首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tyrosine uptake has been reported to differ across brain regions. However, such studies have typically been conducted over brief intervals and in anesthetized rats; anesthesia itself affects amino acid transport across the blood-brain barrier. To address these concerns, serum, brain tissue and in vivo microdialysate tyrosine levels were compared for 0-3 h after administration of tyrosine [0.138-1.10 mmol/kg intraperitoneally (i.p.)] to groups of awake rats. Serum and brain tissue tyrosine levels increased linearly with respect to dose. Basal tissue tyrosine levels varied significantly across brain regions [medial prefrontal cortex (MPFC), striatum, hypothalamus, and cerebellum], but the rate of tyrosine uptake was similar for hypothalamus, striatum and MPFC. For brain regions in which tyrosine levels in both microdialysate and tissue were assayed, namely MPFC and striatum, there was a high degree of correlation between tyrosine levels in tissue and in microdialysate. Increasing brain tyrosine levels had no effect on DA levels in MPFC microdialysate. We conclude that (i) regional differences in the response of dopamine neurons to systemic tyrosine administration cannot be attributed to pharmacokinetic factors; (ii) in vivo microdialysate provides an excellent index over time and across a wide range of tyrosine doses, of brain tissue tyrosine levels; and (iii) increases in brain tyrosine levels do not affect basal DA release in the MPFC.  相似文献   

2.
The uptake of intravascular [123I]isopropyliodoamphetamine (IMP) and99mTc-pertechnetate into choroid plexus (CP) and brain (frontal cortex) was studied by an indicator fractionation method applied to immature, ketamine-anesthetized Sprague-Dawley rats (1.5, 2, and 3 wk). Assessment of the rate and extent of uptake of these indicators provides functional information (eg blood flow; transport) about various regions of the developing CNS. IMP uptake by lateral ventricle CP was 1.15 ml/g/min in 1.5-wk-old infant rats and gradually increased to 3.9 ml/g/min by adulthod (7–8 wk) (P<0.05); over the same postnatal period,99mTc uptake went from 2.82 to 3.18 ml/g/min. IMP uptake by cortex was 0.39 and 0.99 ml/g/min in infants and adults, respectively (P<0.05); however,99mTc uptake by cortex was only 0.07±0.01 ml/g/min at all ages, reflecting early development of blood-brain barrier (BBB) to pertechnetate. Overall, our findings indicated a progressive increase with age in the rate of uptake of IMP by CP and brain; and that99mTc penetration into CP was relatively constant and substantially greater than into cortex at all developmental stages. Thus the nature of uptake of IMP, relative to99mTc, was markedy different at the blood-cerebrospinal fluid barrier (i.e., CP) vs. the blood-brain barrier.  相似文献   

3.
Pituitary-adenylate-cyclase-activating polypeptide (PACAP) is a novel 38-amino-acid neuropeptide isolated from ovine hypothalamic tissues based on its activity of stimulating adenylate cyclase of rat pituitary cells. Binding sites for PACAP were studied in rat tissue membranes using a 27-amino-acid N-terminal derivative of PACAP [PACAP(1-27)] labelled with 125I. Particularly high specific binding sites of 125I-PACAP(1-27) were noted in the hypothalamus, brain stem, cerebellum and lung. Specific binding sites are also present in the pituitary gland, but at a lower concentration, and mainly in the anterior lobe. Very low concentration of 125I-PACAP(1-27)-binding sites were found in the colon, aorta and kidney membranes and no binding sites were detected in the pancreas and testis. Maximal binding of 125I-PACAP(1-27) was observed at pH 7.4. Interaction of 125I-PACAP(1-27) with its binding site was rapid, specific and saturable as well as time, pH and temperature dependent. PACAP(1-27) is more potent than PACAP in displacing the binding of 125I-PACAP(1-27) with brain membranes [concentration that inhibits 50% of the binding (IC50) = 7.45 +/- 1.52 nM and 11.45 +/- 3.65 nM, respectively; mean +/- SEM, n = 4] and lung membranes (IC50 = 4.41 +/- 0.87 nM and 10.68 +/- 3.09 nM, respectively). Vasoactive intestinal peptide displaced the binding of 125I-PACAP(1-27) in lung membrane (IC50 = 16.88 +/- 5.14 nM) but not in brain membranes. The equilibrium binding of 125I-PACAP(1-27) at 4 degrees C was characterized by a single class of binding site for the brain membrane with a dissociation constant (Kd) of 2.46 +/- 0.53 nM and a maximal binding capacity (Bmax) of 8.44 +/- 3.13 pmol/mg protein, but there were two classes of binding site for lung membranes with Kd of 1.02 +/- 0.51 nM and 5.19 +/- 0.99 nM, and Bmax of 2.84 +/- 0.72 pmol/mg protein and 9.13 +/- 1.89 pmol/mg protein, respectively. These findings suggest that subtypes of PACAP-binding sites exist and PACAP may have a physiological role in the hypothalamus/pituitary axis as well as in other regions of the brain and lung.  相似文献   

4.
Gamma-hydroxybutyrate (GHB) is both a therapeutic agent and a recreative drug. It has sedative, anxiolytic and euphoric effects. These effects are believed to be due to GHB-induced potentiation of cerebral GABAergic and dopaminergic activities, but the serotonergic system might also be involved. In this study, we examine the effects of pharmacological doses of GHB on the serotonergic activity in rat brain. Administration of 4.0 mmol/kg i.p. GHB to rats induces an accumulation of tryptophan and 5-HIAA (5-hydroxyindole acetic acid) in the frontal cortex, striatum and hippocampus without causing significant change in the tissue serotonin content. In the extracellular space, GHB induced a slight decrease in serotonin release. The tryptophan and 5-HIAA accumulation induced by GHB is mimicked by the GHB receptor agonist para-chlorophenyl-transhydroxycrotonate (NCS-356) and blocked by NCS-382 (6,7,8,9-tetrahydro-5-[H]-benzocycloheptene-5-ol-4-ylidene acetic acid) a selective GHB receptor antagonist. GHB induces the accumulation of either a derivative of or [3H]-tryptophan itself in the extracellular space, possibly by increasing tryptophan transport across the blood-brain barrier. The blood content of certain neutral amino-acids, including tryptophan, is also increased by peripheral GHB administration. Some of the effect of GHB could be reproduced by baclofen and reduced by the GABAB antagonist CGP 35348. Taken together, these results indicate that the GHB-induced stimulation of tissue serotonin turnover may be due to an increase in tryptophan transport to the brain and in its uptake by serotonergic cells. As the serotonergic system may be involved in the regulation of sleep, mood and anxiety, the stimulation of this system by high doses of GHB may be involved in certain neuropharmacological events induced by GHB administration.  相似文献   

5.
Ota M  Yasuno F  Ito H  Seki C  Nozaki S  Asada T  Suhara T 《Life sciences》2006,79(8):730-736
Loss of dopamine synthesis in the striatum with normal human aging has been observed in the postmortem brain. To investigate whether there is age-associated change in dopamine synthesis in the extrastriatal brain regions similar to that in the striatum, positron emission tomography studies with (11)C-labelled l-DOPA were performed on 21 normal healthy male subjects (age range 20-67 years). Decline in the tissue fraction of gray matter per region of interest was also investigated. The overall uptake rate constant for each region of interest was quantified by the Patlak plot method using the occipital cortex as reference region. Regions of interest were set on the dorsolateral prefrontal cortex, lateral temporal cortex, medial temporal cortex, occipital cortex, parietal cortex, anterior cingulate, thalamus, midbrain, caudate nucleus, and putamen. Test-retest analysis indicated good reproducibility of the overall uptake rate constant. Significant age-related declines of dopamine synthesis were observed in the striatum and extrastriatal regions except midbrain. The decline in the overall uptake rate constant was more prominent than in the tissue fraction of gray matter. These results indicate that the previously demonstrated age-related decline in striatal dopamine synthesis extends to several extrastriatal regions in normal human brain.  相似文献   

6.
Matrix metalloproteinases (MMPs) play an important role in reperfusion-induced brain injury following ischemia. To define the effects of peroxynitrite decomposition catalyst on MMP activation and neurovascular reperfusion injury, 5,10,15,20-tetrakis (2,4,6-trimethyl-3,5-disulfonatophenyl)-porphyrin iron (III) (FeTMPyP) was administered intravenously 30?min prior to reperfusion following a middle cerebral artery occlusion. Activation of MMP was assessed by in situ and gel zymography. Neurovascular injury was assessed using endothelial barrier antigen, collagen IV immunohistochemistry and Cresyl violet staining. Results were compared with sham and ischemia alone groups. We found that administration of FeTMPyP just before reperfusion after ischemia inhibited MMP-9 activation and total MMP-2 increases in the cortex and decreased active MMP-9 along with the total amounts of active MMP-9 and active MMP-2 in the striatum. Reperfusion-induced injury to the basal lamina of collagen IV-immunopositive microvasculature and neural cells in cortex and striatum was ameliorated by FeTMPyP. Losses of blood vessel endothelium produced by ischemia or reperfusion were also decreased in the cortex. These results suggest that administration of FeTMPy prior to reperfusion decreases MMP activation and neurovascular injury after prolonged cerebral ischemia. This strategy may be useful for future therapies targeted at preventing breakdown of the blood-brain barrier and hemorrhagic transformation.  相似文献   

7.
The maximum amounts of the thyroliberin in the blood and brain of rats at intranasal and intravenous administration were determined. It is found that rat hippocampal, cortical, and cerebellar membranes contain two types of specific binding sites (high- and low-affinity) for the labeled ligand. It was shown that, at intranasal and intravenous administration, maximum amounts of the thyroliberin were detected in the cerebellum and then in the cortex and hippocampus. The degradation of the thyroliberin in the rat brain and its regions at intranasal and intravenous administration was studied. It is shown that the degree of degradation and the formation of proteolytic products of the thyroliberin is different in different regions of the rat brain.  相似文献   

8.
Nonaka N  Banks WA  Mizushima H  Shioda S  Morley JE 《Peptides》2002,23(12):2197-2202
The blood–brain barrier (BBB) controls the exchange of peptides and regulatory proteins between the central nervous system (CNS) and the blood. Transport across the BBB of such regulatory substances is altered in animal models of Alzheimer’s disease. These alterations could lead to cognitive impairments or diminish their therapeutic potential. Here, we measured the transport rate of radioactively labeled pituitary adenylate cyclase-activating polypeptide (PACAP) from blood into whole brain and into 11 brain regions in three groups of mice: young (2 months old) ICR, young (2 months old) SAMP8, and aged (12 months old) SAMP8 mice. The SAMP8 is a strain which develops impaired learning and memory with aging that correlates with an age-related increase in brain levels of amyloid β protein (AβP). PACAP is a powerful neurotrophin that may have a therapeutic role in neurodegenerative diseases. We found that I-PACAP crossed the BBB fastest at the hypothalamus and the hippocampus in all three groups. Slower transport rates into the whole brain, the olfactory bulb, the hypothalamus, and the hippocampus for aged SAMP8 mice was likely related to differences both from strain and expression of AβP with aging.  相似文献   

9.
Following previous validation in baboons, we have studied the characteristics of [18F]setoperone as a radioligand for investigating serotonergic 5-hydroxytryptamine2 (5-HT2) receptors in the normal, unmedicated human brain with positron emission tomography (PET); subjects orally pretreated with therapeutic amounts of ketanserin, sulpiride, or prazosin were also studied to evaluate the specificity and sensitivity of [18F]setoperone brain specific binding. In controls (n = 10), the tracer showed a clear-cut retention in both frontal cortex and striatum (known to contain a high density of 5-HT2 receptors) relative to cerebellum (known to be devoid of 5-HT2 receptors). In the seven young controls (20-39 years old), the frontal cortex/cerebellum and striatum/cerebellum ratios increased during the first hour to reach similar values of 2.53 +/- 0.12 and 2.38 +/- 0.11 (mean +/- SEM), respectively, and were essentially stable during the second hour. Pretreatment with ketanserin (a 5-HT2 blocker) significantly reduced the frontal cortex/cerebellum ratio to 0.7-1.0 at 65 min, whereas the striatum/cerebellum ratio was significantly, but only partially, reduced. During sulpiride treatment (a D2 blocker), the frontal cortex/cerebellum ratio was not altered, whereas the striatum/cerebellum ratio was significantly, but only partially, reduced. With prazosin pretreatment (an alpha 1-adrenergic blocker), neither the frontal cortex/cerebellum nor the striatum/cerebellum ratio was modified. These data in humans with PET demonstrate that [18F]setoperone labels with high sensitivity and selectivity 5-HT2 receptors in the frontal cortex; in striata, however, binding is to both 5-HT2 and D2 receptors. The deproteinated-to-whole plasma radio-activity concentration ratio increased with time following injection. The mean percentage of intact [18F]setoperone, in deproteinated plasma, was 82, 74, 53, 45, 30, and 22% at 5, 10, 20, 30, 60, and 110 min following injection, respectively. These data indicate that [18F]setoperone (a) is significantly bound to plasma proteins and (b) is significantly metabolized into several labeled metabolites that are much more hydrophilic than setoperone and, hence, presumably do not cross the blood-brain barrier. These results suggest the suitability of [18F]setoperone data for modeling of 5-HT2 receptor binding in brain.  相似文献   

10.
11.
The blood-brain barrier permeability of the competitive N-methyl-D-aspartate receptor antagonist CGS-19755 [cis-4-(phosphonomethyl)-2-piperidine carboxylic acid] was assessed in normal and ischemic rat brain. The brain uptake index of CGS-19755 relative to iodoantipyrine was assessed using the Oldendorf technique in normal brain. The average brain uptake index in brain regions supplied by the middle cerebral artery was 0.15 +/- 0.35% (mean +/- SEM). The unidirectional clearance of CGS-19755 from plasma across the blood-brain barrier was determined from measurements of the volume of distribution of CGS-19755 in brain. These studies were performed in normal rats and in rats with focal cerebral ischemia produced by combined occlusion of the proximal middle cerebral artery and ipsilateral common carotid artery. In normal rats the regional plasma clearance across the blood-brain barrier was low, averaging 0.015 ml 100 g-1 min-1. In ischemic rats this clearance value averaged 0.019 ml 100 g-1 min-1 in the ischemic hemisphere and 0.009 ml 100 g-1 min-1 in the nonischemic hemisphere. No significant regional differences in plasma clearance of CGS-19755 were observed in either normal or ischemic rats except in cortex injured by electrocautery where a 14-fold increase in clearance across the blood-brain barrier was measured. We conclude that CGS-19755 crosses the blood-brain barrier very slowly, even in acutely ischemic tissue.  相似文献   

12.
Radioiodinated m-iodobenzylguanidine ([125I]MIBG) and tritiated norepinephrine ([3H]NE]) uptake and release were compared, in different regions of the brain of the rat. The classification of the regions according to uptake was the same for both tracers: striatum > hypothalamus > hippocampus > cortex > brainstem. Tetrabenazine (TBZ), a granular monoamine uptake inhibitor reduced the uptake in the different regions. The inhibition rate was higher for [3H]NE uptake than for [125I]MIBG. The spontaneous release was the same for [125I]MIBG and [3H]NE and was the lowest in the striatum. The K+ stimulated release of [3H]NE was more complete than the release of [125I]MIBG and was the most important in the striatum. From these results, it is inferred that MIBG enters the brain tissue via NE uptake mechanisms. It appears that MIBG is stored in the chromaffin granules, as NE, but also in the cytoplasm. A modified molecule derived from MIBG which would cross the blood-brain barrier, would then appear as a potential scintigraphic marker of monoamine uptake, storage and release.  相似文献   

13.
目的:研究孕酮(PROG)对新生大鼠低氧缺血后脑内基质金属蛋白酶3(MMP-3)表达的影响。方法:建立新生大鼠低氧缺血性脑损伤动物模型,伊文思兰(EB)染色和电镜观察新生鼠低氧缺血性脑损伤血一脑屏障的通透性改变;免疫印迹(Western blot)方法检测大脑皮层MMP-3表达。结果:电镜显示低氧缺血组血-脑屏障完整性明显破坏:EB染色结果表明低氧缺血组血-脑屏障通透性明显高于假手术组,差异极显著(P〈0.01),孕酮组血-脑屏障通透性明显低于低氧缺血组,有显著性差异(P〈0.05);Western blot结果显示低氧缺血组MMP-3蛋白表达显著高于假手术组(P〈0.01);孕酮组MMP-3蛋白表达显著低于低氧缺血组(P〈0.05)。结论:孕酮通过减少MMP-3的表达,降低血一脑屏障的损伤,这可能是其发挥脑保护作用的机制之一。  相似文献   

14.
The effect of chronic administration of lithium on the concentration of biogenic amines and some of their metabolites in striatum, hippocampus, hypothalamus, pons-medulla and parietal cortex of rat were studied. Longterm lithium treatment modifies significantly the content of indoleamines in striatum and hypothalamus with minor changes in other structures. Catecholamine levels change after the treatment in striatum, hypothalamus, pons-medulla and parietal cortex. These results indicate that lithium treatment at therapeutic doses selectively modifies the catecholamine and indoleamine contents in discrete areas of the brain.  相似文献   

15.
Thiamine is an essential, positively charged (under physiologic conditions), water-soluble vitamin requiring transport into brain. Brain thiamine deficiency has been linked to neurodegenerative disease by subsequent impairment of thiamine-dependent enzymes used in brain glucose/energy metabolism. In this report, we evaluate brain uptake and efflux of [3H]thiamine using the in situ rat brain perfusion technique. To confirm brain distribution was not related to blood-brain barrier endothelial cell uptake, we compared parenchymal and cell distribution of [3H]thiamine using capillary depletion. Our work supports previous literature findings suggesting blood-brain barrier thiamine uptake is via a carrier-mediated transport mechanism, yet extends the literature by redefining the kinetics with more sensitive methodology. Significantly, [3H]thiamine brain accumulation was influenced by a considerable efflux rate. Evaluation of the efflux mechanism demonstrated increased stimulation by the presence of increased vascular thiamine. The influx transport mechanism and efflux rate were each comparable throughout brain regions despite documented differences in glucose and thiamine metabolism. The observation that [3H]thiamine blood-brain barrier influx and efflux is regionally homogenous may have significant relevance to neurodegenerative disease linked to thiamine deficiency.  相似文献   

16.
We studied the distribution of the rat brain beta-2 adrenergic receptor (AR) mRNA, and the effects of monoamine depletions by chronic reserpine treatment using in situ hybridization histochemistry. In the control group, high level signals of beta-2 AR mRNA were observed in the parietal, frontal and piriform cortices, the medial septal nuclei, the olfactory tubercle, and the midbrain. Moderate signals were found in the striatum, the retrosplenial cortex, the hippocampus, and the thalamic nuclei. After chronic reserpine treatment, beta-2 AR mRNA levels were increased in many brain regions. The large increases were seen in the hippocampus, all thalamic nuclei, the amygdaloid nuclei, and the midbrain, followed by the striatum and the occipital cortex. The receptor up-regulation resulting from chronic monoamine depletion may be due to these increases in beta-2 AR mRNA, indicating that this up-regulation may be caused by increased receptor production rather than decreased receptor degradation.  相似文献   

17.
Pituitary adenylate cyclase-activating polypeptide (PACAP) has been shown to be a potent neuroprotective agent in global and focal ischemia. We demonstrated that PACAP could cross the blood-brain barrier (BBB) by a saturable transport system, and a systemic administration of PACAP reduced the infarct induced by unilateral middle cerebral artery occlusion (MCAO). Therefore, we studied whether this transport system is affected by MCAO in the rat. The entry of PACAP38 into the brain was compared in five groups: control, 4, 6, 24, and 48 h after MCAO. [(125)I]PACAP38 was injected intravenously and serum and various brain regions were collected 3 min later. The rate of entry into the brain of PACAP38 was also determined. We showed that PACAP entered the rat brain via a rapid transport system when the BBB is intact. After transient (2 h) unilateral MCAO, all regions of the brain, showed a selective increase in the passage of PACAP38 across the BBB after 4 h after the occlusion, which was not related to any generalized change in the permeability of the BBB, as measured with albumin. A significant decrease in the amount of PACAP38 entering the brain was observed in the 6- and 24-h groups, but it returned to the baseline level in the 48-h group. These results suggest that focal cerebral ischemia can selectively modify the passage of PACAP38 across the BBB, in both damaged and undamaged sides of the brain, and that these changes in influx are not solely due to the disruption of BBB. These findings imply the necessity of adjusting the dose of intravenously administered PACAP38 in order to maximize its therapeutic effect on the brain damage resulting from focal ischemia  相似文献   

18.
Transport of [tyrosyl-3,5-3H]enkephalin-(5-L-leucine) [( 3H]Leu-enkephalin) across the blood-brain barrier was studied in the adult guinea pig, by means of vascular perfusion of the head in vivo. The unidirectional transfer constant (Kin) estimated from the multiple-time uptake data for [3H]Leu-enkephalin ranged from 3.62 X 10(-3) to 3.63 X 10(-3) ml min-1 g-1 in the parietal cortex, caudate nucleus, and hippocampus. Transport of [3H]Leu-enkephalin was not inhibited by unlabelled L-tyrosine (the N-terminal amino acid) at a concentration as high as 5 mM, or by the inhibitor of aminopeptidase activity bacitracin (2 mM), suggesting that there was no enzymatic degradation of peptide at the blood-brain barrier. By contrast, 2 mM unlabelled Leu-enkephalin strongly inhibited the unidirectional blood-to-brain transport of [3H]Leu-enkephalin by 74-78% in the parietal cortex, caudate nucleus, and hippocampus. The tetrapeptide tyrosyl-glycyl-glycyl-phenylalanine (without the C-terminal leucine of Leu-enkephalin), at a concentration of 5 mM, caused a moderate inhibition ranging from 15 to 29% in the brain regions studied, whereas the tetrapeptide glycyl-glycyl-phenylalanyl-leucine (without the N-terminal tyrosine) at 5 mM was without effect on Leu-enkephalin transport. Unidirectional brain uptake of Leu-enkephalin was not altered in the presence of naloxone at a concentration as high as 3 mM (1 mg/ml), suggesting that there is no binding of Leu-enkephalin to opioid receptors at the blood-brain barrier. It is concluded that there is a specific transport mechanism for Leu-enkephalin at the blood-brain barrier in the guinea pig.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
HIV-1 is associated with infection and altered functions of the CNS, especially in the elderly. Most studies indicate that HIV-1 is not evenly distributed throughout the CNS but is concentrated in deep brain nuclei. This study examined whether regional or age-related differences in the permeability of the blood-brain barrier to gp120, the viral coat of HIV-1, exist. The initial concentration of gp120 in 10 brain regions correlated with vascular content in young and old mice. Susceptibility to wheatgerm agglutinin (WGA)-induced uptake of gp120, which relates to endothelial cell internalization, varied regionally, with no induction of uptake into the striatum or hypothalamus but with large increases in the cerebellum, cortex, and midbrain. Transport across the BBB, as measured by the unidirectional influx rate (Ki), also varied regionally with the hypothalamus, hippocampus, and pons-medulla showing the highest values for Ki and the striatum the lowest. These regional variations in the permeability of the BBB to gp120 could contribute to the inhomogeneous distribution of HIV-1 within the CNS whereas the failure to see differences with aging suggests other causes underlie the susceptibility of the elderly to the CNS manifestations of AIDS.  相似文献   

20.
Quercetin is widely distributed in vegetables and herbs and has been suggested to act as a neuroprotective agent. Here, we demonstrate that quercetin can accumulate enough to exert biological activity in rat brain tissues. Homogenates of perfused rat brain without detectable hemoglobin contaminants were treated with β-glucuronidase/sulfatase and the released quercetin and its methylated form were analyzed using high-performance liquid chromatography (HPLC) with three different detection methods. Both quercetin and the methylated form were detected in the brain of quercetin-administered rats using HPLC-UV and HPLC with electrochemical detection and were further identified using HPLC-tandem mass spectrometry. Oral administration of quercetin (50 mg/kg body wt) attenuated the increased oxidative stress in the hippocampus and striatum of rats exposed to chronic forced swimming. The possible transport of quercetin derivatives into the brain tissue was reproduced in vitro by using a rat brain capillary endothelial cell line, a model of the blood-brain barrier. These results show that quercetin could be a potent nutrient that can access the brain and protect it from disorders associated with oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号