首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pennacchio  G. E.  Santonja  F. E.  Neira  F. J.  Bregonzio  C.  Soaje  M. 《Neurochemical research》2022,47(5):1317-1328

Prenatal exposure to amphetamine induces changes in dopamine receptors in mesolimbic areas and alters locomotor response to amphetamine during adulthood. Sex differences have been reported in amphetamine-induced brain activity and stress sensitivity. We evaluated the effects of prenatal amphetamine exposure on locomotor activity, dopamine receptors and tyrosine hydroxylase mRNA expression in nucleus accumbens and caudate-putamen in response to amphetamine challenge in adult female and male rats. The role of estrogen in the response to restraint stress was analyzed in ovariectomized, prenatally amphetamine-exposed rats. Pregnant rats were treated with d-amphetamine during days 15–21 of gestation. Nucleus accumbens and caudate-putamen were processed for mRNA determination by real-time PCR. In nucleus accumbens, higher mRNA dopamine (D3) receptor expression was found in basal and d-amphetamine-challenge conditions in female than male, and prenatal amphetamine increased the difference. No sex differences were observed in caudate-putamen. Basal saline-treated females showed higher locomotor activity than males. Amphetamine challenge in prenatally amphetamine-exposed rats increased locomotor activity in males and reduced it in females. In nucleus accumbens, estrogen diminished mRNA D1, D2 and D3 receptor expression in basal, and D1 and D3 in ovariectomized stressed rats. Estrogen prevented the increase in tyrosine hydroxylase expression induced by stress in ovariectomized prenatally exposed rats. In conclusion, estrogen modulates mRNA levels of D1, D2 and D3 receptors and tyrosine hydroxylase expression in nucleus accumbens; prenatal amphetamine-exposure effects on D3 receptors and behavioral responses were gender dependent.

  相似文献   

2.
Single injections of cocaine, amphetamine, or methamphetamine increased RGS2 mRNA levels in rat striatum by two- to fourfold. The D1 dopamine receptor-selective antagonist SCH-23390 had no effect by itself but strongly attenuated RGS2 mRNA induction by amphetamine. In contrast, the D2 receptor-selective antagonist raclopride induced RGS2 mRNA when administered alone and greatly enhanced stimulation by amphetamine. To examine the effects of repeated amphetamine on RGS2 expression, rats were treated with escalating doses of amphetamine (1.0-7.5 mg/kg) for 4 days, followed by 8 days of multiple daily injections (7.5 mg/kg/2 h x four injections). Twenty hours after the last injection the animals were challenged with amphetamine (7.5 mg/kg) or vehicle and killed 1 h later. In drug-naive animals, acute amphetamine induced the expression of RGS2, 3, and 5 and the immediate early genes c-fos and zif/268. RGS4 mRNA levels were not affected. Prior repeated treatment with amphetamine strongly suppressed induction of immediate early genes and RGS5 to a challenge dose of amphetamine. In sharp contrast, prior exposure to amphetamine did not reduce the induction of RGS2 and RGS3 mRNAs to a challenge dose of amphetamine, indicating that control of these genes is resistant to amphetamine-induced tolerance. These data establish a role for dopamine receptors in the regulation of RGS2 expression and suggest that RGS2 and 3 might mediate some aspects of amphetamine-induced tolerance.  相似文献   

3.
Regulators of G protein signaling (RGS) modulate heterotrimeric G proteins in part by serving as GTPase-activating proteins for Galpha subunits. We examined a role for RGS9-2, an RGS subtype highly enriched in striatum, in modulating dopamine D2 receptor function. Viral-mediated overexpression of RGS9-2 in rat nucleus accumbens (ventral striatum) reduced locomotor responses to cocaine (an indirect dopamine agonist) and to D2 but not to D1 receptor agonists. Conversely, RGS9 knockout mice showed heightened locomotor and rewarding responses to cocaine and related psychostimulants. In vitro expression of RGS9-2 in Xenopus oocytes accelerated the off-kinetics of D2 receptor-induced GIRK currents, consistent with the in vivo data. Finally, chronic cocaine exposure increased RGS9-2 levels in nucleus accumbens. Together, these data demonstrate a functional interaction between RGS9-2 and D2 receptor signaling and the behavioral actions of psychostimulants and suggest that psychostimulant induction of RGS9-2 represents a compensatory adaptation that diminishes drug responsiveness.  相似文献   

4.
5.
Ovarian hormones were well documented to modulate the dopamine release in the central dopaminergic systems. The dopamine-releasing effects in the nucleus accumbens, a major target of the mesolimbicortical dopaminergic system, were closely associated with the reinforcing effects of two psychomotor stimulants, cocaine and methamphetamine. This study aimed to examine the sex differences in the cocaine- and methamphetamine-reinforcing behavior, conditioned place preference. In addition, the modulating effects of estradiol and progesterone on methamphetamine-induced conditioned place preference were investigated in both sexes of adult gonadectomized mice. There was no sex difference in the sensitivity to the cocaine (5 mg/kg)-induced conditioned place preference. However, female mice exhibited a more potent methamphetamine (1 mg/kg)-induced conditioned place preference than did male mice. Moreover, pretreatment with estradiol for two consecutive days before the beginning of the conditioning and throughout the four daily conditionings (0.47 microg/day for totally six days) effectively facilitated methamphetamine-induced conditioned place preference in gonadectomized female mice, but not in gonadectomized male mice. Progesterone, under a similar treatment regimen (0.47 microg/day for six consecutive days), did not alter the methamphetamine-induced conditioned place preference in either sex of gonadectomized mice. Taken together, we conclude that the facilitating effects of estradiol on methamphetamine-induced conditioned place preference could be sex-dependent with an eminent sensitivity associated with the adult female mice.  相似文献   

6.
Daily injections of cocaine or morphine into rodents produces behavioral sensitization such that the last daily injection results in a greater motor stimulant effect than the first injection. To evaluate a role for brain dopamine in behavioral sensitization to cocaine and morphine, tissue slices from the ventromedial mesencephalon (containing dopamine cell bodies), the nucleus accumbens, and striatum (dopamine terminal fields) were obtained from rats pretreated with daily cocaine, morphine, or saline 2-3 weeks earlier. When the tissue slices were depolarized by increasing potassium concentration in the superfusate, the release of endogenous dopamine from the ventromedial mesencephalon of cocaine- and morphine-pretreated rats was significantly decreased. In contrast, the release of dopamine from the nucleus accumbens and striatum was either unaltered or slightly enhanced in rats pretreated with cocaine and morphine. When dopamine was released by amphetamine, a significant decrease in dopamine release from the ventromedial mesencephalon of cocaine-pretreated rats was measured. No other significant changes were measured after amphetamine-induced release. It is postulated that the decrease in dopamine release from the ventromedial mesencephalon of cocaine- and morphine-sensitized rats results in less somatodendritic autoreceptor stimulation, and thereby produces an increase in dopamine neuronal activity.  相似文献   

7.
Estrogen potentiates behavioral sensitization to cocaine in the female rat by mechanisms that remain undetermined. In this study, functional receptor autoradiography was used to investigate estrogen modulation of D2/D3 receptor-induced G protein activation in components of the reward pathway of female rats treated acutely and repeatedly with cocaine. Rats were ovariectomized and given an empty (OVX group) or estradiol benzoate-filled (OVX-EB group) implant. After a week, animals received a daily saline or cocaine injection (15 mg/kg, i.p.) for 5 days, and again on day 13. Animals were killed, and brains were removed and cryosectioned. D2/D3-stimulated [35S]guanosine 5'-(gamma-thio) triphosphate (GTPgammaS) binding was assessed in the cingulate cortex area 2 (Cg2), striatum (STR), nucleus accumbens (NAc) and ventral tegmental area (VTA). OVX-EB rats showed more [35S]GTPgammaS binding in the Cg2 and lower binding in the VTA than OVX rats; in the VTA this effect was reversed by a single cocaine injection. Repeated cocaine administration had opposite effects in OVX and OVX-EB rats. [35S]GTPgammaS binding was decreased in the Cg2, NAc and STR of OVX-EB rats, and increased in OVX rats. The present results support the hypothesis that cocaine-induced changes in D2/D3 receptor activation are regulated by estrogen. These data suggest that changes in D2/D3 receptor function represent one mechanism by which estrogen regulates behavioral sensitization to cocaine.  相似文献   

8.
The use of inbred rat strains provides a tool to investigate the role of genetic factors in drug abuse. Two such strains are Lewis and Fischer 344 rats. Although several biochemical and hormonal differences have been observed between Lewis and Fischer 344 strains, a systematic comparison of the effect of different drugs of abuse on dopamine (DA) transmission in the shell and core of the nucleus accumbens of these strains is lacking. We therefore investigated, by means of dual probe microdialysis, the effect of different doses of morphine (1.0, 2.5, and 5.0 mg/kg), amphetamine (0.25, 0.5, and 1.0 mg/kg) and cocaine (5, 10, and 20 mg/kg) on DA transmission in the shell and in the core of nucleus accumbens. Behavior was monitored during microdialysis. In general, Lewis rats showed greater DA responsiveness in the NAc core compared to F344 rats except after 2.5 mg/kg of morphine and 20 mg/kg of cocaine. In the NAc shell, different effects were obtained depending on drug and dose: after 1.0 mg/kg of morphine no strain differences were observed, at 2.5 and 5.0 mg/kg Lewis rats showed greater increase in DA in the NAc shell. Following amphetamine and cocaine challenge, Lewis rats showed greater DA increase in the shell after 0.25 mg/kg of amphetamine and 20 mg/kg of cocaine. Behavioral activation was greater in Lewis rats in response to the lowest dose of morphine (1.0 mg/kg), to the highest dose of amphetamine (1.0 mg/kg) and to all doses of cocaine. These differences might be the basis for the different behavioral responses of these strains to drugs of abuse.  相似文献   

9.
It is well established that cocaine induces an increase of dendritic spines density in some brain regions. However, few studies have addressed the role of this neuroplastic changes in cocaine rewarding effects and have often led to contradictory results. So, we hypothesized that using a rigorous time- and subject-matched protocol would demonstrate the role of this spine increase in cocaine reward. We designed our experiments such as the same animals (rats) were used for spine analysis and behavioral studies. Cocaine rewarding effects were assessed with the conditioned place preference paradigm. Spines densities were measured in the two subdivisions of the nucleus accumbens (NAcc), core and shell. We showed a correlation between the increase of spine density in NAcc core and shell and cocaine rewarding effects. Interestingly, when cocaine was administered in home cages, spine density was increase in NAcc core only. With anisomycin, a protein synthesis inhibitor, injected in the core we blocked spine increase in core and shell and also cocaine rewarding effects. Strikingly, whereas injection of this inhibitor in the shell immediately after conditioning had no effect on neuroplasticity or behavior, its injection 4 hours after conditioning was able to block neuroplasticity in shell only and cocaine-induced place preference. Thus, it clearly appears that the neuronal plasticity in the NAcc core is essential to induce plasticity in the shell, necessary for cocaine reward. Altogether, our data revealed a new mechanism in the NAcc functioning where a neuroplasticity transfer occurred from core to shell.  相似文献   

10.
The psychostimulant drug amphetamine is often prescribed to treat Attention-Deficit/Hyperactivity Disorder. The behavioral effects of the psychostimulant drug amphetamine depend on its ability to increase monoamine neurotransmission in brain regions such as the nucleus accumbens (NAC) and medial prefrontal cortex (mPFC). Recent behavioral data suggest that the endocannabinoid system also plays a role in this respect. Here we investigated the role of cannabinoid CB1 receptor activity in amphetamine-induced monoamine release in the NAC and/or mPFC of rats using in vivo microdialysis. Results show that systemic administration of a low, clinically relevant dose of amphetamine (0.5mg/kg) robustly increased dopamine and norepinephrine release (to ~175-350% of baseline values) in the NAC shell and core subregions as well as the ventral and dorsal parts of the mPFC, while moderately enhancing extracellular serotonin levels (to ~135% of baseline value) in the NAC core only. Although systemic administration of the CB1 receptor antagonist SR141716A (0-3mg/kg) alone did not affect monoamine release, it dose-dependently abolished amphetamine-induced dopamine release specifically in the NAC shell. SR141716A did not affect amphetamine-induced norepinephrine or serotonin release in any of the brain regions investigated. Thus, the effects of acute CB1 receptor blockade on amphetamine-induced monoamine transmission were restricted to dopamine, and more specifically to mesolimbic dopamine projections into the NAC shell. This brain region- and monoamine-selective role of CB1 receptors is suggested to subserve the behavioral effects of amphetamine.  相似文献   

11.
Many data indicate that endogenous opioid system is involved in amphetamine-induced behavior. Neuropeptide FF (NPFF) possesses opioid-modulating properties. The aim of the present study was to determine whether pharmacological modulation of NPFF receptors modify the expression of amphetamine-induced conditioned place preference (CPP) and amphetamine withdrawal anxiety-like behavior, both processes relevant to drug addiction/abuse. Intracerebroventricular (i.c.v.) injection of NPFF (5, 10, and 20 nmol) inhibited the expression of amphetamine CPP at the doses of 10 and 20 nmol. RF9, the NPFF receptors antagonist, reversed inhibitory effect of NPFF (20 nmol, i.c.v.) at the doses of 10 and 20 nmol and did not show any effect in amphetamine- and saline conditioned rats. Anxiety-like effect of amphetamine withdrawal was measured 24h after the last (14 days) amphetamine (2.5mg/kg, i.p.) treatment in the elevated plus-maze test. Amphetamine withdrawal decreased the percent of time spent by rats in the open arms and the percent of open arms entries. RF9 (5, 10, and 20 nmol, i.c.v.) significantly reversed these anxiety-like effects of amphetamine withdrawal and elevated the percent of time spent by rats in open arms at doses of 5 and 10 nmol, and the percent of open arms entries in all doses used. NPFF (20 nmol) pretreatment inhibited the effect of RF9 (10 nmol). Our results indicated that stimulation or inhibition of NPFF receptors decrease the expression of amphetamine CPP and amphetamine withdrawal anxiety, respectively. These findings may have implications for a better understanding of the processes involved in amphetamine dependence.  相似文献   

12.
L Hernandez  B G Hoebel 《Life sciences》1988,42(18):1705-1712
Dopamine was measured by microdialysis in the nucleus accumbens of freely moving rats while they experienced rewarding food, brain stimulation and drugs. Extracellular dopamine increased 37% when the animals pressed a lever for food reward. Electrical stimulation of a lateral hypothalamic feeding-reward (self-stimulation) site caused a similar increase in dopamine, with or without food. At the site in the nucleus accumbens where rats will administer amphetamine to themselves, injections of amphetamine or cocaine increased extracellular dopamine five-fold. Thus amphetamine and cocaine increase dopamine in a behavior reinforcement system which is normally activated by eating. Conversely, the release of dopamine by eating could be a factor in addiction to food.  相似文献   

13.
Estrogenic regulation of cholecystokinin (CCK) and its receptors is correlated with the initiation and termination of lordosis behavior. To understand the effect of circulating estrogen concentration on the temporal aspects of CCK mRNA expression in the posterodorsal medial amygdaloid nucleus (MeApd) and the central part of the medial preoptic nucleus (MPNc) of the limbic-hypothalamic circuit, ovariectomized female rats were treated with a 10 mm Silastic™ capsule filled with estradiol, a bolus injection of 50 μg estradiol benzoate or 2 μg estradiol benzoate every 4 days for five “cycles.” In situ hybridization was used to compare the relative changes of CCK mRNA levels at 0 h to levels measured at 6, 12, 24, 48, 72, or 96 h after estrogen administration. In the MPNc and the MeApd, the 10-mm capsule significantly increased and maintained CCK mRNA levels from 6 to 96 h. The range of the increase was 3.0–5.1-fold in the MPNc and 2.8–5.0 in the MeApd. The 50-μg injections significantly increased and maintained CCK mRNA levels in the MPNc from 12 to 96 h (range of the increase 2.4–4.1-fold) and in the MeApd from 24 to 96 h (range of the increase 2.2–2.8-fold). The repeated administration of 2 μg estrogen induced a significant increase of message levels in the MPNc at 12 and 24 h that were 4.2- and 4.7-fold, respectively. In the MeApd this estrogen treatment did not significantly increase CCK mRNA. These studies demonstrate that small doses (2 μg) of estrogen that mimic the pattern and circulating levels of estrogen dramatically stimulate CCK mRNA levels in the limbic-hypothalamic circuit. To further study this steroid stimulation, ovariectomized female rats were implanted with estradiol-filled cannulae into the bed nucleus of the stria terminalis or MeA. Estrogen elevated CCK mRNA levels locally in each nucleus. Implants in the bed nucleus also elevated CCK mRNA levels in the MeApd indicating that physiologic estrogen stimulation of CCK in the MeApd is the result of both local and distal transsynaptic elevation of CCK mRNA levels. The site-specific induction of CCK mRNA levels within the limbic-hypothalamic nuclei provides another important facet of estrogenic modulation of CCK induction. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
We examined whether behavioral sensitization to amphetamine is associated with redistribution of glutamate receptors (GluR) in the rat nucleus accumbens (NAc) or dorsolateral striatum (DLSTR). Following repeated amphetamine treatment and 21 days of withdrawal, surface and intracellular levels of α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) or NMDA receptor subunits were determined using a protein cross-linking assay. In contrast to our previous results in cocaine-sensitized rats, we did not observe redistribution of GluR1 or GluR2 to the cell surface in the NAc after amphetamine withdrawal, although a small increase in total GluR1 was found in the shell subregion. Nor did we observe activation of signaling pathways associated with cocaine-induced AMPA receptor trafficking or changes in NMDA receptor subunits. No significant changes were observed in the DLSTR. We also investigated the effect of administering a challenge injection of amphetamine to amphetamine-sensitized rats 24 h prior to biochemical analysis based on prior studies showing that cocaine challenge decreases AMPA receptor surface expression in the NAc of cocaine-sensitized rats. GluR1 and GluR2 were not significantly altered in either NAc or DLSTR, although a modest effect on GluR3 cannot be ruled out. Our results suggest that glutamate transmission in the NAc is dramatically different in rats sensitized to amphetamine versus cocaine.  相似文献   

15.
Glutamate receptor activation participates in mediation of neurotoxic effects in the striatum induced by the psychomotor stimulant amphetamine. The effects of the non-competitive NMDA receptor antagonist dizocilpine (MK-801) on amphetamine-induced toxicity and formation of nitric oxide (NO) in both striatum and cortex and on induced transmitter release in the nucleus accumbens were investigated. Repeated, systemic application of amphetamine elevated striatal and cortical lipid peroxidation and NO production. Moreover, amphetamine caused an immediate release of acetylcholine and aspartate and a delayed release of GABA in the nucleus accumbens. Surprisingly, glutamate release was not affected. Dizocilpine abolished the amphetamine-induced lipid peroxidation and NO production in striatum and cortex and diminished the elevation of neurotransmitter release. These findings suggest that amphetamine evokes neurotoxic effects in both striatal and cortical brain areas that are prevented by inhibiting NMDA receptor activation. The amphetamine-induced acetylcholine, aspartate and GABA release in the nucleus accumbens is also mediated through NMDA receptor-dependent mechanisms. Interestingly, the enhanced aspartate release might contribute to NMDA receptor activation in the nucleus accumbens, while glutamate does not seem to mediate amphetamine-evoked transmitter release in this striatal brain area.  相似文献   

16.
Estrogen has been reported to exert rapid effects on the function of neurons located in various brain regions, including those where classical estrogen receptors are not abundant, such as the striatum. The mechanism underlying these actions is not well understood, but does not appear to involve classical estrogen receptor-mediated genomic mechanisms. Estrogen has also been shown to regulate expression of immediate-early gene products in many tissues. In the present study, immunohistochemical methods were used to determine whether estrogen modulates the appearance of e-jun immunoreactivity (IR) in the striatum of rats. Administration of estradiol (100 μg/rat) to ovariectomized rats for 15 min induced a rapid and transient increase in c-jun-IR in the dorsomedial striatum and the core region of the nucleus accumbens. These data suggest that c-jun may serve as one of the rapidly responding mediators of estrogen action in the striatum and nucleus accumbens.  相似文献   

17.
This study tested the hypothesis that estrogen facilitation of reproductive behavior in female rats requires the binding of estrogen-receptor complexes to the genomic components of hypothalamic cell nuclei. Female rats were implanted stereotaxically with bilateral guide cannulae aimed at the ventromedial nucleus of the hypothalamus (VMH). Animals were ovariectomized following recovery from the implant surgery and randomly assigned to receive one of four drug treatments: actinomycin-D, ethidium bromide, netropsin, or 4', 6-diamidino-2-phenylindole. Each female received at least two tests for estrous behavior 48 hr after estrogen priming. On one test, drug-filled cannulae were lowered into the VMH 1 hr prior to a subcutaneous injection of 2-3 micrograms of estradiol benzoate (EB); on the other test blank cannulae were inserted 1 hr prior to EB treatment. Intracranial administration of all four compounds, which disrupt estrogen-receptor binding to hypothalamic nuclei, inhibited both the quantity and the quality of lordosis responses to systemic injections of EB. The results support the hypothesis that specific receptor interactions with the genome of hypothalamic cells mediate estrogen facilitation of estrous behavior in female rats.  相似文献   

18.
Abstract: The specific opioid receptor antagonist naloxone attenuates the behavioral and neurochemical effects of amphetamine. Furthermore, the amphetamine-induced increase in locomotor activity is attenuated by intracisternally administered naltrindole, a selective δ-opioid receptor antagonist, but not by the irreversible μ-opioid receptor antagonist β-funaltrexamine. Therefore, this research was designed to determine if naltrindole would attenuate the neurochemical response to amphetamine as it did the behavioral response. In vivo microdialysis was used to monitor the change in extracellular concentrations of dopamine in awake rats. Naltrindole (3.0, 10, or 30 µg) or vehicle was given 15 min before and β-funaltrexamine (10 µg) or vehicle 24 h before the start of cumulative dosing, intracisternally in a 10-µl volume, while the rats were lightly anesthetized with methoxyflurane. Cumulative doses of subcutaneous d-amphetamine (0.0, 0.1, 0.4, 1.6, and 6.4 mg/kg) followed pretreatment injections at 30-min intervals. Dialysate samples were collected every 10 min from either the striatum or nucleus accumbens and analyzed for dopamine content by HPLC. Amphetamine dose-dependently increased dopamine content in both the striatum and nucleus accumbens, as reported previously. Naltrindole (3.0, 10, and 30 µg) significantly reduced the dopamine response to amphetamine in the striatum. In contrast, 30 µg of naltrindole did not modify the dopamine response to amphetamine in the nucleus accumbens. On the other hand, β-funaltrexamine (10 µg) had no effect in the striatum but significantly attenuated the amphetamine-induced increase in extracellular dopamine content in the nucleus accumbens. These data suggest that δ-opioid receptors play a relatively larger role than μ-opioid receptors in mediating the amphetamine-induced increase in extracellular dopamine content in the striatum, whereas μ-opioid receptors play a larger role in mediating these effects in the nucleus accumbens.  相似文献   

19.
Four daily injections of 20 mg ethamoxytriphetol, MER-25, to intact female rats with regular 4-day estrous cycles inhibited lordosis behavior, but had no inhibitory effect on mounting behavior. Ten mg/day of MER-25 for 9 days partially antagonized the stimulatory effect of 2 μg/day of estradiol benzoate on lordosis behavior in ovariectomized female rats, but had no inhibitory effect upon mounting behavior. MER-25 (10 mg/day for 9 days) stimulated the display of mounting behavior in ovariectomized female rats. No effects of MER-25 treatment (10 mg for 10 days) comparable to those of testosterone propionate (10, 50, or 250 μg for 10 days) on testicular, seminal vesicle, or ventral prostate weights of intact male rats or on seminal vesicle or ventral prostate weights of castrated male rats were observed. The results show that MER-25 acts differently upon various estrogen sensitive behaviors in the female rat.  相似文献   

20.
Di Giannuario A  Pieretti S 《Peptides》2000,21(7):1125-1130
The effects induced by nociceptin on morphine-induced release of dopamine (DA), 3,4-dihydroxyphenilacetic acid (DOPAC) and homovanillic acid (HVA) in the nucleus accumbens and nucleus caudate were studied in rats by microdialysis with electrochemical detection. Nociceptin administered intracerebroventricularly (i.c.v.) at doses of 2, 5 and 10 nmol/rat changed neither DA nor metabolites release in the shell of the nucleus accumbens or in the nucleus caudate. Morphine administered intraperitoneally (i.p.) (2, 5, and 10 mg/kg) increased DA and metabolites release more in the shell of the nucleus accumbens than in the nucleus caudate. When nociceptin (5 or 10 nmol) was administered 15 min before morphine (5 or 10 mg/kg), it significantly reduced morphine-induced DA and metabolites release in the shell of the nucleus accumbens, whereas only a slight, nonsignificant reduction was observed in the nucleus caudate. Our data indicate that nociceptin may regulate the stimulating action associated with morphine-induced DA release more in the nucleus accumbens than in the nucleus caudate, and are consistent with recent observations that nociceptin reversed ethanol- and morphine-induced conditioned place preference. Therefore, the nociceptin-induced reduction of DA release stimulated by morphine in the nucleus accumbens, and the results obtained with nociceptin in the conditioned place preference procedure suggest a role for nociceptin in the modulation of the behavioral and neurochemical effects of abuse drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号