共查询到20条相似文献,搜索用时 15 毫秒
1.
Javot H Lauvergeat V Santoni V Martin-Laurent F Güçlü J Vinh J Heyes J Franck KI Schäffner AR Bouchez D Maurel C 《The Plant cell》2003,15(2):509-522
Aquaporins are ubiquitous channel proteins that facilitate the transport of water across cell membranes. Aquaporins show a typically high isoform multiplicity in plants, with 35 homologs in Arabidopsis. The integrated function of plant aquaporins and the function of each individual isoform remain poorly understood. Matrix-assisted laser desorption/ionization time-of-flight analyses suggested that Plasma Membrane Intrinsic Protein2;2 (PIP2;2) is one of the abundantly expressed aquaporin isoforms in Arabidopsis root plasma membranes. Two independent Arabidopsis knockout mutants of PIP2;2 were isolated using a PCR-based strategy from a library of plant lines mutagenized by the insertion of Agrobacterium tumefaciens T-DNA. Expression in transgenic Arabidopsis of a PIP2;2 promoter-beta-glucuronidase gene fusion indicated that PIP2;2 is expressed predominantly in roots, with a strong expression in the cortex, endodermis, and stele. The hydraulic conductivity of root cortex cells, as measured with a cell pressure probe, was reduced by 25 to 30% in the two allelic PIP2;2 mutants compared with the wild type. In addition, free exudation measurements revealed a 14% decrease, with respect to wild-type values, in the osmotic hydraulic conductivity of roots excised from the two PIP2;2 mutants. Together, our data provide evidence for the contribution of a single aquaporin gene to root water uptake and identify PIP2;2 as an aquaporin specialized in osmotic fluid transport. PIP2;2 has a close homolog, PIP2;3, showing 96.8% amino acid identity. The phenotype of PIP2;2 mutants demonstrates that, despite their high homology and isoform multiplicity, plant aquaporins have evolved with nonredundant functions. 相似文献
2.
Nand Kumar Fageria 《Plant and Soil》1976,44(3):567-573
Summary Rice plants (Oryza sativa L.) were grown for 125 days in nutrient solutions maintained at constant potassium concentrations over the rate 51 to 1534 M. Data are recorded at different growth stages for relative growth rate, potassium content, absorption rate of this element per gram dry weight of roots per day and its utilization in dry-matter production. Optimum concentration for maximum growth was found to be about 256 M or 10 ppm potassium. Growth was more or less constant beyond this concentration. The maximum growth was characterized by a certain relative absorption rate (IM) for maximum growth ranging from 106 to 757 g-atom of potassium per g dry weight of roots per day, during the period of cultivation. In general the content of this element in tops as a percentage of the total content does not change appreciably either under different concentrations or at different ages. When the concentration of the solution increased, the utilization of potassium (dry-matter production per unit element content) decreased. The ratio between the relative growth rate (RGR) and relative absorption rate (IM) for maximum growth of rice ranged 1.4 during the first phase of growth to 1.3 at maturity of the crop. Higher ratios indicate an insufficient nutrient supply, lower ratios, however, either an abundant supply or a depressing effect of the solution on growth. 相似文献
3.
K. F. Nielsen G. Holm L. P. Uttrup P. A. Nielsen 《International biodeterioration & biodegradation》2004,54(4):623
The influence of relative humidity (RH) and temperature on growth and metabolism of eight microfungi on 21 different types of building material was investigated. The fungi were applied as a dry mixture to the materials, which were incubated at 5°C, 10°C, 20°C and 25°C at three humidity levels in the range 69–95% RH over 4–7 months. The lower limit for fungal growth on wood, wood composites and starch-containing materials was 78% RH at 20–25°C and increased to 90% RH at 5°C. An RH of 86% was necessary for growth on gypsum board. Ceramic materials supported growth at RH >90%, although 95% RH was needed to yield chemically detectable quantities of biomass. Almost exclusively only Penicillium, Aspergillus and Eurotium (contaminant) species grew on the materials. Production of secondary metabolites and mycotoxins decreased with humidity and the quantities of metabolites were insignificant compared with those produced at high RH (RH >95%), except in the case of Eurotium. 相似文献
4.
Summary The influence of different depths of submergence (6±1 and 3±1 cm) and moisture tensions (0, 20, 60, 350, 500 and 1000 millibar)
of lateritic sandy loam soil on root porosity and growth parameters of rice, variety IR8 was studied at two different growth
phases under controlled greenhouse conditions. Best rice growth occurred at 3±1 cm submergence and it significantly reduced
with the increase of soil moisture tension. Unlike other growth parameters, root length increased as the soil moisture tension
was raised. The development of pore spaces in rice roots decreased significantly with the increase in soil moisture tension.
However, higher root porosity was observed under greater depths of submergence. Irrespective of soil water condition, the
number and dry weight of the root system showed significant positive correlation with root porosity. Oxygen diffusion rate
in soil, which increased with the increasing moisture tension, was significantly and inversely related with the porosity of
rice root.
Contribution from the Agricultural Engineering Department, Indian Institute of Technology, Kharagpur, West Bengal, India. 相似文献
5.
Young plants of nine different greenhouse species were grown for 24 to 100 days at 55–60, 70–75, and 90–95% relative air humidity
(RH) in growth rooms. They were given a complete nutrient solution twice a week. Transpiration rate decreased significantly
by increasing RH from the lowest to the highest level inEuphorbia pulcherrima (60%), Begonia × hiemalis (54%), Saintpaulia ionantha (54%), Nephrolepis exaltata (48%), andLycopersicon esculentum (44%). The content of macro nutrient elements in the plant leaves decreased by increasing RH. This decrease was significant
only for K and Ca in Lycopersicon and Kjeldahl-N in Nephrolepis. The content of the macro nutrient elements in the growth
medium at the end of the experiment was lowest when the plants had been growing at high RH. The elements mainly affected were
N and K.
Report No. 342 相似文献
6.
Influence of temperature and water potential on root growth of white oak 总被引:11,自引:0,他引:11
Root growth of white oak ( Quercus alba L.) was observed under field conditions using a rhizotron. The effects of temperature, soil water potential, and leaf water potential were evaluated on three measures of root growth and development: root elongation rate, number of growing roots, and root growth intensity (sum of projected root area compared to the total root viewing area). Root elongation rate was linearly related to changes in soil temperature and soil water potential. At soil temperatures less than 17deg;C, temperature was the dominant factor affecting rate of growth, bat at temperatures greater than 17°C soil water potential became the important factor. Unlike root elongation rate, the number of growing roots and root growth intensity increased at cold soil temperatures (8°C) and at soil water potentials of-0.3 to -0.8 MPa. At high soil water potentials (-0.1 MPa) root elongation rate reached a maximum while the number of growing roots and root growth intensity were low. These differences showed that root growth and development were not exclusively affected by the soil environment. In addition, the relationship between root growth and predawn leaf water potential suggested that root growth was a contributing factor to the drought resistance of white oak. 相似文献
7.
Rose plants (Rosa hybrida ‘Sonia’=‘Sweet Promise’) were grown in heated (minimum night temperature 17°C), and unheated greenhouses with or without
root heating to 21°C. These trials covered 6 growth cycles extending over two winter seasons. In the heated greenhouse, root
heating did not increase yield, flower quality or plant development. In the unheated greenhouse, root-heated plants grew as
well as those in the air-heated greenhouse as long as the air temperature did not fall below 6°C. When minimum night temperatures
fell below 6°C, growth, yield and quality were reduced, irrespective of root temperature.
Daytime plant water relations were studied in plants growing at 6 different root temperatures in the unheated greenhouse.
Leaf resistance to water diffusion was lowest at optimal root temperature. Total leaf water potential was not significantly
affected by root temperature. 相似文献
8.
9.
10.
Murai-Hatano M Kuwagata T Sakurai J Nonami H Ahamed A Nagasuga K Matsunami T Fukushi K Maeshima M Okada M 《Plant & cell physiology》2008,49(9):1294-1305
The role of root temperature T(R) in regulating the water-uptake capability of rice roots and the possible relationship with aquaporins were investigated. The root hydraulic conductivity Lp(r) decreased with decreasing T(R) in a measured temperature range between 10 degrees C and 35 degrees C. A single break point (T(RC) = 15 degrees C) was detected in the Arrhenius plot for steady-state Lp(r). The temperature dependency of Lp(r) represented by activation energy was low (28 kJ mol(-1)) above T(RC), but the value is slightly higher than that for the water viscosity. Addition of an aquaporin inhibitor, HgCl(2), into root medium reduced osmotic exudation by 97% at 25 degrees C, signifying that aquaporins play a major role in regulating water uptake. Below T(RC), Lp(r) declined precipitously with decreasing T(R) (E(a) = 204 kJ mol(-1)). When T(R) is higher than T(RC), the transient time for reaching the steady-state of Lp(r) after the immediate change in T(R) (from 25 degrees C) was estimated as 10 min, while it was prolonged up to 2-3 h when T(R) < T(RC). The Lp(r) was completely recovered to the initial levels when T(R) was returned back to 25 degrees C. Immunoblot analysis using specific antibodies for the major aquaporin members of PIPs and TIPs in rice roots revealed that there were no significant changes in the abundance of aquaporins during 5 h of low temperature treatment. Considering this result and the significant inhibition of water-uptake by the aquaporin inhibitor, we hypothesize that the decrease in Lp(r) when T(R) < T(RC) was regulated by the activity of aquaporins rather than their abundance. 相似文献
11.
Effects of nitrogen nutrition and root medium water potential on growth, nitrogen uptake and osmotic adjustment of rice 总被引:2,自引:0,他引:2
The effects of nitrogen (N) nutrition on growth, N uptake and leaf osmotic potential of rice plants (Oryza sativa L. ev. IR 36) during simulated water stress were determined. Twenty-one-day-old seedlings in high (28.6 × 10 ?4M) and low (7.14 × 10 4M) N levels were exposed to decreased nutrient solution water potentials by addition of polyethylene glycol 6000. The roots were separated from the solution by a semi-permeable membrane. Nutrient solution water potential was ?0.6 × 105 Pa and was lowered stepwise to ?1 × 105, ?2 × 105, ?4 × 105 and ?6 × 105 Pa at 2-day intervals. Plant height, leaf area and shoot dry weight of high and low nitrogen plants were reduced by lower osmotic potentials of the root medium. Osmotic stress caused greater shoot growth reduction in high N than in low N plants. Stressed and unstressed plants in 7.14 × 104M N had more root dry matter than the corresponding plants in 28.6 × 104M N. Dawn leaf water potential of stressed plants was 1 × 105 to 5.5 × 105 Pa lower than nutrient solution water potential. Nitrogen-deficient water-stressed plants, however, maintained higher dawn leaf water potential than high nitrogen water-stressed plants. It is suggested that this was due to higher root-to-shoot ratios of N deficient plants. The osmotic potentials of leaves at full turgor for control plants were about 1.3 × 105 Pa higher in 7.14 × 10?4M than in 28.6 × 10?4M N and osmotic adjustment of 2.6 × 105 and 4.3 × 105 Pa was obtained in low and high N plants, respectively. The nitrogen status of plants, therefore, affected the ability of the rice plant to adjust osmotically during water stress. Plant water stress decreased transpiration and total N content in shoots of both N treatments. Reduced shoot growth as a result of water stress caused the decrease in amount of water transpired. Transpiration and N uptake were significantly correlated. Our results show that nitrogen content is reduced in water-stressed plants by the integrated effects of plant water stress per se on accumulation of dry matter and transpiring leaf area as well as the often cited changes in soil physical properties of a drying root medium. 相似文献
12.
Mineral nutrient supply can affect the hydraulic property of roots. The aim of the present work on sheepgrass (Leymus chinensis L.) plants was to test whether any changes in root hydraulic conductivity (Lp; exudation analyses) in response to a growth-limiting supply of phosphate (P) are accompanied by changes in (1) cell Lp via measuring the cell pressure, (2) the aquaporin (AQP) gene expression by performing qPCR and (3) the formation of apoplastic barriers, by analyzing suberin lamella and Casparian bands via cross-sectional analyses in roots. Plants were grown hydroponically on complete nutrient solution, containing 250 µM P, until they were 31–36 days old, and then kept for 2–3 weeks on either complete solution, or transferred on solution containing 2.5 µM (low-P) or no added P (no-P). Phosphate treatments caused significant decreases in root and cell-Lp and AQP gene expression, while the formation of apoplastic barriers increased, particularly in lateral roots. Experiments using the AQP inhibitor mercury (Hg) suggested that a significant portion of radial root water uptake in sheepgrass occurs along a path involving AQPs, and that the Lp of this path is reduced under low- and no-P. It is concluded that a growth-limiting supply of phosphate causes parallel changes in (1) cell Lp and aquaporin gene expression (decrease) and (2) apoplastic barrier formation (increase), and that the two may combine to reduce root Lp. The reduction in root Lp, in turn, facilitates an increased root-to-shoot surface area ratio, which allocates resources to the root, sourcing the limiting nutrient. 相似文献
13.
14.
The effects of low root temperature on growth and root cell water transport were compared between wild-type Arabidopsis (Arabidopsis thaliana) and plants overexpressing plasma membrane intrinsic protein 1;4 (PIP1;4) and PIP2;5. Descending root temperature from 25°C to 10°C quickly reduced cell hydraulic conductivity (L(p)) in wild-type plants but did not affect L(p) in plants overexpressing PIP1;4 and PIP2;5. Similarly, when the roots of wild-type plants were exposed to 10°C for 1 d, L(p) was lower compared with 25°C. However, there was no effect of low root temperature on L(p) in PIP1;4- and PIP2;5-overexpressing plants after 1 d of treatment. When the roots were exposed to 10°C for 5 d, L(p) was reduced in wild-type plants and in plants overexpressing PIP1;4, whereas there was still no effect in PIP2;5-overexpressing plants. These results suggest that the gating mechanism in PIP1;4 may be more sensitive to prolonged low temperature compared with PIP2;5. The reduction of L(p) at 10°C in roots of wild-type plants was partly restored to the preexposure level by 5 mm Ca(NO(3))(2) and protein phosphatase inhibitors (75 nm okadaic acid or 1 μm Na(3)VO(4)), suggesting that aquaporin phosphorylation/dephosphorylation processes were involved in this response. The temperature sensitivity of cell water transport in roots was reflected by a reduction in shoot and root growth rates in the wild-type and PIP1;4-overexpressing plants exposed to 10°C root temperature for 5 d. However, low root temperature had no effect on growth in plants overexpressing PIP2;5. These results provide strong evidence for a link between growth at low root temperature and aquaporin-mediated root water transport in Arabidopsis. 相似文献
15.
J. Stoyanova 《Biologia Plantarum》1996,38(4):537-544
Growth, nodulation and N2 fixation inGlycine max L. Merr., cv. Biison as affected by the relative humidity of air (RH) during the dark period (95 or 50 – 65 %) and day/night
root temperature (Tr) (28/28, 25/25, 18/18, 22/28, 22/18 °C) were studied. The growth parameters (plant fresh and dry mass, yield), nodulation
(nodule number and fresh mass) and N2 fixation abilities (total nitrogen content, nitrogenase activity) increased significantly with the increasing Tr. In addition, at the same Tr during the day all studied parameters were increased at the higher Tr during the dark period. Growth, nodulation and N2 fixation were significantly enhanced at low RH. The findings indicate that all studied parameters could be regulated by environmental
factors during the dark period. 相似文献
16.
Sánchez-Blanco MJ Ferrández T Navarro A Bañon S Alarcón JJ 《Journal of plant physiology》2004,161(10):1133-1142
The effect of different irrigation and air humidity conditioning treatments on the morphological and physiological responses of Rosmarinus officinalis in nursery conditions was investigated in order to evaluate the degree of hardening resulting from these conditions. Rosmarinus officinalis seedlings were pot-grown during 4 months in two greenhouses (nursery period), in which two irrigation treatments were used (control and deficit). In one of these greenhouses, air humidity was controlled using a dehumidifying system (low humidity), in the other greenhouse the air conditions were not artificially modified (control humidity). After the nursery period, the plants of all treatments were transplanted and well watered (100% water holding capacity for 1 month, transplanting period). After this period, they received no water (establishment period). At the end of the nursery period it was seen that deficit irrigation had altered the morphology of the R. officinalis plants by reducing plant height, stem diameter, leaf area, total dry weight, and root length, while humidity influenced the parameters related with plant water relations. Low air humidity and deficit irrigation-induced tissue dehydration and lower stomatal conductance values (gs). The plants subjected to deficit irrigation developed leaf osmotic adjustment, which was maintained during the transplanting period. At that time, the plants that had been exposed to deficit irrigation and low humidity showed efficient stomatal regulation (lower gs values). After transplanting and during the establishment period, these plants showed a better water status (higher psil and gs values). Their post-planting survival rate improved as a result of acclimation processes. 相似文献
17.
Summary The effects of water regime on the performance of rice were investigated in a greenhouse experiment and two field experiments. The greenhouse experiment involved four water regimes (continuous flooding, and soil drying for 16 days — begun 2, 5, and 8 weeks after transplanting — followed by reflooding), four soils, and 0 and 100 mg N/kg. Soil drying raised the redox potentials of all soils beyond the aerobic threshold. Averaged for soils and N levels, yields from treatments in which soil drying was begun at 2 and 5 weeks after transplanting were lower than that from the continuously flooded treatment, but the simple effects of soil drying on yield and N uptake depended on the soil and the growth stage of the plant. None of the soil-drying treatments had adverse effects in the soil high in N but soil drying at 2 and 5 weeks after transplanting had adverse effects in the soil low in N. The field experiments tested the effects of three water regimes (continuous flooding, alternate drying and flooding every 2 weeks, and soil drying for 2 weeks at 6 weeks after transplanting following by reflooding), and 0, 50, 100, and 150 kg N/ha on a nearly neutral clay soil, during two seasons. None of the soil-drying treatments depressed growth, yield, or N uptake by rice at any level of N in either season. Nitrate was absent after drying, so denitrification was not possible on subsequent flooding. The adverse effects on yield of alternate flooding and drying, attributed to nitrification-denitrification, may be insignificant in wetland fields carrying an actively growing rice crop. 相似文献
18.
Large diurnal and seasonal variations in methane flux from rice paddies have been found in many studies. Although these variations are considered to result from changes in methane formation rates in the soil and the transport capacity (e.g. biomass, physiological activities, and so on) of rice plants, the real reasons for such variations are as yet unclear. This study was conducted to clarify the effects of temperature on the rate of methane transport from the root zone to the atmosphere using hydroponically grown rice plants. Methane emission rates from the top of the rice plants whose roots were soaked in a solution with a high methane concentration were measured using a flow-through chamber method with the top or root of the rice plants being kept at various temperatures. The methane emission rates and methane concentrations in solution were analyzed using a diffusion model which assumes that the methane emission from a rice paddy is driven by molecular diffusion through rice plants by a concentration gradient. In the experiment where the temperature around the root was changed, the conductance for methane diffusion was typically 2.0-2.2 times larger when the solution temperature was changed from 15 to 30 °C. When the air temperature surrounding the top of the rice plant was changed, the change in conductance was much less. In addition, from measurements of methane flux and methane concentration in soil water in a lysimeter rice paddy during the 2 growing seasons of rice, it was found that the conductance for methane transport was correlated with the soil temperature at 5 cm depth. These results suggest that the temperature around the root greatly affects the methane transport process in rice plants, and that the process of passing through the root is important in determining the rate of methane transport through rice plants. 相似文献
19.
Effects of soil temperature and water on maize root growth 总被引:1,自引:0,他引:1
20.
Aluminum (Al) inhibits root growth in acidic soil, but the site of action of Al remains unclear. We investigated whether the
rate of Al accumulation correlates to Al-indeced rapid root growth inhibition in rice seedlings (Oryza sativa L. cv. Youngnam). Growth of roots was significantly inhibited by 100 μM AICI3, as early as 1 h after the treatment. The inhibition of root growth was strongly dependent on Al concentration (l50 = 20 (μM) and Al-exposure time (l50 = 23 min at 25 μM Al) in a solution of 10 mM KCI and 1 mM CaCl2 buffered by 10 mM Mes/KOH (pH 4.5). Using ICPES, massive uptake of Al by roots was observed even at 15 min treatment of 25
μM Al. The kinetics of Al uptake by the roots closely corresponded to the inhibitory effects of Al on root growth. When the
roots of seedlings were exposed to 50 (μM Al for 1 h, then sectioned and stained with hematoxylin, all cell types of the roots
showed the presence of Al in the cytoplasm. These results indicate that Al was rapidly taken up into the root cells and thereby
reduced root growth. 相似文献