共查询到20条相似文献,搜索用时 0 毫秒
1.
Weitang Liao Zhiyu Wang Zongjie Fu Hongkun Ma Mengdi Jiang 《Free radical research》2019,53(7):800-814
Acute kidney injury (AKI) is a major kidney disease associated with poor clinical outcomes. Oxidative stress is predominantly involved in the pathogenesis of AKI. Autophagy and the Keap1-Nrf2 signalling pathway are both involved in the oxidative-stress response. However, the cross talk between these two pathways in AKI remains unknown. Here, we found that autophagy is upregulated during cisplatin-induced AKI. In contrast with previous studies, we observed a marked increase in p62. We also found that p62 knockdown reduces autophagosome formation and the expression of LC3II. To explore the cross talk between p62 and the Keap1-Nrf2 signalling pathway, HK-2 cells were transfected with siRNA targeting Nrf2, and we found that Nrf2 knockdown significantly reduced cisplatin-induced p62 expression. Moreover, p62 knockdown significantly decreased the protein expression of Nrf2, as well as Heme Oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase l (NQO1), whereas the expression of kelch-like ECH-associated protein 1 (Keap1) was upregulated. These results indicate that p62 creates a positive feedback loop in the Keap1-Nrf2 signalling pathway. Finally, we examined the role of p62 in cell protection during cisplatin-induced oxidative stress, and we found that p62 silencing in HK-2 cells increases apoptosis and reactive oxygen species (ROS) levels, which further indicates the protective role of p62 under oxidative stress and suggests that the cytoprotection 62 mediated is in part by regulating autophagic activity or the Keap1-Nrf2 signalling pathway. Taken together, our results have demonstrated a reciprocal regulation of p62, autophagy and the Keap1-Nrf2 signalling pathway under oxidative stress, which may be a potential therapeutic target against AKI. 相似文献
2.
《Autophagy》2013,9(7):949-951
Autophagy and apoptosis are fundamental cellular pathways that are both regulated by JNK-mediated Bcl-2 phosphorylation. Several years ago, JNK-mediated Bcl-2 phosphorylation was shown to interfere with its binding to pro-apoptotic BH3 domain-containing proteins such as Bax and recently, our laboratory demonstrated that JNK1-mediated Bcl-2 phosphorylation interferes with its binding to the pro-autophagy BH3 domain-containing protein Beclin 1. Here, we examined the kinetic relationship between Bcl-2 phosphorylation, Bcl-2-Beclin 1 interactions, Bcl-2-Bax interactions and caspase 3 activation during nutrient starvation. We found that after a short period of nutrient deprivation (4 hours), a small amount of Bcl-2 phosphorylation dissociates Bcl-2 from the Bcl-2-Beclin 1 complex but not from the Bcl-2-Bax complex. After 16 hours of nutrient deprivation, Bcl-2 phosphorylation reaches maximal levels, the Bcl-2-Bax complex is disrupted, and active caspase 3 is detected, indicating the initiation of apoptosis. Based on this result, we propose a speculative model for understanding the interrelationship between autophagy and apoptosis regulated by JNK1-mediated Bcl-2 phosphorylation. According to this model, rapid Bcl-2 phosphorylation may occur initially to promote cell survival by disrupting the Bcl-2-Beclin 1 complex and activating autophagy. At a certain point when autophagy is no longer able to keep the cell alive, Bcl-2 phosphorylation might then serve to inactivate its anti-apoptotic function.Addendum to: Wei Y, Pattingre S, Sinha S, Bassik M, Levine B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 2008; 30:678-88. 相似文献
3.
Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1 总被引:23,自引:0,他引:23
Autiero M Waltenberger J Communi D Kranz A Moons L Lambrechts D Kroll J Plaisance S De Mol M Bono F Kliche S Fellbrich G Ballmer-Hofer K Maglione D Mayr-Beyrle U Dewerchin M Dombrowski S Stanimirovic D Van Hummelen P Dehio C Hicklin DJ Persico G Herbert JM Communi D Shibuya M Collen D Conway EM Carmeliet P 《Nature medicine》2003,9(7):936-943
Therapeutic angiogenesis is likely to require the administration of factors that complement each other. Activation of the receptor tyrosine kinase (RTK) Flk1 by vascular endothelial growth factor (VEGF) is crucial, but molecular interactions of other factors with VEGF and Flk1 have been studied to a limited extent. Here we report that placental growth factor (PGF, also known as PlGF) regulates inter- and intramolecular cross talk between the VEGF RTKs Flt1 and Flk1. Activation of Flt1 by PGF resulted in intermolecular transphosphorylation of Flk1, thereby amplifying VEGF-driven angiogenesis through Flk1. Even though VEGF and PGF both bind Flt1, PGF uniquely stimulated the phosphorylation of specific Flt1 tyrosine residues and the expression of distinct downstream target genes. Furthermore, the VEGF/PGF heterodimer activated intramolecular VEGF receptor cross talk through formation of Flk1/Flt1 heterodimers. The inter- and intramolecular VEGF receptor cross talk is likely to have therapeutic implications, as treatment with VEGF/PGF heterodimer or a combination of VEGF plus PGF increased ischemic myocardial angiogenesis in a mouse model that was refractory to VEGF alone. 相似文献
4.
5.
Hanxiao Ou Chuhao Liu Wenjie Feng Xinwen Xiao Shengsong Tang Zhongcheng Mo 《中国科学:生命科学英文版》2018,61(10):1212-1221
Atherosclerosis is characterized by the accumulation of lipids and deposition of fibrous elements in the vascular wall, which is the primary cause of cardiovascular diseases. Adenosine monophosphate-activated protein kinase (AMPK) is a metabolic sensor of energy metabolism that regulates multiple physiological processes, including lipid and glucose metabolism and the normalization of energy imbalances. Overwhelming evidence indicates that AMPK activation markedly attenuates atherosclerosis development. Autophagy inhibits cell apoptosis and inflammation and promotes cholesterol efflux and efferocytosis. Physiological autophagy is essential for maintaining normal cardiovascular function. Increasing evidence demonstrates that autophagy occurs in developing atherosclerotic plaques. Emerging evidence indicates that AMPK regulates autophagy via a downstream signaling pathway. The complex relationship between AMPK and autophagy has attracted the attention of many researchers because of this close relationship to atherosclerosis development. This review demonstrates the role of AMPK and autophagy in atherosclerosis. An improved understanding of this interrelationship will create novel preventive and therapeutic strategies for atherosclerosis. 相似文献
6.
In response to starvation, eukaryotic cells recover nutrients through autophagy, a lysosomal-mediated process of cytoplasmic degradation. Autophagy is known to be inhibited by TOR signaling, but the mechanisms of autophagy regulation and its role in TOR-mediated cell growth are unclear. Here, we show that signaling through TOR and its upstream regulators PI3K and Rheb is necessary and sufficient to suppress starvation-induced autophagy in the Drosophila fat body. In contrast, TOR's downstream effector S6K promotes rather than suppresses autophagy, suggesting S6K downregulation may limit autophagy during extended starvation. Despite the catabolic potential of autophagy, disruption of conserved components of the autophagic machinery, including ATG1 and ATG5, does not restore growth to TOR mutant cells. Instead, inhibition of autophagy enhances TOR mutant phenotypes, including reduced cell size, growth rate, and survival. Thus, in cells lacking TOR, autophagy plays a protective role that is dominant over its potential role as a growth suppressor. 相似文献
7.
8.
Obesity and atherosclerosis-related diseases account for over one-third of deaths in the western world. Controlling these conditions remains a major challenge due to an incomplete understanding of the molecular pathways involved. Here, we show that Wip1 phosphatase, a known negative regulator of Atm-dependent signaling, plays a major role in controlling fat accumulation and atherosclerosis in mice; specifically, Wip1 deficiency prevents both conditions. In the course of atherosclerosis, deletion of Wip1 results in suppression of macrophage conversion into foam cells, thus preventing the formation of atherosclerotic plaques. This process appears to be independent of p53 but rely on a noncanonical Atm-mTOR signaling pathway and on selective autophagy in regulation of cholesterol efflux. We propose that the Wip1-dependent control of autophagy and cholesterol efflux may provide avenues for treating obesity and atherosclerosis. 相似文献
9.
Yu CC Chiang PC Lu PH Kuo MT Wen WC Chen P Guh JH 《The Journal of nutritional biochemistry》2012,23(8):900-907
Pancreatic cancer is a malignant neoplasm of the pancreas. A mutation and constitutive activation of K-ras occurs in more than 90% of pancreatic adenocarcinomas. A successful approach for the treatment of pancreatic cancers is urgent. Antroquinonol, a ubiquinone derivative isolated from a camphor tree mushroom, Antrodia camphorata, induced a concentration-dependent inhibition of cell proliferation in pancreatic cancer PANC-1 and AsPC-1 cells. Flow cytometric analysis of DNA content by propidium iodide staining showed that antroquinonol induced G1 arrest of the cell cycle and a subsequent apoptosis. Antroquinonol inhibited Akt phosphorylation at Ser(473), the phosphorylation site critical for Akt kinase activity, and blocked the mammalian target of rapamycin (mTOR) phosphorylation at Ser(2448), a site dependent on mTOR activity. Several signals responsible for mTOR/p70S6K/4E-BP1 signaling cascades have also been examined to validate the pathway. Moreover, antroquinonol induced the down-regulation of several cell cycle regulators and mitochondrial antiapoptotic proteins. In contrast, the expressions of K-ras and its phosphorylation were significantly increased. The coimmunoprecipitation assay showed that the association of K-ras and Bcl-xL was dramatically augmented, which was indicative of apoptotic cell death. Antroquinonol also induced the cross talk between apoptosis, autophagic cell death and accelerated senescence, which was, at least partly, explained by the up-regulation of p21(Waf1/Cip1) and K-ras. In summary, the data suggest that antroquinonol induces anticancer activity in human pancreatic cancers through an inhibitory effect on PI3-kinase/Akt/mTOR pathways that in turn down-regulates cell cycle regulators. The translational inhibition causes G1 arrest of the cell cycle and an ultimate mitochondria-dependent apoptosis. Moreover, autophagic cell death and accelerated senescence also explain antroquinonol-mediated anticancer effect. 相似文献
10.
The generation of reactive oxygen species (ROS), a byproduct of aerobic energy metabolism, is maintained at physiological levels by the activity of antioxidant components. Insufficiently opposed ROS results in oxidative stress characterized by altered mitochondrial function, decreased protein activity, damage to nucleic acids, and induction of apoptosis. Elevated levels of inadequately opposed ROS induce autophagy, a major intracellular pathway that sequesters and removes damaged macromolecules and organelles. In early pregnancy, autophagy induction preserves trophoblast function in the low oxygen and nutrient placental environment. Inadequate regulation of the ROS-autophagy axis leads to abnormal autophagy activity and contributes to the development of preeclampsia and intrauterine growth restriction. ROS-autophagy interactions are altered at the end of gestation and participate in the initiation of parturition at term. The induction of high levels of ROS coupled with a failure to induce a corresponding increase in autophagy results in the triggering of preterm labor and delivery. 相似文献
11.
During macroautophagy/autophagy, SQSTM1/p62 plays dual roles as a key mediator of cargo selection and as an autophagic substrate. SQSTM1 links N-degrons and/or ubiquitinated cargoes to the autophagosome by forming homo- or hetero-oligomers, although its N-degron recognition and oligomerization mechanisms are not well characterized. We recently found that SQSTM1 is a novel type of N-recognin whose ZZ domain provides a negatively-charged binding pocket for Arg-charged N-degron (Nt-Arg), a prototype type-1 substrate. Although differences in binding affinity exist for each N-degron, SQSTM1 also interacts with type-2 N-degrons, such as Nt-Tyr and Nt-Trp. Intriguingly, interactions between SQSTM1’s ZZ domain and various N-degrons are greatly influenced by pH-dependent SQSTM1 oligomerization via its PB1 domain. Because cellular pH conditions vary from neutral to acidic depending on the stage of autophagy, the pH-dependent regulation of SQSTM1’s oligomerization must be tightly coupled with the autophagic process. 相似文献
12.
Recently, it has been established that there is a direct link between adenosine monophosphate activated protein kinase (AMPK), which is an energy sensor and is activated by glucose starvation, and Unc-51-like kinase 1 (ULK1) in triggering autophagy. Proper phosphorylation of ULK1 is crucial for ULK1/AMPK association and subsequent ULK1 functions in response to nutrient deprivation. Signaling modulated via phosphorylation often involves a flexible/unstructured or an intrinsically disordered (ID) region of proteins. Structural analyses of the ULK1 protein suggest that most of its functionally important phosphorylation sites are located in an ID region. We propose that this ID nature facilitates AMPK-mediated phosphorylation of ULK1, which may provide a mechanism for ULK1 functions in response to nutrient deprivation. Understanding how an ID region of ULK1 modulates its post-translational modifications through AMPK in regulating allosteric coupling will significantly help in defining the cellular and molecular mechanisms involved in ULK1/AMPK functions and in regulation of autophagy. 相似文献
13.
Two-component systems have emerged as important sensing/response mechanisms in higher plants. They are composed of hybrid histidine kinases, histidine-containing phosphotransfer domain proteins and response regulators that are biochemically linked by His-to-Asp phosphorelay. In plants two-component systems play a major role in cytokinin perception and signalling and contribute to ethylene signal transduction and osmosensing. Furthermore, developmental processes like megagametogenesis in Arabidopsis thaliana and flowering promotion in rice (Oryza sativa) involve elements of two-component systems. Two-component-like elements also function as components of the Arabidopsis circadian clock. Because of the molecular mode of signalling, plant two-component systems also appear to serve as intensive cross talk and signal integration machinery. In this review we summarize the present knowledge about the principles and functions of two-component systems in higher plants and address several critical points with respect to cross talk, signal integration and specificity.Abbreviations AHK Arabidopsis histidine kinase - AHP Arabidopsis histidine-containing phosphotransfer domain protein - APRR Arabidopsis pseudo response regulator - ARR Arabidopsis response regulator - CCT CONSTANS CONSTANS-like TOC1 - CKI Cytokinin insensitive - CRE Cytokinin response - CTR Constitutive triple response - Ehd Early heading date - EIN Ethylene insensitive - ERS Ethylene response sensor - ETR Ethylene resistant - GARP-motif Found in Golden2 of maize, Arabidopsis B-type response regulators and Chlamydomonas Psr1 - HPt Histidine-containing phosphotransfer domain - NLS Nuclear localization signal - phyB Phytochrome B - TCS Two-component signalling - TOC Timing of CAB (chlorophyll a/b-binding protein) expression - WOL Wooden leg 相似文献
14.
Accumulation of reactive oxygen species (ROS) is an oxidative stress to which cells respond by activating various defense mechanisms or, finally, by dying. At low levels, however, ROS act as signaling molecules in various intracellular processes. Autophagy, a process by which eukaryotic cells degrade and recycle macromolecules and organelles, has an important role in the cellular response to oxidative stress. Here, we review recent reports suggesting a regulatory role for ROS of mitochondrial origin as signaling molecules in autophagy, leading, under different circumstances, to either survival or cell death. We then discuss the relationship between mitochondria and autophagosomes and propose that mitochondria have an essential role in autophagosome biogenesis. 相似文献
15.
Manpreet Kalkat Julia Garcia Jessica Ebrahimi Megan Melland-Smith Tullia Todros Martin Post Isabella Caniggia 《Autophagy》2013,9(12):2140-2153
Autophagy is the catabolic degradation of cellular cytoplasmic constituents via the lysosomal pathway that physiologically elicits a primarily cytoprotective function, but can rapidly be upregulated in response to stressors thereby inducing cell death. We have reported that the balance between the BCL2 family proteins BOK and MCL1 regulates human trophoblast cell fate and its alteration toward cell death typifies preeclampsia. Here we demonstrate that BOK is a potent inducer of autophagy as shown by increased LC3B-II production, autophagosomal formation and lysosomal activation in HEK 293. In contrast, using JEG3 cells we showed that prosurvival MCL1 acts as a repressor of autophagy via an interaction with BECN1, which is abrogated by BOK. We found that MCL1-cleaved products, specifically MCL1c157, trigger autophagy while the splicing variant MCL1S has no effect. Treatment of JEG3 cells with nitric oxide donor SNP resulted in BOK-MCL1 rheostat dysregulation, favoring BOK accumulation, thereby inducing autophagy. Overexpression of MCL1 rescued oxidative stress-induced autophagy. Of clinical relevance, we report aberrant autophagy levels in the preeclamptic placenta due to impaired recruitment of BECN1 to MCL1. Our data provided the first evidence for a key role of the BOK-MCL1 system in regulating autophagy in the human placenta, whereby an adverse environment as seen in preeclampsia tilts the BOK-MCL1 balance toward the build-up of isoforms that triggers placental autophagy. 相似文献
16.
Autophagy is a catabolic process providing an alternative energy source for cells under stressful conditions such as starvation, growth factor deprivation or hypoxia. During involution of the bovine mammary gland autophagy is induced in mammary epithelial cells (MECs) as a survival mechanism, and is tightly regulated by hormones and growth factors necessary for gland development. In the present study we adapted the three-dimensional culture model to investigate the role of autophagy during formation of alveoli-like structures by bovine BME-UV1 MECs grown on extracellular matrix (ECM) components. Using confocal microscopy and Western-blot analyses of autophagic and apoptotic markers: LC3, and cleaved caspase-3, we showed that autophagy was induced in centrally localized cells within the developing acini. These cells lacked a direct contact with ECM, and formed a distinct population from the outer layer of cells. Induction of autophagy preceded apoptosis, but did not inhibit the formation of a hollow lumen. In the presence of steroid hormones: 17β-estradiol and progesterone, although autophagy was augmented, acini formation proceeded normally. In contrast, the major lactogenic hormone: prolactin, which supports functional differentiation of alveoli, did not alter induction of autophagy within the spheroids. BME-UV1 cells cultured on Matrigel in the presence of growth factors IGF-I and EGF formed larger, underdeveloped acini without lumens due to caspase-3 inhibition, and sustained autophagy in the centre of the spheroids, while TGF-β1 accelerated apoptosis, and increased autophagy significantly. Our observations suggest that sex steroids 17β-estradiol and progesterone, as well as growth factor TGF-β1 may regulate the development of the bovine mammary gland by inducing autophagy in addition to regulating proliferation and apoptosis of MECs. These data indicate that autophagy may play an important role during alveolargenesis. 相似文献
17.
18.
Eskelinen EL Illert AL Tanaka Y Schwarzmann G Blanz J Von Figura K Saftig P 《Molecular biology of the cell》2002,13(9):3355-3368
In LAMP-2-deficient mice autophagic vacuoles accumulate in many tissues, including liver, pancreas, muscle, and heart. Here we extend the phenotype analysis using cultured hepatocytes. In LAMP-2-deficient hepatocytes the half-life of both early and late autophagic vacuoles was prolonged as evaluated by quantitative electron microscopy. However, an endocytic tracer reached the autophagic vacuoles, indicating delivery of endo/lysosomal constituents to autophagic vacuoles. Enzyme activity measurements showed that the trafficking of some lysosomal enzymes to lysosomes was impaired. Immunoprecipitation of metabolically labeled cathepsin D indicated reduced intracellular retention and processing in the knockout cells. The steady-state level of 300-kDa mannose 6-phosphate receptor was slightly lower in LAMP-2-deficient hepatocytes, whereas that of 46-kDa mannose 6-phosphate receptor was decreased to 30% of controls due to a shorter half-life. Less receptor was found in the Golgi region and in vesicles and tubules surrounding multivesicular endosomes, suggesting impaired recycling from endosomes to the Golgi. More receptor was found in autophagic vacuoles, which may explain its shorter half-life. Our data indicate that in hepatocytes LAMP-2 deficiency either directly or indirectly leads to impaired recycling of 46-kDa mannose 6-phosphate receptors and partial mistargeting of a subset of lysosomal enzymes. Autophagic vacuoles may accumulate due to impaired capacity for lysosomal degradation. 相似文献
19.
Attila Lajos Kovacs 《FEBS letters》2010,584(7):1335-1341
Autophagy is an evolutionarily conserved intracellular catabolic system. During Caenorhabditis elegans development, autophagy plays an important role in many physiological processes, including survival under starvation conditions, modulation of life span, and regulation of necrotic cell death caused by toxic ion-channel variants. Recently, it has been demonstrated that during embryogenesis, basal levels of autophagy selectively remove a group of proteins in somatic cells, including the aggregate-prone components of germline P granules. Degradation of these protein aggregates provides a genetic model to identify essential autophagy components and also to elucidate how the autophagic machinery selectively recognizes and degrades specific targets during animal development. 相似文献
20.
Oxidative stress, perturbations in the cellular thiol level and redox balance, affects many cellular functions, including signaling pathways. This, in turn, may cause the induction of autophagy or apoptosis. The NRF2/KEAP1 signaling pathway is the main pathway responsible for cell defense against oxidative stress and maintaining the cellular redox balance at physiological levels. The relation between NRF2/KEAP1 signaling and regulation of apoptosis and autophagy is not well understood. In this hypothesis article we discuss how KEAP1 protein and its direct interactants (such as PGAM5, prothymosin α, FAC1 (BPTF), and p62) provide a molecular foundation for a possible cross-talk between NRF2/KEAP1, apoptosis, and autophagy pathways. We present a hypothesis for how NRF2/KEAP1 may interfere with the cellular apoptosis-regulatory machinery through activation of the ASK1 kinase by a KEAP1 binding partner-PGAM5. Based on very recent experimental evidence, new hypotheses for a cross-talk between NF-κB and the NRF2/KEAP1 pathway in the context of autophagy-related "molecular hub" protein p62 are also presented. The roles of KEAP1 molecular binding partners in apoptosis regulation during carcinogenesis and in neurodegenerative diseases are also discussed. 相似文献