首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ATP-binding cassette (ABC) transporters are encoded by large gene families in plants. Although these proteins are potentially involved in a number of diverse plant processes, currently, very little is known about their actual functions. In this paper, through a cDNA microarray screening of anonymous cDNA clones from a subtractive library, we identified an Arabidopsis gene (AtPDR12) putatively encoding a member of the pleiotropic drug resistance (PDR) subfamily of ABC transporters. AtPDR12 displayed distinct induction profiles after inoculation of plants with compatible and incompatible fungal pathogens and treatments with salicylic acid, ethylene, or methyl jasmonate. Analysis of AtPDR12 expression in a number of Arabidopsis defense signaling mutants further revealed that salicylic acid accumulation, NPR1 function, and sensitivity to jasmonates and ethylene were all required for pathogen-responsive expression of AtPDR12. Germination assays using seeds from an AtPDR12 insertion line in the presence of sclareol resulted in lower germination rates and much stronger inhibition of root elongation in the AtPDR12 insertion line than in wild-type plants. These results suggest that AtPDR12 may be functionally related to the previously identified ABC transporters SpTUR2 and NpABC1, which transport sclareol. Our data also point to a potential role for terpenoids in the Arabidopsis defensive armory.  相似文献   

2.
AtPDR12 contributes to lead resistance in Arabidopsis   总被引:12,自引:0,他引:12       下载免费PDF全文
Lee M  Lee K  Lee J  Noh EW  Lee Y 《Plant physiology》2005,138(2):827-836
Arabidopsis (Arabidopsis thaliana) contains about 130 ATP-binding cassette (ABC) proteins, which are likely to contribute to the transport of diverse materials, including toxic substances. However, the substrates of ABC transporters remain unknown in most cases. We tested which ABC transporter is involved in detoxification of lead [Pb(II)]. Among the many tested, we found that the message level of only AtPDR12 increased in both shoots and roots of Pb(II)-treated Arabidopsis, suggesting that it may be involved in the detoxification of Pb(II). AtPDR12-knockout plants (atpdr12) were used to further test this possibility. In Pb(II)-containing medium, atpdr12 plants grew less well and had higher Pb contents than those of wild-type plants. In contrast, AtPDR12-overexpressing Arabidopsis plants were more resistant to Pb(II) and had lower Pb contents than wild-type plants. The mutant phenotypes and their Pb contents, as well as the localization of the GFP:AtPDR12 fusion protein at the plasma membrane, suggest that AtPDR12 functions as a pump to exclude Pb(II) and/or Pb(II)-containing toxic compounds from the cytoplasm. Inhibition of glutathione synthesis by addition of buthionine sulfoximine to the growth medium exacerbated the Pb(II)-sensitive phenotype of atpdr12 plants, consistent with a glutathione-dependent detoxification mechanism operating in parallel with an AtPDR12-dependent mechanism. Thus, we propose that AtPDR12 is an ABC transporter that contributes to Pb(II) resistance in Arabidopsis.  相似文献   

3.
4.
课题组前期报道了一株对马铃薯具有促生防病作用的内生砖红镰刀菌Fusarium lateritium (FL617)。为拓展该菌株的应用范围,本研究以同为茄科作物的烟草为研究对象,探究了砖红镰刀菌对其生长和抗病的影响。结果表明,与对照组相比,处理组叶表面积、主根数、叶片数、叶绿素a和叶绿素b含量分别提高了5.0、3.9、1.4、1.3和1.3倍;该结果表明砖红镰刀菌对烟草具有促生作用。生测结果表明,砖红镰刀菌增强了烟草对青枯病的抗病性,其青枯病病情指数下降约30%植物激素合成相关基因表达模式分析,发现处理组植物激素合成相关基因表达显著上调(1.6-39.9倍);用青枯病菌Ralstonia solanacearum感染寄主植物后分析其水杨酸(SA)、茉莉酸(JA)和R基因信号相关基因的转录模式,发现与对照组相比,处理组SA、JA相关基因均显著上调(1.2-8.3倍),仅有一个R基因显著下调(50%)。进一步用GFP标记的菌株进行荧光定殖观察,发现植物根系周围簇生着带有绿色荧光信号的真菌菌丝,表明砖红镰刀菌可以定殖于烟草根系。综上所述,推测砖红镰刀菌F. lateritium能够通过定殖于烟草根系介导植物激素、免疫防御相关基因的表达从而影响植株的生长发育和抗病性。  相似文献   

5.
6.
7.
Genome analyses have shown that plants contain gene families encoding various components of mitogen-activated protein kinase (MAPK) signaling pathways. Previous reports have described the involvement of MAPK pathways in stress and pathogen responses of leaves and suspension-cultured cells. Here we show that auxin treatment of Arabidopsis roots transiently induced increases in protein kinase activity with characteristics of mammalian ERK-like MAPKs. The MAPK response we monitored was the result of hormonal action of biologically active auxin, rather than a stress response provoked by auxin-like compounds. Auxin-induced MAPK pathway signaling was distinguished genetically in the Arabidopsis auxin response mutant axr4, in which MAPK activation by auxin, but not by salt stress, was significantly impaired. Perturbation of MAPK signaling in roots using inhibitors of a mammalian MAPKK blocked auxin-activated transgene expression in BA3-GUS seedlings, while potentiating higher than normal levels of MAPK activation in response to auxin. Data presented here indicate that MAPK pathway signaling is positively involved in auxin response, and further suggest that interactions among MAPK signaling pathways in plants influence plant responses to auxin.  相似文献   

8.
Mitogen-activated protein kinase (MAPK) cascades play important roles in disease resistance in model plant species such as Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum). However, the importance of MAPK signaling pathways in the disease resistance of crops is still largely uninvestigated. To better understand the role of MAPK signaling pathways in disease resistance in soybean (Glycine max), 13, nine, and 10 genes encoding distinct MAPKs, MAPKKs, and MAPKKKs, respectively, were silenced using virus-induced gene silencing mediated by Bean pod mottle virus. Among the plants silenced for various MAPKs, MAPKKs, and MAPKKKs, those in which GmMAPK4 homologs (GmMPK4s) were silenced displayed strong phenotypes including stunted stature and spontaneous cell death on the leaves and stems, the characteristic hallmarks of activated defense responses. Microarray analysis showed that genes involved in defense responses, such as those in salicylic acid (SA) signaling pathways, were significantly up-regulated in GmMPK4-silenced plants, whereas genes involved in growth and development, such as those in auxin signaling pathways and in cell cycle and proliferation, were significantly down-regulated. As expected, SA and hydrogen peroxide accumulation was significantly increased in GmMPK4-silenced plants. Accordingly, GmMPK4-silenced plants were more resistant to downy mildew and Soybean mosaic virus compared with vector control plants. Using bimolecular fluorescence complementation analysis and in vitro kinase assays, we determined that GmMKK1 and GmMKK2 might function upstream of GmMPK4. Taken together, our results indicate that GmMPK4s negatively regulate SA accumulation and defense response but positively regulate plant growth and development, and their functions are conserved across plant species.  相似文献   

9.
Selectable markers of bacterial origin such as the neomycin phosphotransferase type II gene, which can confer kanamycin resistance to transgenic plants, represent an invaluable tool for plant engineering. However, since all currently used antibiotic-resistance genes are of bacterial origin, there have been concerns about horizontal gene transfer from transgenic plants back to bacteria, which may result in antibiotic resistance. Here we characterize a plant gene, Atwbc19, the gene that encodes an Arabidopsis thaliana ATP binding cassette (ABC) transporter and confers antibiotic resistance to transgenic plants. The mechanism of resistance is novel, and the levels of resistance achieved are comparable to those attained through expression of bacterial antibiotic-resistance genes in transgenic tobacco using the CaMV 35S promoter. Because ABC transporters are endogenous to plants, the use of Atwbc19 as a selectable marker in transgenic plants may provide a practical alternative to current bacterial marker genes in terms of the risk for horizontal transfer of resistance genes.  相似文献   

10.
11.
12.
Mitogen-activated protein kinase (MAPK) phosphatases are important negative regulators in the MAPK signaling pathways responsible for many essential processes in plants, including development, stress management and hormonal responses. A mutation in INDOLE-3-BUTYRIC ACID-RESPONSE5 ( IBR5 ), which is predicted to encode a dual-specificity MAPK phosphatase, was previously reported to confer reduced sensitivity to auxin and ABA in Arabidopsis roots. To further characterize IBR5, and to understand how it might help integrate MAPK cascades with hormone signaling, we searched for IBR5-interacting MAPKs. Yeast two-hybrid assays, in vitro binding assays and in vivo protein co-immunoprecipitation studies demonstrated that MPK12 and IBR5 are physically coupled. The C-terminus of MPK12 appears to be essential for its interaction with IBR5, and in vitro dephosphorylation and immunocomplex kinase assays indicated that activated MPK12 is efficiently dephosphorylated and inactivated by IBR5. MPK12 and IBR5 mRNAs are both widely expressed across Arabidopsis tissues, and at the subcellular level each protein is predominantly localized in the nucleus. In transgenic plants with reduced expression of the MPK12 gene, root growth is hypersensitive to exogenous auxins, but shows normal ABA sensitivity. MPK12 suppression in an ibr5 background partially complements the ibr5 auxin-insensitivity phenotype. Our results demonstrate that IBR5 is a bona fide MAPK phosphatase, and suggest that MPK12 is both a physiological substrate of IBR5 and a novel negative regulator of auxin signaling in Arabidopsis.  相似文献   

13.
The mitogen-activated protein kinase (MAPK) cascade is involved in responses to biotic and abiotic stress in plants. In this study, we isolated a new MAPK, NtMPK4, which is a tobacco homolog of Arabidopsis MPK4 (AtMPK4). NtMPK4 was activated by wounding along with two other wound-responsive tobacco MAPKs, WIPK and SIPK. We found that NtMPK4 was activated by salicylic acid-induced protein kinase kinase (SIPKK), which has been isolated as an SIPK-interacting MAPK kinase. In NtMPK4 activity-suppressed tobacco, wound-induced expression of jasmonic acid (JA)-responsive genes was inhibited. NtMPK4-silenced plants showed enhanced sensitivity to ozone. Inversely, transgenic tobacco plants, in which SIPKK or the constitutively active type SIPKK(EE) was overexpressed, exhibited greater responsiveness to wounding with enhanced resistance to ozone. We further found that NtMPK4 was expressed preferentially in epidermis, and the enhanced sensitivity to ozone in NtMPK4-silenced plants was caused by an abnormal regulation of stomatal closure in an ABA-independent manner. These results suggest that NtMPK4 is involved in JA signaling and in stomatal movement.  相似文献   

14.
Bacterial wilt, which is a major soil-borne disease with widespread occurrence, poses a severe danger in the field of tobacco production. However, there is very limited knowledge on bacterial wilt-induced microecological changes in the tobacco root system and on the interaction between Ralstonia solanacearum and fungal communities in the rhizosphere soil. Thus, in this study, changes in fungal communities in the rhizosphere soil of tobaccos with bacterial wilt were studied by 18S rRNA gene sequencing. The community composition of fungi in bacterial wilt-infected soil and healthy soil in two tobacco areas (Gengma and Boshang, Lincang City, Yunnan Province, China) was studied through the paired comparison method in July 2019. The results showed that there were significant differences in fungal community composition between the rhizosphere soil of diseased plants and healthy plants. The changes in the composition and diversity of fungal communities in the rhizosphere soil of tobaccos are vital characteristics of tobaccos with bacterial wilt, and the imbalance in the rhizosphere microecosystem of tobacco plants may further aggravate the disease.  相似文献   

15.
16.
Studies of the tomato Fusarium wilt test for screening chemotherapeutants were made by the writer at the Connecticut Agricultural Experiment Station, U.S.A., during 1951. The test compounds were applied on ten successive days to the roots of tomato plants growing in sand. The plants were then uprooted, their roots washed and dipped in a bud-cell suspension of F. oxysporum lycopersici and the plants re-potted. A standardized assessment of wilt and vascular discoloration was made some 21 days later, by which time the control plants were usually severely diseased. Several compounds greatly reduced disease severity.  相似文献   

17.
The mitogen-activated protein (MAP) kinase cascade is an important signaling module which is involved in biotic and abiotic stress responses as well as plant growth and development. In this study, we identified 17 tobacco MAPKs including 11 novel tobacco MAPK genes that have not been identified before. Comparative analysis with MAPK gene families from other plants, such as Athaliana thaliana, rice and poplar, suggested that tobacco MAPKs (such as NtMPK1, NtMPK3 and NtMPK8) might play similar functions in response to abiotic and biotic stresses. QRT-PCR analysis revealed that a total of 14 NtMPKs were regulated by SA and/or MeJA, suggesting their potential roles involved in plant defense response. In addition, 6 NtMPKs were induced by drought treatment, implying their roles in response to drought stress. Our results indicated that most of tobacco MAPK might be involved in plant defense response, which provides the basis for further analysis on physiological functions of tobacco MAPKs.  相似文献   

18.
19.
20.
Nicotianamine and nicotianamine synthase (NAS) play key roles in iron nutrition in all higher plants. However, the mechanism underlying the regulation of NAS expression differs among plant species. Sequences homologous to iron deficiency-responsive elements (IDEs), i.e., cis-acting elements, are found on the promoters of these genes. We aimed to verify the interspecies compatibility of the Fe-deficiency response of NAS1 genes and understand the universal mechanisms that regulate their expression patterns in higher plants. Therefore, we introduced the graminaceous (Hordeum vulgare L. and Oryza sativa L.) NAS1 promoter::GUS into dicots (Nicotiana tabacum L. and Arabidopsis thaliana L.). Fe deficiency induced HvNAS1 expression in the shoots and roots when introduced into rice. HvNAS1 promoter::GUS and OsNAS1 promoter::GUS induced strong expression of GUS under Fe-deficient conditions in transformed tobacco. In contrast, these promoters only definitely functioned in Arabidopsis transformants. These results suggest that some Fe nutrition-related trans-factors are not compatible between graminaceous plants and Arabidopsis. HvNAS1 promoter::GUS induced GUS activity only in the roots of transformed tobacco under Fe-deficient conditions. On the other hand, OsNAS1 promoter::GUS induced GUS activity in both the roots and shoots of transformed tobacco under conditions of Fe deficiency. In tobacco transformants, the induction of GUS activity was induced earlier in the shoots than roots. These results suggest that the HvNAS1 and OsNAS1 promoters are compatible with Fe-acquisition-related trans-factors in the roots of tobacco and that the OsNAS1 promoter is also compatible with some shoot-specific Fe deficiency-related trans-factors in tobacco.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号