首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Remotely sensed tracking technology has revealed remarkable migration patterns that were previously unknown; however, models to optimally use such data have developed more slowly. Here, we present a hierarchical Bayes state-space framework that allows us to combine tracking data from a collection of animals and make inferences at both individual and broader levels. We formulate models that allow the navigation ability of animals to be estimated and demonstrate how information can be combined over many animals to allow improved estimation. We also show how formal hypothesis testing regarding navigation ability can easily be accomplished in this framework. Using Argos satellite tracking data from 14 leatherback turtles, 7 males and 7 females, during their southward migration from Nova Scotia, Canada, we find that the circle of confusion (the radius around an animal's location within which it is unable to determine its location precisely) is approximately 96 km. This estimate suggests that the turtles' navigation does not need to be highly accurate, especially if they are able to use more reliable cues as they near their destination. Moreover, for the 14 turtles examined, there is little evidence to suggest that male and female navigation abilities differ. Because of the minimal assumptions made about the movement process, our approach can be used to estimate and compare navigation ability for many migratory species that are able to carry electronic tracking devices.  相似文献   

2.
伍业钢  邬建国 《生态学杂志》1992,11(6):34-41,73
自然界各种等级系统都普遍存在时间和空间的缀块性。它反映了系统内部或系统间的时空异质性,影响着生态学过程。不同缀块的大小、形状、边际性质以及缀块间的距离等空间分布特征构成缀块性的差异,并控制生态过程的速率。某一空间特有的缀块性也是生态过程的结果。把这种因果关系在时间轴上  相似文献   

3.
The origin of cellular life   总被引:4,自引:0,他引:4  
This essay presents a scenario of the origin of life that is based on analysis of biological architecture and mechanical design at the microstructural level. My thesis is that the same architectural and energetic constraints that shape cells today also guided the evolution of the first cells and that the molecular scaffolds that support solid-phase biochemistry in modern cells represent living microfossils of past life forms. This concept emerged from the discovery that cells mechanically stabilize themselves using tensegrity architecture and that these same building rules guide hierarchical self-assembly at all size scales (Sci. Amer 278:48-57;1998). When combined with other fundamental design principles (e.g., energy minimization, topological constraints, structural hierarchies, autocatalytic sets, solid-state biochemistry), tensegrity provides a physical basis to explain how atomic and molecular elements progressively self-assembled to create hierarchical structures with increasingly complex functions, including living cells that can self-reproduce.  相似文献   

4.
Successful navigation is fundamental to the survival of nearly every animal on earth, and achieved by nervous systems of vastly different sizes and characteristics. Yet surprisingly little is known of the detailed neural circuitry from any species which can accurately represent space for navigation. Path integration is one of the oldest and most ubiquitous navigation strategies in the animal kingdom. Despite a plethora of computational models, from equational to neural network form, there is currently no consensus, even in principle, of how this important phenomenon occurs neurally. Recently, all path integration models were examined according to a novel, unifying classification system. Here we combine this theoretical framework with recent insights from directed walk theory, and develop an intuitive yet mathematically rigorous proof that only one class of neural representation of space can tolerate noise during path integration. This result suggests many existing models of path integration are not biologically plausible due to their intolerance to noise. This surprising result imposes significant computational limitations on the neurobiological spatial representation of all successfully navigating animals, irrespective of species. Indeed, noise-tolerance may be an important functional constraint on the evolution of neuroarchitectural plans in the animal kingdom.  相似文献   

5.
One of the core issues of ecology is to understand the effects of landscape patterns on ecological processes. For this, we need to accurately capture changes in the fine landscape structures to avoid losing information about spatial heterogeneity. The landscape pattern indicators (LPIs) can characterize the spatial structures and give some information about landscape patterns. However, researches on LPIs had mainly focused on the horizontal structure of landscape patterns, while few studies addressed vertical relationships between the levels of hierarchical landscape structures. Thus, the ignorance of the vertical hierarchical relationships may cause serious biases and reduce LPIs'' representational ability and accuracy. The hierarchy theory about the landscape pattern structures could notably reduce the loss of hierarchical information, and the information entropy could quantitatively describe the vertical status of landscape units. Therefore, we established a new multidimensional fusion method of LPIs based on hierarchy theory and information entropy. Here, we created a general fusion formula for commonly used simple LPIs based on two‐grade land use data (whose land use classification system contains two grades/levels) and derived 3 fusion landscape pattern indicators (FLIs) with a case study. The results show that the information about fine spatial structure is captured by the fusion method. The regions with the most differences between the FLIs and the traditional LPIs are those with the largest vertical structure such as the ecological ecotones, where vertical structure was ignored before. The FLIs have a finer spatial representational ability and accuracy, not only retaining the main trend information of first‐grade land use data, but also containing the internal detail information of second‐grade land use data. Capturing finer spatial information of landscape patterns should encourage the application of fusion method, which should be suitable for more LPIs or more dimensional data. And the increased accuracy of FLIs will improve ecological models that rely on finer spatial information.  相似文献   

6.
The goal of the present study was to examine the extent to which working memory supports the maintenance of object locations during active spatial navigation. Participants were required to navigate a virtual environment and to encode the location of a target object. In the subsequent maintenance period they performed one of three secondary tasks that were designed to selectively load visual, verbal or spatial working memory subsystems. Thereafter participants re-entered the environment and navigated back to the remembered location of the target. We found that while navigation performance in participants with high navigational ability was impaired only by the spatial secondary task, navigation performance in participants with poor navigational ability was impaired equally by spatial and verbal secondary tasks. The visual secondary task had no effect on navigation performance. Our results extend current knowledge by showing that the differential engagement of working memory subsystems is determined by navigational ability.  相似文献   

7.
When learning a new language, grammar--although difficult--is very important, as grammatical rules determine the relations between the words in a sentence. There is evidence that very young infants can detect rules determining the relation between neighbouring syllables in short syllable sequences. A critical feature of all natural languages, however, is that many grammatical rules concern the dependency relation between non-neighbouring words or elements in a sentence i.e. between an auxiliary and verb inflection as in is singing. Thus, the issue of when and how children begin to recognize such non-adjacent dependencies is fundamental to our understanding of language acquisition. Here, we use brain potential measures to demonstrate that the ability to recognize dependencies between non-adjacent elements in a novel natural language is observable by the age of 4 months. Brain responses indicate that 4-month-old German infants discriminate between grammatical and ungrammatical dependencies in auditorily presented Italian sentences after only brief exposure to correct sentences of the same type. As the grammatical dependencies are realized by phonologically distinct syllables the present data most likely reflect phonologically based implicit learning mechanisms which can serve as a precursor to later grammar learning.  相似文献   

8.
Species level right-handedness is often considered to be unique to humans. Handedness is held to be interrelated to our language ability and has been used as a means of tracing the evolution of language. Here we examine handedness in 3 captive groups of bonobos (Pan paniscus) comprising 22 individuals. We found no evidence for species level handedness. Conclusions that can be drawn from these findings are: (1) species level handedness evolved after the divergence of the Pan and Homo lineages; (2) inconsistent preferences may represent precursors to human handedness, and (3) Pan may have language abilities but these cannot be measured using handedness.  相似文献   

9.
Formal language theory has been extended to two-dimensional patterns, but little is known about two-dimensional pattern perception. We first examined spontaneous two-dimensional visual pattern production by humans, gathered using a novel touch screen approach. Both spontaneous creative production and subsequent aesthetic ratings show that humans prefer ordered, symmetrical patterns over random patterns. We then further explored pattern-parsing abilities in different human groups, and compared them with pigeons. We generated visual plane patterns based on rules varying in complexity. All human groups tested, including children and individuals diagnosed with autism spectrum disorder (ASD), were able to detect violations of all production rules tested. Our ASD participants detected pattern violations with the same speed and accuracy as matched controls. Children's ability to detect violations of a relatively complex rotational rule correlated with age, whereas their ability to detect violations of a simple translational rule did not. By contrast, even with extensive training, pigeons were unable to detect orientation-based structural violations, suggesting that, unlike humans, they did not learn the underlying structural rules. Visual two-dimensional patterns offer a promising new formally-grounded way to investigate pattern production and perception in general, widely applicable across species and age groups.  相似文献   

10.
Individually identified primary motoneurons of the zebrafish embryo pioneer cell-specific peripheral motor nerves. Later, the growth cones of secondary motoneurons extend along pathways pioneered by primary motor axons. To learn whether primary motor axons are required for pathway navigation by secondary motoneurons, we ablated primary motoneurons and examined subsequent pathfinding by the growth cones of secondary motoneurons. We found that ablation of the primary motoneuron that pioneers the ventral nerve delayed ventral nerve formation, but a normal-appearing nerve eventually formed. Therefore, the secondary motoneurons that extend axons in the ventral nerve were able to pioneer that pathway in the absence of the pathway-specific primary motoneuron. In contrast, in the absence of the primary motoneuron that normally pioneers the dorsal nerve, secondary motoneurons did not pioneer a nerve in the normal location, instead they formed dorsal nerves in an atypical position. This difference in the ability of these two groups of motoneurons to pioneer their normal pathways suggests that the guidance rules followed by their growth cones may be very different. Furthermore, the observation that the atypical dorsal nerves formed in a consistent incorrect location suggests that the growth cones of the secondary motoneurons that extend dorsally make hierarchical pathway choices.  相似文献   

11.
Phylogenetic hierarchies are often composed of younger diverging lineages nested within older diverging lineages. Comparing phenotypic variation among several hierarchical levels can be used to test hypotheses about selection, phenotypic evolution and speciation. Such hierarchical comparisons have only been performed in threespine stickleback, and so here we use a hierarchical pattern of divergences between near-shore littoral and off-shore pelagic habitats to test for selection on the evolution of body form in Lepomis sunfish in lakes. We compare variation in external body form between fish from littoral and pelagic habitats at three levels: among ecomorphs within individual lake populations (intrapopulation), among populations of the same species in different lakes (interpopulation), and between bluegill and pumpkinseed sunfish species (interspecifically). Using geometric morphometric methods, we first demonstrate that interpopulation variation in mean body form of pumpkinseed sunfish varies with the presence of pelagic habitat. We then incorporate these results with existing data in order to test the similarity of phenotypic divergence between littoral and pelagic habitats at different hierarchical levels. Parallel relationships between certain body form traits (head length, caudal length and pectoral length) and habitat occur at all three levels suggesting that selection persistently acts at all levels to diversify these traits and so may contribute to species formation. For other traits (caudal depth and pectoral altitude), divergence between habitats is inconsistent at different hierarchical levels. Thus, nested biological variation in Lepomid body form reflects a history of deterministic selection and historical contingency, and also identifies traits that likely have likely influenced fitness and so serve important functions.  相似文献   

12.
克隆植物的表型可塑性与等级选择   总被引:15,自引:0,他引:15       下载免费PDF全文
表型可塑性是指生物个体生长发育过程中遭受不同环境条件作用时产生不同表型的能力。进化的发生有赖于自然选择对种群遗传可变性产生的效力以及各基因型的表型可塑性。有足够的证据说明表型可塑性的可遗传性,它实际上是进化改变的一个成分。一般通过优化模型、数量遗传模型和配子模型来研究表型可塑性的进化。植物的构型是相对固定的,并未完全抑制表型可塑性。克隆植物因其双构件性而具有更广泛的、具有重要生态适应意义的表型可塑性。构件性使克隆植物具有以分株为基本单位的等级结构,从而使克隆植物的表型选择也具有等级性。构件等级一般包含基株、克隆片段或分株系统以及分株3个典型水平。目前认为克隆植物的自然选择有两种模式,分别以等级选择模型和基因型选择模型表征。等级选择模型认为:不同的等级水平同时也是表型选择水平,环境对各水平具有作用,各水平之间也有相互作用,多重表型选择水平的净效应最终通过繁殖水平——分株传递到随后的世代中。基因型选择模型指出:克隆生长引起分株的遗传变异,并通过基株内分株间以及基株间的非随机交配引起种子库等位基因频率的改变,产生微进化。这两种选择模式均突出强调了分株水平在自然选择过程中的变异性以及在进化中的重要性,强调了克隆生长和种子繁殖对基株适合度的贡献。基因型选择模型包含等级选择模型的观点,是对等级选择模型的重要补充。克隆植物的表型可塑性表现在3个典型等级层次上,由于各层次对自然选择压力具有不同的反应,其表型变异程度一般表现出“分株层次>分株片段层次>基株层次”的等级性反应模式。很多证据表明,在构件有机体中构件具有最大的表型可塑性,植物的表型可塑性实际上是构件而非整个遗传个体的反应。这说明克隆植物的等级反应模式可能具有普适性。如果该反应模式同时还是构件等级中不同“个体”适应性可塑性反应的模式,那么可以预测:1)在克隆植物中,分株层次受到的自然选择强度也最大,并首先发生适应性可塑性变化,最终引起克隆植物微进化;2)由于较弱的有性繁殖能力,克隆植物在进化过程中的保守性可能大于非克隆植物。克隆植物等级反应模式的普适性亟待验证。  相似文献   

13.
H. H. Pattee 《Biosemiotics》2009,2(3):291-302
Umerez’s analysis made me aware of the fundamental differences in the culture of physics and molecular biology and the culture of semiotics from which the new field of biosemiotics arose. These cultures also view histories differently. Considering the evolutionary span and the many hierarchical levels of organization that their models must cover, models at different levels will require different observables and different meanings for common words, like symbol, interpretation, and language. These models as well as their histories should be viewed as complementary rather than competitive. The relation of genetic language and human language is the central issue. They are separated by 4 billion years and require entirely different models. Nevertheless, these languages have in common a unique unlimited expressive power that allows open-ended evolution and creative thought. Understanding the nature of this expressive power and how it arises remains a basic unsolved problem of biosemiotics.  相似文献   

14.
Although the contribution of Broca''s area to motor cognition is generally accepted, its exact role remains controversial. A previous functional imaging study has suggested that Broca''s area implements hierarchically organised motor behaviours and, in particular, that its anterior (Brodmann area 45, BA45) and posterior (BA44) parts process, respectively, higher and lower-level hierarchical elements. This function of Broca''s area could generalize to other cognitive functions, including language. However, because of the correlative nature of functional imaging data, the causal relationship between Broca''s region activation and its behavioural significance cannot be ascertained. To circumvent this limitation, we used on-line repetitive transcranial magnetic stimulation to disrupt neuronal processing in left BA45, left BA44 or left dorsal premotor cortex, three areas that have been shown to exhibit a phasic activation when participants performed hierarchically organised motor behaviours. The experiment was conducted in healthy volunteers performing the same two key-press sequences as those used in a previous imaging study, and which differed in terms of hierarchical organisation. The performance of the lower-order hierarchical task (Experiment #1) was unaffected by magnetic stimulation. In contrast, in the higher-order hierarchical task (Experiment #2, “superordinate” task), we found that a virtual lesion of the anterior part of Broca''s area (left BA45) delayed the processing of the cue initiating the sequence in an effector-independent way. Interestingly, in this task, the initiation cue only informed the subjects about the rules to be applied to produce the appropriate response but did not allow them to anticipate the entire motor sequence. A second important finding was a RT decrease following left PMd virtual lesions in the superordinate task, a result compatible with the view that PMd plays a critical role in impulse control. The present study therefore demonstrates the role of left BA45 in planning the higher-order hierarchical levels of motor sequences.  相似文献   

15.
The mind maps symbols and the extra-symbolic relationships amongst them to specific meanings. When symbols of various levels are placed in a hierarchical ordering, one may look at such ordered classes as distinct worlds where one class represents objects and the other represents the objects’ corresponding meanings. However, such an explanation can only be partial because the number of potential levels in such an ordering is infinite and, therefore, it engenders problems of recursion and infinite regress. There are also logical problems in the form of paradoxes that emanate from the consideration of sets of sets. Given that most prior studies only consider symbols that are classical objects in associative relationships, we argue that there is a need to also consider objects with shifting boundaries and quantum objects. We believe that objects belonging to each of these three classes—that is classical objects, objects with shifting boundaries, and quantum objects—play a role in the workings of the mind.  相似文献   

16.
This paper will discuss the origin of the human mind, and the qualitative discontinuity between human and animal cognition. We locate the source of this discontinuity within the language faculty, and thus take the origin of the mind to depend on the origin of the language faculty. We will look at one such proposal put forward by Hauser et al. (Science 298:1569-1579, 2002), which takes the evolution of a Merge trait (recursion) to solely explain the differences between human and animal cognition. We argue that the Merge-only hypothesis fails to account for various aspects of the human mind. Instead we propose that the process of lexicalisation is also unique to humans, and that this process is key to explaining the vast qualitative differences. We will argue that lexicalisation is a process through which concepts are reformatted to be able to take on semantic features and to take part in grammatical relations. These are both necessary conditions for a grammatical mind and the increased ability to express conceptual content. We therefore propose a possible explanans for the discontinuity between humans and animals, namely that merge with lexicalisation (and consequently semantic features and grammatical relations) is a minimal requirement for the human mind.  相似文献   

17.
Suzuki WA 《Neuron》2006,50(1):19-21
How do we encode, store, and retrieve new episodic memories, and what are the computations performed by the hippocampus during this process? One system that has been used to model the brain basis of episodic memory in humans is the study of spatial navigation by path integration in rodents. Here I discuss three exciting new findings focused on encoding or replay of spatial sequences in the rat hippocampus. These findings not only provide important new insight into the computations associated with encoding and consolidation of spatial trajectories, but may also have implications for understanding key aspects of human episodic memory.  相似文献   

18.
In the present study we investigated the role of spatial locative comprehension in learning and retrieving pathways when landmarks were available and when they were absent in a sample of typically developing 6- to 11-year-old children. Our results show that the more proficient children are in understanding spatial locatives the more they are able to learn pathways, retrieve them after a delay and represent them on a map when landmarks are present in the environment. These findings suggest that spatial language is crucial when individuals rely on sequences of landmarks to drive their navigation towards a given goal but that it is not involved when navigational representations based on the geometrical shape of the environment or the coding of body movements are sufficient for memorizing and recalling short pathways.  相似文献   

19.
Computer based video games are receiving great interest as a means to learn and acquire new skills. As a novel approach to teaching navigation skills in the blind, we have developed Audio-based Environment Simulator (AbES); a virtual reality environment set within the context of a video game metaphor. Despite the fact that participants were naïve to the overall purpose of the software, we found that early blind users were able to acquire relevant information regarding the spatial layout of a previously unfamiliar building using audio based cues alone. This was confirmed by a series of behavioral performance tests designed to assess the transfer of acquired spatial information to a large-scale, real-world indoor navigation task. Furthermore, learning the spatial layout through a goal directed gaming strategy allowed for the mental manipulation of spatial information as evidenced by enhanced navigation performance when compared to an explicit route learning strategy. We conclude that the immersive and highly interactive nature of the software greatly engages the blind user to actively explore the virtual environment. This in turn generates an accurate sense of a large-scale three-dimensional space and facilitates the learning and transfer of navigation skills to the physical world.  相似文献   

20.
Wayfinding, or the ability to plan and navigate a course over the landscape, is a subject of investigation in geography, neurophysiology, psychology, urban planning, and landscape design. 1 - 4 With the prevalence of GPS‐assisted navigation systems, or “wayfinders,” computer scientists are also increasingly interested in understanding how people plan their movements and guide others. However, the importance of wayfinding as a process that regulates human mobility has only recently been incorporated into archeological research design. 5 , 6 Hominin groups were able to disperse widely during the course of prehistory. The scope of these dispersals speaks to the innate navigation abilities of hominins. Their long‐term success must have depended on an ability to communicate spatial information effectively. Here, we consider the extent to which some landscapes may have been more conducive to wayfinding than others. We also describe a tool we have created for quantifying landscape legibility (sensu Gollege 2 ), a complex and under‐explored concept in archeology, with a view to investigating the impact of landscape structure on human wayfinding and thus, patterns of dispersal during prehistory. To this end, we have developed a method for quantifying legibility using a Geographic Information System (GIS) and apply it to a test case in prehistoric Iberia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号