首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J M Baldwin 《The EMBO journal》1993,12(4):1693-1703
G protein-coupled receptors form a large family of integral membrane proteins whose amino acid sequences have seven hydrophobic segments containing distinctive sequence patterns. Rhodopsin, a member of the family, is known to have transmembrane alpha-helices. The probable arrangement of the seven helices, in all receptors, was deduced from structural information extracted from a detailed analysis of the sequences. Constraints established include: (1) each helix must be positioned next to its neighbours in the sequence; (2) helices I, IV and V must be most exposed to the lipid surrounding the receptor and helix III least exposed. (1) is established from the lengths of the shortest loops. (2) is determined by considering: (i) sites of the most conserved residues; (ii) other sites where variability is restricted; (iii) sites that accommodate polar residues; (iv) sites of differences in sequence between pairs or within groups of closely related receptors. Most sites in the last category should be in unimportant positions and are most useful in determining the position and extent of lipid-facing surface in each helix. The structural constraints for the receptors are used to allocate particular helices to the peaks in the recently published projection map of rhodopsin and to propose a tentative three-dimensional arrangement of the helices in G protein-coupled receptors.  相似文献   

2.
Helical membrane proteins are more tightly packed and the packing interactions are more diverse than those found in helical soluble proteins. Based on a linear correlation between amino acid packing values and interhelical propensity, we propose the concept of a helix packing moment to predict the orientation of helices in helical membrane proteins and membrane protein complexes. We show that the helix packing moment correlates with the helix interfaces of helix dimers of single pass membrane proteins of known structure. Helix packing moments are also shown to help identify the packing interfaces in membrane proteins with multiple transmembrane helices, where a single helix can have multiple contact surfaces. Analyses are described on class A G protein-coupled receptors (GPCRs) with seven transmembrane helices. We show that the helix packing moments are conserved across the class A family of GPCRs and correspond to key structural contacts in rhodopsin. These contacts are distinct from the highly conserved signature motifs of GPCRs and have not previously been recognized. The specific amino acid types involved in these contacts, however, are not necessarily conserved between subfamilies of GPCRs, indicating that the same protein architecture can be supported by a diverse set of interactions. In GPCRs, as well as membrane channels and transporters, amino acid residues with small side-chains (Gly, Ala, Ser, Cys) allow tight helix packing by mediating strong van der Waals interactions between helices. Closely packed helices, in turn, facilitate interhelical hydrogen bonding of both weakly polar (Ser, Thr, Cys) and strongly polar (Asn, Gln, Glu, Asp, His, Arg, Lys) amino acid residues. We propose the use of the helix packing moment as a complementary tool to the helical hydrophobic moment in the analysis of transmembrane sequences.  相似文献   

3.
Sequence analysis of the class A G protein-coupled receptors (GPCRs) reveals that most of the highly conserved sites are located in the transmembrane helices. A second level of conservation exists involving those residues that are conserved as a group characterized by small and/or weakly polar side chains (Ala, Gly, Ser, Cys, Thr). These positions can have group conservation levels of up to 99% across the class A GPCRs and have been implicated in mediating helix-helix interactions in membrane proteins. We have previously shown that mutation of group-conserved residues present on transmembrane helices H2-H4 in the β(2)-adrenergic receptor (β(2)-AR) can influence both receptor expression and function. We now target the group-conserved sites, Gly315(7.42) and Ser319(7.46), on H7 for structure-function analysis. Replacing Ser319(7.46) with smaller amino acids (Ala or Gly) did not influence the ability of the mutant receptors to bind to the antagonist dihydroalprenolol (DHA) but resulted in ~15-20% agonist-independent activity. Replacement of Ser319(7.46) with the larger amino acid leucine lowered the expression of the S319L mutant and its ability to bind DHA. Both the G315A and G315S mutants also exhibited agonist-independent signaling, while the G315L mutant did not show specific binding to DHA. These data indicate that Gly315(7.42) and Ser319(7.46) are stabilizing β(2)-AR in an inactive conformation. We discuss our results in the context of van der Waals interactions of Gly315(7.42) with Trp286(6.48) and hydrogen bonding interactions of Ser319(7.46) with amino acids on H1-H2-H7 and with structural water.  相似文献   

4.
G-protein-coupled receptors play a key step in cellular signal transduction cascades by transducing various extracellular signals via G-proteins. Rhodopsin is a prototypical G-protein-coupled receptor involved in the retinal visual signaling cascade. We determined the structure of squid rhodopsin at 3.7A resolution, which transduces signals through the G(q) protein to the phosphoinositol cascade. The structure showed seven transmembrane helices and an amphipathic helix H8 has similar geometry to structures from bovine rhodopsin, coupling to G(t), and human beta(2)-adrenergic receptor, coupling to G(s). Notably, squid rhodopsin contains a well structured cytoplasmic region involved in the interaction with G-proteins, and this region is flexible or disordered in bovine rhodopsin and human beta(2)-adrenergic receptor. The transmembrane helices 5 and 6 are longer and extrude into the cytoplasm. The distal C-terminal tail contains a short hydrophilic alpha-helix CH after the palmitoylated cysteine residues. The residues in the distal C-terminal tail interact with the neighboring residues in the second cytoplasmic loop, the extruded transmembrane helices 5 and 6, and the short helix H8. Additionally, the Tyr-111, Asn-87, and Asn-185 residues are located within hydrogen-bonding distances from the nitrogen atom of the Schiff base.  相似文献   

5.
Many hormones and sensory stimuli signal through a superfamily of seven transmembrane-spanning receptors to activate heterotrimeric G proteins. How the seven transmembrane segments of the receptors (a molecular architecture of bundled alpha-helices conserved from yeast to man) work as "on/off" switches remains unknown. Previously, we used random saturation mutagenesis coupled with a genetic selection in yeast to determine the relative importance of amino acids in four of the seven transmembrane segments of the human C5a receptor (Baranski, T. J., Herzmark, P., Lichtarge, O., Gerber, B. O., Trueheart, J., Meng, E. C., Iiri, T., Sheikh, S. P., and Bourne, H. R. (1999) J. Biol. Chem. 274, 15757-15765). In this study, we evaluate helices I, II, and IV, thereby furnishing a complete mutational map of the seven transmembrane helices of the human C5a receptor. Our analysis identified 19 amino acid positions resistant to non-conservative substitutions. When combined with the 25 essential residues previously identified in helices III and V-VII, they delineate two distinct components of the receptor switch: a ligand-binding surface at or near the extracellular surface of the helix bundle and a core cluster in the cytoplasmic half of the bundle. In addition, we found critical amino acids in the first and second helices that are predicted to face the lipid membrane. These residues form an extended surface that might mediate interactions with lipids and other membrane proteins or function as an oligomerization domain with other receptors.  相似文献   

6.
Hormones and sensory stimuli activate serpentine receptors, transmembrane switches that relay signals to heterotrimeric guanine nucleotide-binding proteins (G proteins). To understand the switch mechanism, we subjected 93 amino acids in transmembrane helices III, V, VI, and VII of the human chemoattractant C5a receptor to random saturation mutagenesis. A yeast selection identified 121 functioning mutant receptors, containing a total of 523 amino acid substitutions. Conserved hydrophobic residues are located on helix surfaces that face other helices in a modeled seven-helix bundle (Baldwin, J. M., Schertler, G. F., and Unger, V. M. (1997) J. Mol. Biol. 272, 144-164), whereas surfaces predicted to contact the surrounding lipid tolerate many substitutions. Our analysis identified 25 amino acid positions resistant to nonconservative substitutions. These appear to comprise two distinct components of the receptor switch, a surface at or near the extracellular membrane interface and a core cluster in the cytoplasmic half of the bundle. Twenty-one of the 121 mutant receptors exhibit constitutive activity. Amino acids substitutions in these activated receptors predominate in helices III and VI; other activating mutations truncate the receptor near the extracellular end of helix VI. These results identify key elements of a general mechanism for the serpentine receptor switch.  相似文献   

7.
The human lutropin receptor (hLHR) plays a pivotal role in reproductive endocrinology. A number of naturally occurring mutations of the hLHR have been identified that cause the receptor to become constitutively active. To gain further insights into the structural basis for the activation of the hLHR by activating mutations, we chose to examine a particularly strong constitutively activating mutation of this receptor, L457R, in which a leucine that is highly conserved among rhodopsin-like G protein-coupled receptors in helix 3 has been substituted with arginine. Using both disruptive as well as reciprocal mutagenesis strategies, our studies demonstrate that the ability of L457R to stabilize an active form of the hLHR is because of the formation of a salt bridge between the replacing amino acid and Asp-578 in helix 6. Such a lock between the transmembrane portions of helices 3 and 6 is concurrent with weakening the connections between the cytosolic ends of the same helices, including the interaction found in the wild-type receptor between Arg-464, of the (E/D)R(Y/W) motif, and Asp-564. This structural effect is properly marked by the increase in the solvent accessibility of selected amino acids at the cytosolic interfaces between helices 3 and 6. The integrity of the conserved amino acids Asn-615 and Asn-619 in helix 7 is required for the transfer of the structural change from the activating mutation site to the cytosolic interface between helices 3 and 6. The results of in vitro and computational experiments further suggest that the structural trigger of the constitutive activity of the L457R mutant may also be responsible for its lack of hormone responsiveness.  相似文献   

8.
Parrish W  Eilers M  Ying W  Konopka JB 《Genetics》2002,160(2):429-443
The binding of alpha-factor to its receptor (Ste2p) activates a G-protein-signaling pathway leading to conjugation of MATa cells of the budding yeast S. cerevisiae. We conducted a genetic screen to identify constitutively activating mutations in the N-terminal region of the alpha-factor receptor that includes transmembrane domains 1-5. This approach identified 12 unique constitutively activating mutations, the strongest of which affected polar residues at the cytoplasmic ends of transmembrane domains 2 and 3 (Asn84 and Gln149, respectively) that are conserved in the alpha-factor receptors of divergent yeast species. Targeted mutagenesis, in combination with molecular modeling studies, suggested that Gln149 is oriented toward the core of the transmembrane helix bundle where it may be involved in mediating an interaction with Asn84. These residues appear to play specific roles in maintaining the inactive conformation of the protein since a variety of mutations at either position cause constitutive receptor signaling. Interestingly, the activity of many mammalian G-protein-coupled receptors is also regulated by conserved polar residues (the E/DRY motif) at the cytoplasmic end of transmembrane domain 3. Altogether, the results of this study suggest a conserved role for the cytoplasmic end of transmembrane domain 3 in regulating the activity of divergent G-protein-coupled receptors.  相似文献   

9.
The seven transmembrane helices of serpentine receptors comprise a conserved switch that relays signals from extracellular stimuli to heterotrimeric G proteins on the cytoplasmic face of the membrane. By substituting histidines for residues at the cytoplasmic ends of helices III and VI in retinal rhodopsin, we engineered a metal-binding site whose occupancy by Zn(II) prevented the receptor from activating a retinal G protein, Gt (Sheikh, S. P., Zvyaga, T. A. , Lichtarge, O., Sakmar, T. P., and Bourne, H. R. (1996) Nature 383, 347-350). Now we report engineering of metal-binding sites bridging the cytoplasmic ends of these two helices in two other serpentine receptors, the beta2-adrenoreceptor and the parathyroid hormone receptor; occupancy of the metal-binding site by Zn(II) markedly impairs the ability of each receptor to mediate ligand-dependent activation of Gs, the stimulatory regulator of adenylyl cyclase. We infer that these two receptors share with rhodopsin a common three-dimensional architecture and an activation switch that requires movement, relative to one another, of helices III and VI; these inferences are surprising in the case of the parathyroid hormone receptor, a receptor that contains seven stretches of hydrophobic sequence but whose amino acid sequence otherwise shows no apparent similarity to those of receptors in the rhodopsin family. These findings highlight the evolutionary conservation of the switch mechanism of serpentine receptors and help to constrain models of how the switch works.  相似文献   

10.
Membrane proteins span a large variety of different functions such as cell-surface receptors, redox proteins, ion channels, and transporters. Proteins with functional pores show different characteristics of helix-helix packing as other helical membrane proteins. We found that the helix-helix contacts of 13 nonhomologous high-resolution structures of membrane channels and transporters are mainly accomplished by weakly polar amino acids (G > S > T > F) that preferably create contacts every fourth residue, typical for right-handed helix crossings. There is a strong correlation between the now available biological hydrophobicity scale and the propensities of the weakly polar and hydrophobic residues to be buried at helix-helix interfaces or to be exposed to the lipids in membrane channels and transporters. The polar residues, however, make no major contribution towards the packing of their transmembrane helices, and are therefore subsumed to be primarily exposed to the polar milieu during the folding process. The contact formation of membrane channels and transporters is therefore ruled by the solubility of the residues, which we suppose to be the driving force for the assembly of their transmembrane helices. By contrast, in 14 nonhomologous high-resolution structures of other membrane protein coils, also large and polar amino acids (D > S > M > Q) create characteristic contacts every 3.5th residues, which is a signature for left-handed helix crossings. Accordingly, it seems that dependent on the function, different concepts of folding and stabilization are realized for helical membrane proteins. Using a sequence-based matrix prediction method these differences are exploited to improve the prediction of buried and exposed residues of transmembrane helices significantly. When the sequence motifs typical for membrane channels and transporters were applied for the prediction of helix-helix contacts the quality of prediction rises by 16% to an average value of 76%, compared to the same approach when only single amino acid positions are taken into account.  相似文献   

11.
Activation of the muscarinic acetylcholine receptors requires agonist binding followed by a conformational change, but the ligand binding and conformation-switching residues have not been completely identified. Systematic alanine-scanning mutagenesis has been used to assess residues 142-164 in transmembrane helix 4 and 402-421 in transmembrane helix 7 of the M(1) muscarinic acetylcholine receptor. Several inward-facing amino acid side chains in the exofacial parts of transmembrane helices 4 and 7 contribute to acetylcholine binding. Alanine substitution of the aromatic residues in this group reduced signaling efficacy, suggesting that they may form part of a charge-stabilized aromatic cage, which triggers rotation and movement of the transmembrane helices. The mutation of adjacent residues modulated receptor activation, either reducing signaling or causing constitutive activation. In the buried endofacial section of transmembrane helix 7, alanine substitution mutants of the conserved NSXXNPXXY motif displayed strongly reduced signaling efficacy, despite having increased or unchanged acetylcholine affinity. These residues may have dual functions, forming intramolecular contacts that stabilize the receptor in the inactive ground state, but that are broken, allowing them to form new intramolecular bonds in the activated state. This conformational rearrangement is critical to produce a G protein binding site and may represent a key mechanism of receptor activation.  相似文献   

12.
The human bitter taste receptors (T2Rs) belong to the G-protein coupled receptor (GPCR) superfamily. T2Rs share little homology with the large subfamily of Class A G-protein coupled receptors, and their mechanisms of activation are poorly understood. Guided by biochemical and molecular approaches, we identified two conserved amino acids Gly281·?? and Ser285?·?? present on transmembrane (TM) helices, TM1 and TM7, which might play important roles in T2R activation. Previously, it was shown that naturally occurring Gly511·?? mutations in the dim light receptor, rhodopsin, cause autosomal dominant retinitis pigmentosa, with the mutants severely defective in signal transduction. We mutated Gly281·?? and Ser285?·?? in T2R4 to G28A, G28L, S285A, S285T, and S285P, and carried out pharmacological characterization of the mutants. No major changes in signaling were observed upon mutation of Gly281·?? in T2R4. Interestingly, S285A mutant displayed agonist-independent activity (approximately threefold over basal wild-type T2R4 or S285T or S285P). We propose that Ser285?·?? stabilizes the inactive state of T2R4 by a network of hydrogen-bonds connecting important residues on TM1-TM2-TM7. We compare and contrast this hydrogen-bond network with that present in rhodopsin. Thus far, S285A is the first constitutively active T2R mutant reported, and gives novel insights into T2R activation.  相似文献   

13.
Twenty-one single-cysteine substitution mutants were prepared in the sequence 56-75 between transmembrane helices I and II at the cytoplasmic surface of bovine rhodopsin. Each mutant was reacted with a sulfhydryl-specific reagent to produce a nitroxide side chain. The electron paramagnetic resonance of the labeled proteins in dodecyl maltoside solution was analyzed to provide the relative mobility and accessibility of the nitroxide side chain to both polar and nonpolar paramagnetic reagents. The results indicate that the hydrophobic-water interface of the micelle intersects helices I and II near residues 64 and 71, respectively. Thus, the sequence 64-71 is in the aqueous phase, while 56-63 and 72-75 lie in the transmembrane helices I and II, respectively. The lipid-facing surfaces on transmembrane helices I and II near the cytoplasmic surface correspond to approximately 180 degrees and 90 degrees of arc on the helical surfaces, respectively. Photoactivation of rhodopsin produced changes in structure in the region investigated, primarily around helix II. However, these changes are much smaller than those noted by spin labels in helix VI (Altenbach, C., Yang, K., Farrens, D., Farahbakhsh, Z., Khorana, H. G., and Hubbell, W. L. (1996) Biochemistry 35, 12470).  相似文献   

14.
Lin JC  Duell K  Saracino M  Konopka JB 《Biochemistry》2005,44(4):1278-1287
The alpha-factor receptor (Ste2p) stimulates mating of the yeast Saccharomyces cerevisiae. Ste2p belongs to the large family of G protein-coupled receptors that are characterized by seven transmembrane alpha-helices. Receptor activation is thought to involve changes in the packing of the transmembrane helix bundle. To identify residues that contribute to Ste2p activation, second-site suppressor mutations were isolated that restored function to defective receptors carrying either an F204S or Y266C substitution which affect residues at the extracellular ends of transmembrane domains 5 and 6, respectively. Thirty-five different suppressor mutations were identified. On their own, these mutations caused a range of phenotypes, including hypersensitivity, constitutive activity, altered ligand binding, and loss of function. The majority of the mutations affected residues in the transmembrane segments that are predicted to face the helix bundle. Many of the suppressor mutations caused constitutive receptor activity, suggesting they improved receptor function by partially restoring the balance between the active and inactive states. Analysis of mutations in transmembrane domain 7 implicated residues Ala281 and Thr282 in receptor activation. The A281T and T282A mutants were supersensitive to S. cerevisiae alpha-factor, but were defective in responding to a variant of alpha-factor produced by another species, Saccharomyces kluyveri. The A281T mutant also displayed 8.7-fold enhanced basal signaling. Interestingly, Ala281 and Thr282 are situated in approximately the same position as Lys296 in rhodopsin, which is covalently linked to retinal. These results suggest that transmembrane domain 7 plays a role in receptor activation in a wide range of G protein-coupled receptors from yeast to humans.  相似文献   

15.
G protein-coupled receptors are classified into several families on the basis of their amino acid sequences and the members of the same family exhibit sequence similarity but those of different families do not. In family 1 GPCRs such as rhodopsin and adrenergic receptor, extensive studies have revealed the stimulus-dependent conformational change of the receptor: the rearrangement of transmembrane helices III and VI is essential for G protein activation. In contrast, in family 3 GPCRs such as metabotropic glutamate receptor (mGluR), the inter-protomer relocation upon ligand binding has been observed but there is much less information about the structural changes of the transmsmbrane helices and the cytoplasmic domains. Here we identified constitutively active mutation sites at the cytoplasmic borders of helices II and IV of mGluR8 and successfully inhibited the G protein activation ability by engineering disulfide cross-linking between these cytoplasmic regions. The analysis of all possible single substitution mutants of these residues revealed that some steric interactions around these sites would be important to keep the receptor protein inactive. These results provided the model that the conformational changes at the cytoplasmic ends of helices II and IV of mGluR are involved in the efficient G protein coupling.  相似文献   

16.
Evidence from statistical cluster analyses of a multiple sequence alignment of G protein-coupled receptor seven-helix folds supports the existence of structurally conserved transmembrane (TM) ligand binding sites in the opioid/opioid receptor-like (ORL1) and amine receptor families. Based on the expectation that functionally conserved regions in homologous proteins will display locally higher levels of sequence identity compared with global sequence similarities that pertain to the overall fold, this approach may have wider applications in functional genomics to annotate sequence data. Binding sites in models of the kappa-opioid receptor seven-helix bundle built from the rhodopsin templates of Baldwin et al. (1997) [J. Mol. Biol., 272, 144-164] and Herzyk and Hubbard (1998) [J. Mol. Biol., 281, 742-751] are compared. The Herzyk and Hubbard template is found to be in better accord with experimental studies of amine, opioid and rhodopsin receptors owing to the reduced physical separation of the extracellular parts of TM helices V and VI and differences in the rotational orientation of the N-terminal of helix V that reveal side chain accessibilities in the Baldwin et al. structure to be out of phase with relative alkylation rates of engineered cysteine residues in the TM binding site of the alpha(2A)-adrenergic receptor. TM helix V in the Baldwin et al. template has been remodelled with a different proline kink to satisfy experimental constraints. A recent proposal that rotation of helix V is associated with receptor activation is critically discussed.  相似文献   

17.
The naturally occurring mutations G51A and G51V in transmembrane helix I and G89D in the transmembrane helix II of rhodopsin are associated with the retinal degenerative disease autosomal dominant retinitis pigmentosa. To probe the orientation and packing of helices I and II a number of replacements at positions 51 and 89 were prepared by using site-directed mutagenesis, and the corresponding proteins expressed in COS-1 cells were characterized. Mutations at position 51 (G51V and G51L) bound retinal like wild-type rhodopsin but had thermally destabilized structures in the dark, altered photobleaching behavior, destabilized metarhodopsin II active conformations, and were severely defective in signal transduction. The effects observed can be correlated with the size of the mutated side chains that would interfere with specific interhelical interaction with Val-300 in helix VII. Mutations at position 89 had sensitivity to charge, as in G89K and G89D mutants, which showed reduced transducin activation. G89K showed a second absorbing species in the UV region at 350 nm, suggesting a charge effect of the introduced lysine. Increased formation of non-active forms of rhodopsin, like metarhodopsin III, may have some influence in the molecular defect underlying retinitis pigmentosa in the mutants studied. At the structural level, the effect of the mutations analyzed can be rationalized assuming a very specific set of tertiary interactions in the interhelical packing of the transmembrane segments of rhodopsin.  相似文献   

18.
Structural basis of beta-adrenergic receptor function   总被引:31,自引:0,他引:31  
Receptors that mediate their actions by stimulating guanine nucleotide binding regulatory proteins (G proteins) share structural as well as functional similarities. The structural motif characteristic of receptors of this class includes seven hydrophobic putative transmembrane domains linked by hydrophilic loops. Genetic analysis of the beta-adrenergic receptor (beta AR) revealed that the ligand binding domain of this receptor, like that of rhodopsin, involves residues within the hydrophobic core of the protein. On the basis of these studies, a model for ligand binding to the receptor has been developed in which the amino group of an agonist or antagonist is anchored to the receptor through the carboxylate side chain of Asp113 in the third transmembrane helix. Other interactions between specific residues of the receptor and functional groups on the ligand have also been proposed. The interaction between the beta AR and the G protein Gs has been shown to involve an intracellular region that is postulated to form an amphiphilic alpha helix. This region of the beta AR is also critical for sequestration, which accompanies agonist-mediated desensitization, to occur. Structural similarities among G protein-linked receptors suggest that the information gained from the genetic analysis of the beta AR should help define functionally important regions of other receptors of this class.  相似文献   

19.
Formation of non-covalent functional complexes of integral membrane proteins is frequently supported by sequence-specific interaction of their transmembrane helices. Here, we aligned human single-span membrane proteins with orthologs from other eukaryotes. We find that almost half of the human single-span membrane proteins contain a transmembrane helix that exhibits significant non-random unilateral conservation. Furthermore, unilateral conservation of transmembrane domains (TMDs) correlates well with their ability to self-interact. Glycine, polar non-ionizable, and aromatic amino acids are overrepresented in conserved versus non-conserved helix faces. Hence, our genome-wide analysis indicates that these amino acid types generally support interaction of single-span membrane protein TMDs.  相似文献   

20.
Structural microdomains of G protein-coupled receptors (GPCRs) consist of spatially related side chains that mediate discrete functions. The conserved helix 2/helix 7 microdomain was identified because the gonadotropin-releasing hormone (GnRH) receptor appears to have interchanged the Asp(2.50) and Asn(7.49) residues which are conserved in transmembrane helices 2 and 7 of rhodopsin-like GPCRs. We now demonstrate that different side chains of this microdomain contribute specifically to receptor expression, heterotrimeric G protein-, and small G protein-mediated signaling. An Asn residue is required in position 2.50(87) for expression of the GnRH receptor at the cell surface, most likely through an interaction with the conserved Asn(1.50(53)) residue, which we also find is required for receptor expression. Most GPCRs require an Asp side chain at either the helix 2 or helix 7 locus of the microdomain for coupling to heterotrimeric G proteins, but the GnRH receptor has transferred the requirement for an acidic residue from helix 2 to 7. However, the presence of Asp at the helix 7 locus precludes small G protein-dependent coupling to phospholipase D. These results implicate specific components of the helix 2/helix 7 microdomain in receptor expression and in determining the ability of the receptor to adopt distinct activated conformations that are optimal for interaction with heterotrimeric and small G proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号