首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Abstract

The optimal fermentation medium and conditions for mycelial growth and water-soluble exo-polysaccharides production by Isaria farinosa B05 were investigated. The medium components and fermentation conditions were optimized according to the one at a time method, while the concentration of medium components was determined by the orthogonal matrix method. The results showed that the optimal fermentation medium was as follows: sucrose 3.5% (w/v), peptone 0.5%, yeast extract 0.2%, K2HPO4 0.1%, and MgSO4 0.05%. The suitable fermentation conditions were as follows: initial pH 7.0, temperature 25°C, medium volume 75 mL/250 mL, inoculum volume 5% (v/v), time 5d. In such optimal nutrition and environmental conditions, the maximal mycelial yield was 2.124 g/100 mL after 4 day's fermentation, while maximal water-soluble exo-polysaccharides production reached 2.144 g/L after 5 day's fermentation.  相似文献   

3.
Fermentative production of spiramycins by Streptomyces ambofaciens has been performed using fermentation media of different chemical compositions. Medium I was selected from nine media as the best for production of high titres of spiramycins. Biochemical changes which occurred during fermentative production of spiramycins revealed that adjustment of the initial pH value of the medium was very important. The initial pH value of the fermentation medium which allowed the organism to produce a good yield of antibiotic was 6.5. The fermentation period affected the formation of spiramycins, and the maximum incubation period required for the fermentation process was 120 h. The role of inoculum on spiramycin yield showed that it was better to inoculate the fermentation medium with vegetative cells of Streptomyces ambofaciens rather with spores. The carbon source influenced spiramycin biosynthesis: dextrin was the best carbon source and stimulated the organism to form high titres of antibiotics. The best concentrations of dextrin and glucose for increased antibiotic yields were 25 and 15 gl?1, respectively. Organic sources in the fermentation medium were more efficient than inorganic nitrogen sources for spiramycin formation. Fodder yeast was the best organic nitrogen source in fermentative production of spiramycins. The maximal concentrations of fodder yeast, soybean meal, peptone, Ca(NO3)2 and NH4NO3 for increased antibiotic yield were 6.5, 6.0, 4.0, 10.0 and 4.0 gl?1, respectively.  相似文献   

4.
Exploration of novel active anti-tumor compounds from marine microbes for pharmaceutical applications has been a continuously hot spot in natural product research. Bacterial growth and metabolites may greatly vary under different culture conditions. In this study, the effects of different culture conditions and medium components on the growth and bioactive metabolites of Serratia proteamacula 657, an anti-tumor bacterium found in our previous study, were investigated. The results showed that lower temperature, weak acidic condition and solid fermentation favored the bacterial growth and the production of active compounds. Four components in the culture medium, NaCl, peptone, yeast extract and MgSO4, were found important to the bacterial growth and active compounds production in medium optimization. Under the optimized condition of solid state fermentation at pH 6.0–7.0, 23–25 °C, with the MgSO4-free medium containing 10.0 g/L peptone, 1.0 g/L yeast extract and 19.45 g/L NaCl, the antitumor activity of S. proteamacula 657 and the yield of crude extracts increased about 15 times and 6 times than the sample obtained in the original liquid fermentation, respectively. The active components in the metabolites of S. proteamacula 657 were identified as a homolog of prodigiosin, a red bacterial pigment, based on the analysis of the NMR and GC–MS. The bacterium S. proteamacula 657, which is adapted to lower temperature, produced prodigiosin-like pigments with highly antitumor activity, suggesting the bacterium is a potential new source for prodigiosin production.  相似文献   

5.
Cephalosporium acremonium was cultivated in fermentation medium containing sucrose or methyl oleate as a carbon source for cephalosporin C production. The level of antibiotic production was 48 g of cephalosporin C per liter under optimum conditions when methyl oleate was used. The C18:1 (oleic acid) methyl ester appeared to be utilized faster than the C18:2 (linoleic acid) methyl ester in fermentation broth. Physiological characteristics of C. acremonium were investigated by determining the fatty acid composition of the total cellular free lipid. Significant changes in cellular fatty acid composition occurred during inoculum cultivation and fermentation. The percentage of C18:1 increased from 19.1 to 38.5%, but the percentage of C18:2 decreased from 56.7 to 36.1%, and there was an increase in pH during inoculum cultivation. The cellular fatty acid composition of C. acremonium grown in fermentation medium containing methyl oleate (methyl oleate medium) was significantly different from that in fermentation medium containing sucrose (sucrose medium). The major fatty acids detected were C16:0 (palmitic acid), C18:1, and C18:2. In methyl oleate medium, the ratio of C18:1 to C18:2 increased from 0.34 to 1.37, while the cell morphology changed from hyphae to arthrospores and conidia. In contrast, in sucrose medium, the ratio of C18:1 to C18:2 decreased from 0.70 to 0.43, and most of the cells remained hyphal at the end of fermentation. We observed that hyphae contained a higher proportion of C18:2 but arthrospores and conidia contained a higher proportion of C18:1.  相似文献   

6.
The optimal fermentation medium and conditions for mycelial growth and water-soluble exo-polysaccharides production by Isaria farinosa B05 were investigated. The medium components and fermentation conditions were optimized according to the one at a time method, while the concentration of medium components was determined by the orthogonal matrix method. The results showed that the optimal fermentation medium was as follows: sucrose 3.5% (w/v), peptone 0.5%, yeast extract 0.2%, K(2)HPO(4) 0.1%, and MgSO(4) 0.05%. The suitable fermentation conditions were as follows: initial pH 7.0, temperature 25 degrees C, medium volume 75 mL/250 mL, inoculum volume 5% (v/v), time 5d. In such optimal nutrition and environmental conditions, the maximal mycelial yield was 2.124 g/100 mL after 4 day's fermentation, while maximal water-soluble exo-polysaccharides production reached 2.144 g/L after 5 day's fermentation.  相似文献   

7.
Photoautotrophic and mixotrophic growth of Lemna paucicostata Hegelm. 6746 (formerly Lemna perpusilla Torr. 6746) was investigated to establish standardized conditions for biochemical studies. Optimal temperature for growth was 29 to 30 C. The medium used previously (Datko AH, Mudd SH, Giovanelli J 1977 J Biol Chem 252: 3436-3445) was modified by inclusion of NH4Cl, decreasing macronutrient and ethylenediamine tetraacetate concentration, increasing micronutrient concentration, and inclusion of bicarbonate (for photoautotrophic growth) or 2-(N-morpholino)ethanesulfonic acid (for mixotrophic growth) buffers. Varying the sulfate concentration between 14 and 1 millimolar had no effect on growth. For photoautotrophic growth in the new medium (medium 4), the effects of CO2 concentration, light intensity, and pH were measured. Under the optimal conditions, a multiplication rate (MR) of 300 to 315, equivalent to a doubling time of 23 to 24 hours was obtained. Addition of glutamine or asparagine did not increase this MR. For mixotrophic growth in low light, the effects of sucrose concentration and pH were determined. Under optimal conditions, MR was 210. A concentration of sucrose less than maximal for growth was chosen for the medium for experiments which will include 14C-labeling of intermediates. MR under these conditions was 184. Growth was equally good in medium 4 and in half-strength Hutner's medium when sulfate was high (0.4 to 1 millimolar), but better in medium 4 when sulfate was low (20 micromolar). Growth rates could be restored to normal in half-strength Hutner's with low sulfate by decreasing the molybdate concentration.  相似文献   

8.
Optimization of bacteriocin production by Lactobacillus plantarum LPCO10 was explored by an integral statistical approach. In a prospective series of experiments, glucose and NaCl concentrations in the culture medium, inoculum size, aeration of the culture, and growth temperature were statistically combined using an experimental 235-2 fractional factorial two-level design and tested for their influence on maximal bacteriocin production by L. plantarum LPCO10. After the values for the less-influential variables were fixed, NaCl concentration, inoculum size, and temperature were selected to study their optimal relationship for maximal bacteriocin production. This was achieved by a new experimental 323-1 fractional factorial three-level design which was subsequently used to build response surfaces and analyzed for both linear and quadratic effects. Results obtained indicated that the best conditions for bacteriocin production were shown with temperatures ranging from 22 to 27°C, salt concentration from 2.3 to 2.5%, and L. plantarum LPCO10 inoculum size ranging from 107.3 to 107.4 CFU/ml, fixing the initial glucose concentration at 2%, with no aeration of the culture. Under these optimal conditions, about 3.2 × 104 times more bacteriocin per liter of culture medium was obtained than that used to initially purify plantaricin S from L. plantarum LPCO10 to homogeneity. These results indicated the importance of this study in obtaining maximal production of bacteriocins from L. plantarum LPCO10 so that bacteriocins can be used as preservatives in canned foods.  相似文献   

9.
The addition of Ca2+ (as CaCl2) in optimal concentrations (0.75 to 2.0 mM) to a fermentation medium with a trace contaminating concentration of Ca2+ (0.025 mM) led to the rapid production of higher concentrations of ethanol by Saccharomyces cerevisiae, Saccharomyces bayanus, and Kluyveromyces marxianus. The positive effect of calcium supplementation (0.75 mM) on alcoholic fermentation by S. bayanus was explained by the increase in its ethanol tolerance. The ethanol inhibition of growth and fermentation followed the equation μxi = μoi [1 - (X/Xmi)]ni, where μoi and μxi are, respectively, the specific growth (i = g) and fermentation (i = f) rates in the absence or presence of a concentration (X) of added ethanol, and Xmi is the maximal concentration of ethanol which allows growth or fermentation. The toxic power is given by ni. In Ca2+ - supplemented medium (0.75 mM), ng = 0.42 for growth and nf = 0.43 for fermentation compared with 0.52 and 0.55, respectively, in unsupplemented medium; for both media, Xmg = 10% (vol/vol) and Xmf = 13% (vol/vol). For lethal concentrations of ethanol, the specific death rates were minimal for cells that were grown and incubated with ethanol in medium with an optimal concentration of Ca2+, maximal for cells grown and incubated with ethanol in unsupplemented medium, and intermediate for cells grown in unsupplemented medium and incubated with ethanol in calcium-supplemented medium. The effect of Ca2+ on the acidification curve of energized cells in the presence of ethanol was found to be closely associated with its protective effect on growth, fermentation, and viability.  相似文献   

10.
Proteinase production by a species of Cephalosporium   总被引:7,自引:4,他引:3       下载免费PDF全文
An unidentified Cephalosporium species produced an extracellular proteinase when grown in a variety of fermentation media under submerged culture conditions. Maximal enzyme yields were obtained in a medium containing 2% corn meal, 1% soybean meal, and 0.5% CaCO3 in tap water. Optimal proteinase production in this medium occurred within a 72- to 96-hr growth period. High enzyme yields were also attained with media in which cottonseed meal, Fermatein, Pharmamedia, or soybean-α-protein was substituted for the soybean meal. The substitution of these ingredients for the corn meal resulted in significantly decreased proteinase yields. The addition of minerals or vitamins to the corn meal-soybean meal fermentation medium failed to enhance proteinase production. The enzyme was most active in an alkaline environment; maximal caseinolysis occurred at pH 7.5, whereas pH 8.5 was optimal for either hemoglobin or β-lactoglobulin hydrolysis. Enzymatic activity was also noted with either bovine albumin fraction V or soybean-α-protein substrates, whereas ovalbumin was not susceptible to enzymatic attack. The enzyme was stable within the pH range of 3.0 to 9.5 at 25 C for 2 hr, and at 5 C for 24 hr. The proteinase was stable upon heating for 10 min at 35 to 45 C, but it was totally inactivated at 70 C. The proteinase was unaffected by soybean inhibitor, partially inactivated by lima bean inhibitor, and completely inactivated by ovomucoid inhibitor.  相似文献   

11.
In order to understand the effect of pH on growth and ethanol production in ethanologenic Escherichia coli, we investigated the kinetic behavior of ethanologenic E. coli during alcoholic fermentation of glucose or xylose in a controlled pH environment and the fermentation of glucose, xylose, or their mixtures without pH control. Based on the Monod equation, an unstructured and unsegregated kinetic model was proposed as a function of the pH of the fermentation medium. The pH effects on cell growth, sugar consumption, and ethanol production were taken into account in the proposed model. Both cell growth and ethanol production were found to be significantly influenced by the pH of the fermentation medium. The optimal pH range for ethanol production by ethanologenic E. coli on either glucose or xylose was 6.0–6.5. The highest value of the maximum specific growth rate (μ m) was obtained at pH 7.0. In the kinetic model of the fermentations of the sugar mixture, two inhibition terms related to glucose concentrations were included in both the cell growth and ethanol production equations because of the strong inhibitions of glucose and glucose metabolites on xylose metabolism. A good fit was found between model predictions and experimental data for both single-sugar and mixed-sugar fermentations without pH control within the experimental domain.  相似文献   

12.
The pyrenomyceteMelanconis flavovirens under submerged cultivation produced antibiotics active against both bacteria and fungi. Glucose and corn-steep liquor were the best and N sources for the antibiotic production, respectively. Supplementation with Tween-80 and ethylene glycol stimulated both antifungal and antibacterial antibiotic production, whereas oleic acid only the antifungal one. Addition of K2HPO4 also showed a positive effect. The optimal conditions for fermentation of the antifungal component are given.  相似文献   

13.
With consideration of sustainable development, this study explored the fermentation strategy of cost-effective production of biodegradable polymer- polyhydroxyalanoates (PHAs) for feasibility of eco-friendly materials recycling during wastewater treatment. As prior studies showed that Aeromonas hydrophila NIU01 was a promising PHA-producing bacterium, this follow-up study tended to seek for optimal nutrient-supplementation strategy to stimulate maximal PHA accumulation of A. hydrophila NIU01 for cellular production. As maximal PHA production took place at growth-limiting conditions, two-stage fermentation was much more appropriate for practical applications compared to batch mode of operation. Moreover, this optimal two-stage operation strategy maximized cellular PHA production under nitrogen-limiting conditions at C/N molar ratio of 60/1. For materials recycling, this operation strategy could be applicable to simultaneous PHB production and wastewater decolorization using A. hydrophila.  相似文献   

14.
耐盐性毒死蜱降解菌HY-1 的产酶培养基及发酵条件优化   总被引:1,自引:0,他引:1  
为了明确生化处理和微生物降解的关系,通过增加耐盐菌的比例可以提高农药废水生化处理效果。从农药厂废水中分离到1株耐盐性毒死蜱降解菌——蜡状芽孢杆菌(Bacillus cereus HY-1),以从该菌中提取到的降解酶比活力为指标,进行产酶培养基和发酵条件的优化研究。通过单一因素试验和正交试验,对细菌HY-1的产酸培养基和发酵条件进行了优化。运用SPSS软件进行结果分析,所获优化培养基配方为:葡萄糖6.0 g/L,胰蛋白胨2.2 g/L,K2HPO4 2.0 g/L,KH2PO4 0.2 g/L,MgSO4.7H2O 0.1 g/L,NaCl 0.1 g/L和微量元素溶液2 mL/L。得到菌株发酵培养的最佳优化条件为:种子液培养时间为16 h,发酵培养时间为18 h,接种量为1%(V/V),发酵培养基初始pH值为7.0。氯化钠浓度为0?30 g/L时降解酶比活力不受影响,这是已报道的耐盐性最强的一株毒死蜱降解菌。  相似文献   

15.
The optimal fermentation temperature, pH, and Bacto-casitone (Difco Laboratories, Detroit, Mich.) concentration for production of exopolysaccharide by Lactobacillus delbrueckii subsp. bulgaricus RR in a semidefined medium were determined by using response surface methods. The design consisted of 20 experiments, 15 unique combinations, and five replications. All fermentations were conducted in a fermentor with a 2.5-liter working volume and were terminated when 90% of the glucose in the medium had been consumed. The population of L. delbrueckii subsp. bulgaricus RR and exopolysaccharide content were measured at the end of each fermentation. The optimum temperature, pH, and Bacto-casitone concentration for exopolysaccharide production were 38°C, 5, and 30 g/liter, respectively, with a predicted yield of 295 mg of exopolysaccharide/liter. The actual yield under these conditions was 354 mg of exopolysaccharide/liter, which was within the 95% confidence interval (217 to 374 mg of exopolysaccharide/liter). An additional experiment conducted under optimum conditions showed that exopolysaccharide production was growth associated, with a specific production at the endpoint of 101.4 mg/g of dry cells. Finally, to obtain material for further characterization, a 100-liter fermentation was conducted under optimum conditions. Twenty-nine grams of exopolysaccharide was isolated from centrifuged, ultrafiltered fermentation broth by ethanol precipitation.  相似文献   

16.
Culture conditions in growth and esterase production by a newly isolated Lactobacillus casei CL96 were investigated using a dextrose-free MRS medium supplemented with different sugars in a 2 l fermentor at different pHs (4.0-9.0) and temperatures (20-50°C). The optimal growth was obtained in basal MRS medium containing 1% (w/v) lactose at pH 7.0 and 30°C. The maximal esterase production was obtained intracellularly during the late logarithmic phase, but during the stationary phase, the esterase activity was released in the culture medium. The enzyme activity was maximal at pH 7.0 and 37°C. Among various substrates (C2-C16) tested, the highest activity was towards C6 and C8. Though the enzyme was produced constitutively, the tributylin induced the enzyme production by 2.5 fold. L. casei CL96 esterase was very active at neutral pH and ambient temperature and might be suitable for biotechnological applications in the dairy industry.  相似文献   

17.
An ergot fungus Verticillium kibiense E18 produced two cationic peptides, ɛ-poly-l-lysine (ePL) and poly(l-arginyl-d-histidine) (PRH). The ePL was used as a food preservative, and it was expected that PRH would be used as a novel material, such as cationic and antimicrobial peptide. To enhance PRH production of strain E18, various culture conditions were investigated. Glucose was a suitable carbon source for PRH production, although glycerol was a suitable carbon source for growth. The cultivation temperature significantly influenced both cell growth and PRH production. The optimal temperatures for cell growth and PRH production were 28 and 30 °C, respectively. Moreover, strain E18 produced more PRH when an additional 5.0 μg/L FeSO4·7H2O was added to the production medium. Under optimal conditions, strain E18 enhanced PRH production, while suppressing ePL production. The maximum PRH production was 183.9 mg/L, which is approximately 60-fold higher than that of the initial culture condition.  相似文献   

18.
Furfural is one of main inhibitors in hemicellulose hydrolysates such as xylose mother liquor, but its positive effect on the production of validamycin-A (VAL-A), a widely used agricultural antibiotic, was interestingly found in fermentation of Streptomyces hygroscopicus 5008. The furfural level in medium up to 1 g/L was effectively converted to furfuryl alcohol and furoic acid by the microorganism. Both intracellular H2O2 level and ValG enzyme activity of the cells were enhanced by furfural addition. Xylose mother liquor medium with supplementation of about 1 g/L furfural could enhance the VAL-A titer by 39 %. This work is helpful to VAL-A fermentation using the hemicellulose hydrolysate.  相似文献   

19.
The effects of glucose consumption rate (qs) and oxygen limitation on the control of cephalosporin C (Ceph C) biosynthesis and the activities of deacetoxycephalosporin C synthetase/hydroxylase (DAOC-SH) and acetyl coenzyme A: deacetylcephalosporin C o-acetyltransferase (DAC-AT) were investigated in cultivations of the highly productive Cephalosporium acremonium strain TR87 under conditions similar to those used in industrial production. A carefully optimised time course of qs during the first part of fed batch cultivations was essential for maximal Ceph C production. The actual glucose concentration in the medium was of secondary importance. A decrease of qs between 20 and 35 h of cultivation was found to induce the early onset of antibiotic synthesis. By subsequently maintaining qs at a relatively low level using a controlled feed of glucose and a limiting amount of phosphate, maximal production rates were obtained. Oxygen starvation after the onset of Ceph C production led to a pronounced increase in penicillin N formation, a reduced Ceph C yield (−30%) and a strongly reduced activity of the two enzymes tested. In general, neither the time course nor the absolute levels of the two enzyme activities directly correlated with the actual production rates of Ceph C. This is the first time where an independent parameter (qs) has been demonstrated to be responsible for triggering the synthesis of an antibiotic.  相似文献   

20.
This study investigated butanol fermentation using glucose and culture broth containing butyrate from the butyrate fermentation of a brown alga, Laminaria japonica. Prior to the use of the biologically-produced butyrate, the initial glucose in tryptone-yeast extract acetate (TYA) medium was first optimized for butanol fermentation using Clostridium saccharoperbutylacetonicum N1-4 ATCC 27021T. Then, a commercially-acquired (synthetic) butyrate was supplemented to the TYA medium containing the optimal glucose concentration (around 30 and 60 g/L). According to the experimental results, the highest butanol carbon yield (0.580 C-mol/C-mol) was obtained from the fermentation of 36.65 g/L glucose and 7.29 g/L synthetic butyrate. Fermentation of a similar amount of glucose (32.28 g/L) in the absence of butyrate gave a butanol carbon yield of 0.402 C-mol/C-mol. For the experiment with fermented butyrate, a 100 g/L biomass of brown alga was fermented by Clostridium tyrobutyricum ATCC 25755 and the culture broth containing butyrate was used to prepare TYA medium after removing the bacterial cells. Fermentation using the synthetic butyrate and the biologically-produced butyrate (4.95 g/L) gave a comparable butanol concentration (13.23 g/L) and butanol carbon yield (0.513 C-mol/C-mol). Overall, this study proved that the addition of fermented butyrate from brown alga fermentation could be an effective way to improve butanol production. Furthermore, the reuse of spent medium and the absence of rigorous purification of the broth containing butyrate would lower the production cost of the fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号