polymorphism at GS3. This marker system has the advantages that it is easy to use, saves time and cost, and is amenable for large-scale marker-assisted selection for the trait of kernel length. Validation of this marker in a segregating population and 152 rice varieties, which includes 30 elite basmati varieties, reveals its effective co-segregation and association with the traits of kernel length as well as kernel elongation after cooking. We recommend utilization of this simple, low-cost marker system in breeding programs targeted at improvement of key rice grain quality traits, kernel length and kernel elongation.  相似文献   

12.
MOTIVATION: In most quantitative trait locus (QTL) mapping studies, phenotypes are assumed to follow normal distributions. Deviations from this assumption may affect the accuracy of QTL detection and lead to detection of spurious QTLs. To improve the robustness of QTL mapping methods, we replaced the normal distribution for residuals in multiple interacting QTL models with the normal/independent distributions that are a class of symmetric and long-tailed distributions and are able to accommodate residual outliers. Subsequently, we developed a Bayesian robust analysis strategy for dissecting genetic architecture of quantitative traits and for mapping genome-wide interacting QTLs in line crosses. RESULTS: Through computer simulations, we showed that our strategy had a similar power for QTL detection compared with traditional methods assuming normal-distributed traits, but had a substantially increased power for non-normal phenotypes. When this strategy was applied to a group of traits associated with physical/chemical characteristics and quality in rice, more main and epistatic QTLs were detected than traditional Bayesian model analyses under the normal assumption.  相似文献   

13.
The mismatch repair (MMR) family is a highly conserved group of proteins that function in genome stabilization and mutation avoidance. Their role has been particularly well studied in the context of DNA repair following replication errors, and disruption of these processes results in characteristic microsatellite instability, repair defects and, in mammals, susceptibility to cancer. An additional role in meiotic recombination has been described for several family members, as revealed by extensive studies in yeast. More recently, the role of the mammalian MMR family in meiotic progression has been elucidated by the phenotypic analysis of mice harboring targeted mutations in the genes encoding several MMR family members. This review will discuss the phenotypes of the various mutant mouse lines and, drawing from our knowledge of MMR function in yeast meiosis and in somatic cell repair, will attempt to elucidate the significance of MMR activity in mouse germ cells. These studies highlight the importance of comparative analysis of MMR orthologs across species, and also underscore distinct sexually dimorphic characteristics of mammalian recombination and meiosis.  相似文献   

14.
Hybrid breeding of rice via genomic selection   总被引:1,自引:0,他引:1  
Hybrid breeding is the main strategy for improving productivity in many crops, especially in rice and maize. Genomic hybrid breeding is a technology that uses whole‐genome markers to predict future hybrids. Predicted superior hybrids are then field evaluated and released as new hybrid cultivars after their superior performances are confirmed. This will increase the opportunity of selecting true superior hybrids with minimum costs. Here, we used genomic best linear unbiased prediction to perform hybrid performance prediction using an existing rice population of 1495 hybrids. Replicated 10‐fold cross‐validations showed that the prediction abilities on ten agronomic traits ranged from 0.35 to 0.92. Using the 1495 rice hybrids as a training sample, we predicted six agronomic traits of 100 hybrids derived from half diallel crosses involving 21 parents that are different from the parents of the hybrids in the training sample. The prediction abilities were relatively high, varying from 0.54 (yield) to 0.92 (grain length). We concluded that the current population of 1495 hybrids can be used to predict hybrids from seemingly unrelated parents. Eventually, we used this training population to predict all potential hybrids of cytoplasm male sterile lines from 3000 rice varieties from the 3K Rice Genome Project. Using a breeding index combining 10 traits, we identified the top and bottom 200 predicted hybrids. SNP genotypes of the training population and parameters estimated from this training population are available for general uses and further validation in genomic hybrid prediction of all potential hybrids generated from all varieties of rice.  相似文献   

15.
《PloS one》2014,9(1)
With the ever-increasing global demand for high quality rice in both local production regions and with Western consumers, we have a strong desire to understand better the importance of the different traits that make up the quality of the rice grain and obtain a full picture of rice quality demographics. Rice is by no means a ‘one size fits all’ crop. Regional preferences are not only striking, they drive the market and hence are of major economic importance in any rice breeding / improvement strategy. In this analysis, we have engaged local experts across the world to perform a full assessment of all the major rice quality trait characteristics and importantly, to determine how these are combined in the most preferred varieties for each of their regions. Physical as well as biochemical characteristics have been monitored and this has resulted in the identification of no less than 18 quality trait combinations. This complexity immediately reveals the extent of the specificity of consumer preference. Nevertheless, further assessment of these combinations at the variety level reveals that several groups still comprise varieties which consumers can readily identify as being different. This emphasises the shortcomings in the current tools we have available to assess rice quality and raises the issue of how we might correct for this in the future. Only with additional tools and research will we be able to define directed strategies for rice breeding which are able to combine important agronomic features with the demands of local consumers for specific quality attributes and hence, design new, improved crop varieties which will be awarded success in the global market.  相似文献   

16.
Tremendous efforts have been taken worldwide to develop genome-wide genetic stocks for rice functional genomic (FG) research since the rice genome was completely sequenced. To facilitate FG research of complex polygenic phenotypes in rice, we report the development of over 20 000 introgression lines (ILs) in three elite rice genetic backgrounds for a wide range of complex traits, including resistances/tolerances to many biotic and abiotic stresses, morpho-agronomic traits, physiological traits, etc., by selective introgression. ILs within each genetic background are phenotypically similar to their recurrent parent but each carries one or a few traits introgressed from a known donor. Together, these ILs contain a significant portion of loci affecting the selected complex phenotypes at which allelic diversity exists in the primary gene pool of rice. A forward genetics strategy was proposed and demonstrated with examples on how to use these ILs for large-scale FG research. Complementary to the genome-wide insertional mutants, these ILs opens a new way for highly efficient discovery, candidate gene identification and cloning of important QTLs for specific phenotypes based on convergent evidence from QTL position, expression profiling, functional and molecular diversity analyses of candidate genes, highlights the importance of genetic networks underlying complex phenotypes in rice that may ultimately lead to more complete understanding of the genetic and molecular bases of quantitative trait variation in rice. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s11103-005-8519-3  相似文献   

17.
Short synthetic single-stranded oligodeoxyribonucleotides (ssODNs) can be used to introduce subtle modifications into the genome of mouse embryonic stem cells (ESCs). We have previously shown that effective application of ssODN-mediated gene targeting in ESC requires (transient) suppression of DNA mismatch repair (MMR). However, whereas transient down-regulation of the mismatch recognition protein MSH2 allowed substitution of 3 or 4 nucleotides, 1 or 2 nucleotide substitutions were still suppressed. We now demonstrate that single- or dinucleotide substitution can effectively be achieved by transient down-regulation of the downstream MMR protein MLH1. By exploiting highly specific real-time PCR, we demonstrate the feasibility of substituting a single basepair in a non-selectable gene. However, disabling the MMR machinery may lead to inadvertent mutations. To obtain insight into the mutation rate associated with transient MMR suppression, we have compared the impact of transient and constitutive MMR deficiency on the repair of frameshift intermediates at mono- and dinucleotide repeats. Repair at these repeats relied on the substrate specificity and functional redundancy of the MSH2/MSH6 and MSH2/MSH3 MMR complexes. MLH1 knockdown increased the level of spontaneous mutagenesis, but modified ESCs remained germ line competent. Thus, transient MLH1 suppression provides a valuable extension of the MSH2 knockdown strategy, allowing rapid generation of mice carrying single basepair alterations in their genome.  相似文献   

18.
A primary concern of modern plant breeding is that genetic diversity has decreased during the past century. This study set out to explore changes in genetic variation during 84 years of breeding by investigating the germination-related traits, inter-simple sequence repeat (ISSR) fingerprinting and osmotic stress tolerance of 30 Iranian wheat (Triticum aestivum L.) cultivars. Seeds were planted under control and osmotic stress (?2, ?4 and ?6 bar) in three replications. The ISSR experiment was carried out using 32 different primers. Genotypes were divided into two groups (old and new) each containing 15 members. The results of ANOVA showed that highly significant differences existed among genotypes and among growth conditions. The results showed that during breeding in some traits such as coleoptile length and seedling vigor index, a significant decrease has been occurred. New cultivars had a mean coleoptile length of 33 mm, shorter than that of old cultivars (42 mm) under osmotic stress of ?6 bar. Genetic variance of root length, shoot length and seedling vigor index for old cultivars were 1.59, 1.93 and 45,763, respectively, significantly higher than those for new cultivars (0.55, 1.08 and 27,996, respectively). This difference was also verified by ISSR results as the polymorphism information content was 0.28 in old cultivars, higher than that of new cultivars (0.26). These results prove this claim that during breeding, genetic diversity has decreased for many germination-related traits and breeders are better to pay more attention to genetic diversity.  相似文献   

19.
20.
Parsaeian M  Mirlohi A  Saeidi G 《Genetika》2011,47(3):359-367
This research was conducted to study the genetic variation among eighteen genotypes of sesame (Sesamum indicum L.) collected from various agro-climatic regions of Iran along with six exotic genotypes from the Asian countries using both agro-morphological and ISSR marker traits. The results showed significant differences among genotypes for all agro-morphological traits and a relatively high genetic coefficient of variation observed for number of fruiting branches per plant, capsules per plant, plant height and seed yield per plant. Cluster analysis based on these traits grouped the genotypes into five separate clusters. Larger inter- than intra cluster distances implies the presence of higher genetic variability between the genotypes of different groups. Genotypes of two clusters with a good amount of genetic divergence and desirable agronomic traits were detected as promising genotypes for hybridization programs. The 13 ISSR primers chosen for molecular analysis revealed 170 bands, of which 130 (76.47%) were polymorphic. The generated dendrogram based on ISSR profiles divided the genotypes into seven groups. A principal coordinate analysis confirmed the results of clustering. The agro-morphological traits and ISSR markers reflected different aspects of genetic variation among the genotypes as revealed by a non significant cophenetic correlation in the Mantel test. Therefore the complementary application of both types of information is recommended to maximize the efficiency of sesame breeding programs. The discordance among diversity patterns and geographical distribution of genotypes found in this investigation implies that the parental lines for hybridization should be selected based on genetic diversity rather than the geographical distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号