首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Many studies demonstrated that 5-fluorouracil (5-FU) treatment of rodents caused the damage of small intestine, resulting in the malabsorption, while we recently found that repeated administration of 5-FU to rats increased Na(+)-dependent glucose absorption in the small intestine. This study investigated the cause of enhanced glucose absorption. 3-O-methyl-d-glucose (3-OMG) absorption was examined using the everted intestine technique. d-Glucose uptake, phlorizin binding, Western blot analysis and membrane fluidity were examined using small intestinal brush-border membrane vesicles (BBMV). Repeated oral administration of 5-FU to rats increased Na(+)-dependent 3-OMG absorption in the small intestine, while alkaline phosphatase activity in the small intestine decreased. Na(+)/K(+)-ATPase activity of 5-FU-treated rats was about three-fold higher than that of control rats. Although the amount of Na(+)-dependent glucose co-transporter (SGLT1) in 5-FU-treated rats decreased, the overshoot magnitude of d-glucose uptake in BBMV was not altered. Maximum binding of phlorizin in 5-FU-treated rats was 1.5-fold larger than that of control rats, but not altered the maximal rate of d-glucose absorption, Michaelis constant of d-glucose and dissociation constant of phlorizin. The membrane fluidity of 5-FU-treated rats increased. The enhanced d-glucose absorption in 5-FU-treated rats seems to occur secondarily due to the activation of Na(+)/K(+)-ATPase activity in basolateral membranes (BLM). Because the amounts of SGLT1 in 5-FU-treated rats decreased, the increase of turnover rate of SGLT1 and/or an expression of unknown Na(+)-dependent glucose co-transporter with high affinity for d-glucose and phlorizin sensitivity would contribute to the enhancement of d-glucose transport in 5-FU-treated rats.  相似文献   

4.
Recent evidence indicates that soybean, which is widely used in animal nutrition, could directly alter intestinal ion and nutrient transport. However, the mechanisms involved are still unknown. The aim of the study was to investigate the effect of three differently treated soybean products on the glucose and Cl- transport capacity in porcine small intestine by the Ussing chamber technique. Jejunal and ileal piglet epithelial tissues were pre-incubated with extracts of raw soybean flour (RSF), heated soybean flour (HSF), or ethanol heat-treated soybean protein concentrate (SPC). The Na(+)-dependent glucose co-absorption capacity was then measured as an increase in the short-circuit current (ISC) after luminal addition of D-glucose. The effect of the soybean products on cAMP-dependent Cl- secretion was measured as the increase in ISC after the addition of the phosphodiesterase inhibitor, theophylline, while nervous regulation of Cl- secretion was investigated by the addition of the enteric neurotransmitters; 5-hydroxytryptamine (5-HT), substance P and vasoactive intestinal polypeptide (VIP). Incubation with RSF and HSF induced a 30% decrease of the Na(+)-dependent glucose absorption capacity in the jejunum. The effect was similar for RSF in the ileum. Theophylline-induced secretion was decreased by 30% after incubation with RSF, HSF and SPC but only in the jejunum. 5-HT-, substance P- and VIP-induced secretion were not altered by incubation with soybean extracts except in the HSF-incubated where the substance P-induced secretion was significantly reduced. In conclusion, soybean contains ethanol-sensitive heat-insensitive compounds impairing Na(+)-dependent glucose absorption in the jejunum and ileum, and ethanol- and heat-insensitive compounds causing an acute impairment of cAMP-dependent jejunal secretion.  相似文献   

5.
The Na(+)-dependent uptake system for bile acids in the ileum from rabbit small intestine was characterized using brush-border membrane vesicles. The uptake of [3H]taurocholate into vesicles prepared from the terminal ileum showed an overshoot uptake in the presence of an inwardly-directed Na(+)-gradient ([Na+]out > [Na+]in), in contrast to vesicles prepared from the jejunum. The Na(+)-dependent [3H]taurocholate uptake was cis-inhibited by natural bile acid derivatives, whereas cholephilic organic compounds, such as phalloidin, bromosulphophthalein, bilirubin, indocyanine green or DIDS - all interfering with hepatic bile-acid uptake - did not show a significant inhibitory effect. Photoaffinity labeling of ileal membrane vesicles with 3,3-azo- and 7,7-azo-derivatives of taurocholate resulted in specific labeling of a membrane polypeptide with apparent molecular mass 90 kDa. Bile-acid derivatives inhibiting [3H]taurocholate uptake by ileal vesicles also inhibited labeling of the 90 kDa polypeptide, whereas compounds with no inhibitory effect on ileal bile-acid transport failed to show a significant effect on the labeling of the 90 kDa polypeptide. The involvement of functional amino-acid side-chains in Na(+)-dependent taurocholate uptake was investigated by chemical modification of ileal brush-border membrane vesicles with a variety of group-specific agents. It was found that (vicinal) thiol groups and amino groups are involved in active ileal bile-acid uptake, whereas carboxyl- and hydroxyl-containing amino acids, as well as tyrosine, histidine or arginine are not essential for Na(+)-dependent bile-acid transport activity. The irreversible inhibition of [3H]taurocholate transport by DTNB or NBD-chloride could be partially reversed by thiols like 2-mercaptoethanol or DTT. Furthermore, increasing concentrations of taurocholate during chemical modification with NBD-chloride were able to protect the ileal bile-acid transporter from inactivation. These findings suggest that a membrane polypeptide of apparent M(r) 90,000 is a component of the active Na(+)-dependent bile-acid reabsorption system in the terminal ileum from rabbit small intestine. Vicinal thiol groups and amino groups of the transport system are involved in Na(+)-dependent transport activity, whereas other functional amino acids are not essential for transport activity.  相似文献   

6.
7.
Previous studies have shown that two kinetically and genetically distinct Na+/glucose cotransporters exist in mammalian kidney. We have recently cloned and sequenced one of the rabbit renal Na+/glucose cotransporters (SGLT1) and have found that it is identical in sequence to the intestinal Na+/glucose cotransporter. Northern blots showed that SGLT1 mRNA was found predominantly in the outer medulla of rabbit kidney. Injection of mRNA from outer medulla and outer cortex into Xenopus oocytes resulted in equal expression of Na(+)-dependent sugar uptake, indicating that the outer cortex sample contained mRNA encoding both SGLT1 and a second Na+/glucose cotransporter. Western blots using antipeptide antibodies against SGLT1 showed that the SGLT1 protein is more abundant in outer medulla than outer cortex. However, brush border membrane vesicles prepared from outer cortex had a greater capacity for Na(+)-dependent glucose transport, indicating the presence of a second transporter in the vesicles from outer cortex. It appears that the cloned renal Na+/glucose cotransporter, SGLT1, is the 'high affinity, low capacity' transporter found predominantly in outer medulla. There is evidence that a second transporter, the 'low affinity, high capacity' transporter, is in outer cortex. Finally, the cDNA and protein sequences of the two renal Na+/glucose cotransporters are predicted to differ by more than 20%.  相似文献   

8.
Mutations in the main intestinal and kidney luminal neutral amino acid transporter B(0)AT1 (Slc6a19) lead to Hartnup disorder, a condition that is characterized by neutral aminoaciduria and in some cases pellagra-like symptoms. These latter symptoms caused by low-niacin are thought to result from defective intestinal absorption of its precursor l-tryptophan. Since Ace2 is necessary for intestinal B(0)AT1 expression, we tested the impact of intestinal B(0)AT1 absence in ace2 null mice. Their weight gain following weaning was decreased, and Na(+)-dependent uptake of B(0)AT1 substrates measured in everted intestinal rings was defective. Additionally, high-affinity Na(+)-dependent transport of l-proline, presumably via SIT1 (Slc6a20), was absent, whereas glucose uptake via SGLT1 (Slc5a1) was not affected. Measurements of small intestine luminal amino acid content following gavage showed that more l-tryptophan than other B(0)AT1 substrates reach the ileum in wild-type mice, which is in line with its known lower apparent affinity. In ace2 null mice, the absorption defect was confirmed by a severalfold increase of l-tryptophan and of other neutral amino acids reaching the ileum lumen. Furthermore, plasma and muscle levels of glycine and l-tryptophan were significantly decreased in ace2 null mice, with other neutral amino acids displaying a similar trend. A low-protein/low-niacin diet challenge led to differential changes in plasma amino acid levels in both wild-type and ace2 null mice, but only in ace2 null mice to a stop in weight gain. Despite the combination of low-niacin with a low-protein diet, plasma niacin concentrations remained normal in ace2 null mice and no pellagra symptoms, such as photosensitive skin rash or ataxia, were observed. In summary, mice lacking Ace2-dependent intestinal amino acid transport display no total niacin deficiency nor clear pellagra symptoms, even under a low-protein and low-niacin diet, despite gross amino acid homeostasis alterations.  相似文献   

9.
High dietary threonine extraction by the digestive tract suggests that threonine contributes to maintain gut physiology. In the present study, we evaluated the impact of a low (6.5 g of threonine/kg diet; LT group) or a control well-balanced threonine diet (9.3 g of threonine/kg diet; C group) given to piglets for 2 weeks on ileal permeability and Na+-dependant glucose absorption capacity in Ussing chambers. The paracellular permeability was significantly increased in the ileum of LT compared to C piglets (P=.017). The Na+-dependent glucose absorption capacity showed a nonsignificant increase in the LT piglets. In addition, we analysed ileal gene expression profiles in the LT and C groups using porcine multitissue cDNA microarrays. Compared to the C piglets, the expression of 324 genes was significantly modified in the ileum of the LT piglets: 214 genes were overexpressed (145 annotated) and 110 were down-expressed (79 annotated). Among them, some are involved in immune and defense responses, energy metabolism and protein synthesis. Furthermore, microarray analysis highlights changes in the expression of the gene encoding for the sodium/glucose cotransporter (SGLT1) and of genes involved in the regulation of paracellular permeability (ZO-1, cingulin and myosin light chain kinase). In conclusion, our results indicate that a moderate threonine deficiency affects intestinal functionality.  相似文献   

10.
11.
The effects of low and high doses of 17 beta-estradiol and progesterone for 2 weeks on intestinal digestive and absorptive functions have been investigated in ovariectomized rats. The uptake of glucose was significantly enhanced following ovariectomy and administration of hormones restored the level of glucose uptake to that observed in sham-operated animals. Neither, the uptake of L-leucine nor calcium was affected after ovariectomy and treatment with the hormones. The activity of alkaline phosphatase (AP) of ileum was significantly elevated with the low and high doses of 17 beta-estradiol but in jejunum only at high doses. Progesterone alone did not alter AP activity but the combination of this hormone and 17 beta-estradiol significantly enhanced the jejunal and ileal AP activities. It seems that activity of AP is mainly under the control of 17 beta-estradiol. The activity of ileal disaccharidases and leucine aminopeptidase were enhanced at high doses of 17 beta-estradiol alone or in combination with progesterone whereas in the jejunum only AP activity was increased significantly. The present study indicates that 17 beta-estradiol plays an important role in regulating the activities of intestinal digestive enzymes and it is the ileal enzymes which are more prone to its action.  相似文献   

12.
Although pancreatic enzymes clearly degrade R binder, a nonintrinsic factor binder, the full scope of the pancreatic role in cobalamin absorption remains the subject of debate. Therefore the direct effect of pure human pancreatic juice (PPJ) on ileal cobalamin absorption in the absence of intrinsic factor was studied. PPJ significantly enhanced cobalamin uptake in guinea pig ileal loop perfused in vivo. It did not do so in the jejunum. This PPJ activity in the ileum was further stimulated by enteropeptidase and inhibited by aprotinin. The intestinal mucosa remained intact during our study by morphologic and inulin clearance criteria and behaved normally with respect to intrinsic factor and nonintrinsic factor binders. Since no intrinsic factor was present in the perfusate, PPJ must directly enhance cobalamin uptake by the ileum, perhaps promoting cobalamin attachment to receptor sites for subsequent transport by intrinsic factor. PPJ thus seems to affect cobalamin absorption at several levels. Previous studies have established its interaction with luminal R binders and with bile. The findings now indicate that pancreatic juice may have an additional, more direct role in promoting cobalamin absorption in the ileum.  相似文献   

13.
14.
15.
Summary Glucose is actively absorbed in the intestine by the action of the Na+-dependent glucose transporter. Using an antibody against the rabbit intestinal Na+-dependent glucose transporter (SGLT1), we examined the localization of SGLT1 immunohistochemically along the rat digestive tract (oesophagus, stomach, duodenum, jejunum, ileum, colon and rectum). SGLT1 was detected in the small intestine (duodenum, jejunum and ileum), but not in the oesophagus, stomach, colon or rectum. SGLT1 was localized at the brush border of the absorptive epithelium cells in the small intestine. Electron microscopical examination showed that SGLT1 was localized at the apical plasma membrane of the absorptive epithelial cells. SGLT1 was not detected at the basolateral plasma membrane. Along the crypt-villus axis, all the absorptive epithelial cells in the villus were positive for SGLT1, whose amount increased from the bottom of the villus to its tip. On the other hand, cells in the crypts exhibited little or no staining for SGLT1. Goblet cells scattered throughout the intestinal epithelium were negative for SGLT1. These observations show that SGLT1 is specific to the apical plasma membrane of differentiated absorptive epithelial cells in the small intestine, and suggest that active uptake of glucose occurs mainly in the absorptive epithelial cells in the small intestine.  相似文献   

16.
Chronic diabetes enhances intestinal absorption of glucose and induces hyperphagia. We examined the enhanced intestinal absorption of glucose in ad libitum-fed rats with streptozocin-induced diabetes mellitus and compared these results with those obtained from pair-fed diabetic animals. Maximal transport capacity (Vmax) and carrier affinity (K0.5) were determined by measuring jejunal and ileal short circuit current (Isc) responses to varying concentrations of 3-O-methyl-D-glucopyranose and D-glucose. Pair-fed diabetic animals maintained the same body weight as animals fed ad libitum, although ad libitum-fed diabetic rats had an increased oral chow intake. Age-matched control rats maintained a constant jejunal and ileal Vmax and K0.5 throughout the study. Diabetic rats fed ad libitum demonstrated an enhanced Vmax and K0.5 in both jejunum and ileum. Pair feeding diabetic animals further enhanced jejunal Vmax while lowering jejunal K0.5 levels. In contrast, pair feeding diabetic animals delayed and blunted changes in ileal Vmax and prevented changes in ileal K0.5. In conclusion, signals other than those of hyperphagia regulate kinetic changes in glucose absorption during diabetes mellitus. Furthermore, these changes have differing effects on jejunum and ileum.  相似文献   

17.
We isolated a cDNA clone of SLC5A9/SGLT4 from human small intestinal full-length cDNA libraries, and functionally characterized it in vitro. The messenger RNA encoding SGLT4 was mainly expressed in the small intestine and kidney, among the human tissues tested. COS-7 cells transiently expressing SGLT4 exhibited Na(+)-dependent alpha-methyl-D-glucopyranoside (AMG) transport activity with an apparent K(m) of 2.6 mM, suggesting that SGLT4 is a low affinity-type transporter. The rank order of naturally occurring sugar analogs for the inhibition of AMG transport was: D-mannose (Man) > D-glucose (Glc) > D-fructose (Fru) = 1,5-anhydro-D-glucitol (1,5AG) > D-galactose (Gal). Recognition of Man as a substrate was confirmed by direct uptake of Man into the cell. COS-7 cells expressing a putative murine SGLT4 ortholog showed similar Na(+)-dependent AMG transport activity and a similar deduced substrate specificity. These results suggest that SGLT4 would have unique physiological functions (i.e., absorption and/or reabsorption of Man, 1,5AG, and Fru, in addition to Glc).  相似文献   

18.
Intestinal fluid and glucose absorption was studied in jejunal and ileal segments in Xylopia aethiopica fed rats using inverted sac technique. Thirty male Wistar rats were assigned into three groups of 10 rats each; control, 100mg/kg and 200mg/kg Xylopia aethiopica treated groups. The control group received normal rat chow and water while the low dose and high dose groups received oral administration of Xylopia aethiopica extract at doses of 100mg/kg and 200mg/kg body weight respectively in addition to daily rat chow and water intake for 28 days. The results showed significant reduction and increase in fluid transfer in the jejunum and ileum respectively compared with control. 100mg/kg increased gut fluid uptake in the ileum while 200mg/kg treatment reduced uptake in jejunum compared with control. Both doses had significantly increased jejunal and ileal glucose transfer. Gut glucose uptake was increased in jejunum and ileum of Xylopia aethiopica treated groups. Both doses increased the crypt depth but significantly decreased the villus height in the ileum. In conclusion, increased ileal gut fluid uptake may be beneficial in diarrheal state while an enhanced glucose uptake implies that glucose substrate may be made available to cells for synthesize of ATP for cellular activities. Keywords: Xylopia aethiopica, Glucose, Absorption, Jejunum, Ileum, Rat.  相似文献   

19.
Luminal polyamines and their absorption are essential for proliferation of the enterocytes and, therefore, nutrition, health and development of the animal. The transport systems that facilitate the uptake of putrescine were characterized in chick duodenal, jejunal and ileal brush-border membrane vesicles prepared by MgCl2 precipitation from three-week-old chicks. An inwardly-directed Na+ gradient did not stimulate putrescine uptake and, therefore, putrescine transport in chick intestine. In the duodenum, jejunum and ileum, kinetics of putrescine transport fitted a model with a single affinity component plus a non-saturable component. The affinity (Kt) for [3H]putrescine transport across the brush-border membrane increased along the length of the small intestine. A model of intermediate affinity converged to the data obtained for [3H]putrescine transport with Kt approximating 1.07 and 1.05 mM or duodenum and jejunum, respectively; and high affinity with a Kt of 0.35 mM for the ileum. The polyamines cadaverine, putrescine, spermidine and spermine strongly inhibited the uptake of [3H]putrescine into chick brush-border membrane vesicles, more so for the jejunum and ileum than the duodenum. The kinetics of cadaverine, spermidine and spermine inhibition are suggestive of competitive inhibition of putrescine transport. These uptake data indicate that a single-affinity system facilitates the intestinal transport of putrescine in the chick; and the affinity of transporter for putrescine is higher in the ileum than in the proximal sections of the small intestine. In addition, this study shows that the ileum of chicks plays an important role in regulating cellular putrescine concentration.  相似文献   

20.
The transport of the bile salt, glycodeoxycholate, was studied in vesicles derived from rat jejunal and ileal brush border membranes using a rapid filtration technique. The uptake was osmotically sensitive, linearly related to membrane protein and resembled D-glucose transport. In ileal, but not jejunal, vesicles glycodeoxycholate uptake showed a transient vesicle/medium ratio greater than 1 in the presence of an initial sodium gradient. The differences between glycodeoxycholate uptake in the presence and absence of a Na+ gradient yielded a saturable transport component. Kinetic analysis revealed a Km value similar to that described previously in everted whole intestinal segments and epithelial cells isolated from the ileum. These findings support the existence of a transport system in the brush border membrane that: (1) reflects kinetics and characteristics of bile salt transport in intact intestinal preparations, and (2) catalyzes the co-transport of Na+ and bile salt across the ileal membrane in a manner analogous to D-glucose transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号