首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A model for topological coding of proteins is proposed. The model is based on the capacity of hydrogen bonds (property of connectivity) to fix conformations of protein molecules. The protein chain is modeled by an n -arc graph with the following elements: vertices (alpha -carbon atoms), structural edges (peptide bonds) and connectivity edges (virtual edges connecting non-adjacent atoms). It was shown that 64 conformations of the 4-arc graph can be described in the binary system by matrices of six variables which form a supermatrix containing four blocks. On the basis of correspondences between the pairs of variables in matrices and four letters of the genetic code matrices and supermatrix are converted, respectively, into the triplets and the table of the genetic code. An algorithm admitting computer programming is proposed for coding the n -arc graph and protein chain. Connectivity operators (polar amino acids) are assigned to blocks of triplets coding for cyclic conformations (G, A-in the second position), while anti-connectivity operators (non-polar amino acids) correspond to blocks of triplets coding for open conformations (C, U-in the second position). Amino acids coded by triplets differing by the first base have different structures. The third base for C, U and G, A is degenerated. Properties of the real genetic code are in full agreement with the model. The model provides an insight into the topological nature of the genetic code and can be used for development of algorithms for the prediction of the protein structure.  相似文献   

2.
Information theoretic analysis of genetic languages indicates that the naturally occurring 20 amino acids and the triplet genetic code arose by duplication of 10 amino acids of class-II and a doublet genetic code having codons NNY and anticodons GNN. Evidence for this scenario is presented based on the properties of aminoacyl-tRNA synthetases, amino acids and nucleotide bases.  相似文献   

3.
Temporal order ("chronology") of appearance of amino acids and their respective codons on evolutionary scene is reconstructed. A consensus chronology of amino acids is built on the basis of 60 different criteria each offering certain temporal order. After several steps of filtering the chronology vectors are averaged resulting in the consensus order: G, A, D, V, P, S, E, (L, T), R, (I, Q, N), H, K, C, F, Y, M, W. It reveals two important features: the amino acids synthesized in imitation experiments of S. Miller appeared first, while the amino acids associated with codon capture events came last. The reconstruction of codon chronology is based on the above consensus temporal order of amino acids, supplemented by the stability and complementarity rules first suggested by M. Eigen and P. Schuster, and on the earlier established processivity rule. At no point in the reconstruction the consensus amino-acid chronology was in conflict with these three rules. The derived genealogy of all 64 codons suggested several important predictions that are confirmed. The reconstruction of the origin and evolutionary history of the triplet code becomes, thus, a powerful research tool for molecular evolution studies, especially in its early stages.  相似文献   

4.
5.
6.
7.
《FEBS letters》2014,588(23):4305-4310
During mRNA decoding at the ribosome, deviations from stringent codon identity, or “mistranslation,” are generally deleterious and infrequent. Observations of organisms that decode some codons ambiguously, and the discovery of a compensatory increase in mistranslation frequency to combat environmental stress have changed the way we view “errors” in decoding. Modern tools for the study of the frequency and phenotypic effects of mistranslation can provide quantitative and sensitive measurements of decoding errors that were previously inaccessible. Mistranslation with non-protein amino acids, in particular, is an enticing prospect for new drug therapies and the study of molecular evolution.  相似文献   

8.
9.
The genetic code is used differently by different kinds of species. Each type of genome has a particular coding strategy, that is, choices among degenerate bases are consistently similar for all genes therein. This uniformity in the selection between degenerate bases within each taxonomic group has been discovered by applying new methods to the study of coding variability. It is now possible to calculate relative distances between genomes, or genome types, based on use of the codon catalog by the mRNAs therein.  相似文献   

10.
11.
12.
Summary One-half of the twenty amino acids of the genetic code are just one mutational step away from the chain-terminator codons UAA, UAG, and UGA. It is postulated that somatic mutation to terminator is a hazard to which the organism has had to respond by adjusting certain proteins in the direction of fewer mutable residues. This view is supported by calculations based on the primary structure of five of the human hemoglobin chains. Each chain is scored for mutability to terminator in accord with the numbers and kinds of amino acids present. Among the adult chains, the most essential one, the alpha, has lowest mutability. The beta and delta follow, and in order of the presumed harm to the organism of a shortage of chain copies. Ante-natal chains tend to have higher mutabilities, supporting the view that cumulative mutational change in DNA can do little harm if the gene ceases to transcribe early in life. Two other predictions based on the supposition of effective selection against mutability to terminator are also met: chain length of polypeptides is negatively correlated with their scores for mutability to terminator, and examination of the recently determined sequence of beta messenger RNA shows preferential use of codons that are not readily mutable to terminator.Supported in part by the National Institutes of Health, Grant HL-16005  相似文献   

13.
14.
The present paper will focus on the relation between the structure of the table of the genetic code and the evolution of primitive organisms: it will be shown that the organization of the code table according to an optimization principle based on the notion of resistance to errors can provide a criterium for selection. The ordered aspect of the genetic code table makes this result a plausible starting point for studies of the origin and evolution of the genetic code: these could include, besides a more refined optimization principle at the logical level, some effects more directly related to the physico-chemical context, and the construction of realistic models incorporating both aspects.  相似文献   

15.
16.
The genetic code has been regarded as arbitrary in the sense that the codon-amino acid assignments could be different than they actually are. This general idea has been spelled out differently by previous, often rather implicit accounts of arbitrariness. They have drawn on the frozen accident theory, on evolutionary contingency, on alternative causal pathways, and on the absence of direct stereochemical interactions between codons and amino acids. It has also been suggested that the arbitrariness of the genetic code justifies attributing semantic information to macromolecules, notably to DNA. I argue that these accounts of arbitrariness are unsatisfactory. I propose that the code is arbitrary in the sense of Jacques Monod's concept of chemical arbitrariness: the genetic code is arbitrary in that any codon requires certain chemical and structural properties to specify a particular amino acid, but these properties are not required in virtue of a principle of chemistry. This notion of arbitrariness is compatible with several recent hypotheses about code evolution. I maintain that the code's chemical arbitrariness is neither sufficient nor necessary for attributing semantic information to nucleic acids.  相似文献   

17.
Evolution of the genetic code.   总被引:4,自引:0,他引:4  
Comparative path lengths in amino acid biosynthesis and other molecular indicators of the timing of codon assignment were examined to reconstruct the main stages of code evolution. The codon tree obtained was rooted in the 4 N-fixing amino acids (Asp, Glu, Asn, Gln) and 16 triplets of the NAN set. This small, locally phased (commaless) code evidently arose from ambiguous translation on a poly(A) collector strand, in a surface reaction network. Copolymerisation of these amino acids yields polyanionic peptide chains, which could anchor uncharged amide residues to a positively charged mineral surface. From RNA virus structure and replication in vitro, the first genes seemed to be RNA segments spliced into tRNA. Expansion of the code reduced the risk of mutation to an unreadable codon. This step was conditional on initiation at the 5'-codon of a translated sequence. Incorporation of increasingly hydrophobic amino acids accompanied expansion. As codons of the NUN set were assigned most slowly, they received the most nonpolar amino acids. The origin of ferredoxin and Gln synthetase was traced to mid-expansion phase. Surface metabolism ceased by the end of code expansion, as cells bounded by a proteo-phospholipid membrane, with a protoATPase, had emerged. Incorporation of positively charged and aromatic amino acids followed. They entered the post-expansion code by codon capture. Synthesis of efficient enzymes with acid-base catalysis was then possible. Both types of aminoacyl-tRNA synthetases were attributed to this stage. tRNA sequence diversity and error rates in RNA replication indicate the code evolved within 20 million yr in the preIsuan era. These findings on the genetic code provide empirical evidence, from a contemporaneous source, that a surface reaction network, centred on C-fixing autocatalytic cycles, rapidly led to cellular life on Earth.  相似文献   

18.
At the time of its discovery four decades ago, the genetic code was viewed as the result of a "frozen accident." Our current knowledge of the translation process and of the detailed structure of its components highlights the roles of RNA structure (in mRNA and tRNA), RNA modification (in tRNA), and aminoacyl-tRNA synthetase diversity in the evolution of the genetic code. The diverse assortment of codon reassignments present in subcellular organelles and organisms of distinct lineages has 'thawed' the concept of a universal immutable code; it may not be accidental that out of more than 140 amino acids found in natural proteins, only two (selenocysteine and pyrrolysine) are known to have been added to the standard 20-member amino acid alphabet. The existence of phosphoseryl-tRNA (in the form of tRNACys and tRNASec) may presage the discovery of other cotranslationally inserted modified amino acids.  相似文献   

19.
20.
Error detection and correction properties are fundamental for informative codes. Hamming's distance allows us to study this noise resistance. We present codes characterized by the resistance optimization to nonsense mutational effects. The calculation of the cumulated Hamming's distance allowing to determine the number of optimal codes and their structure can be detailed. The principle of these laws of optimization of resistance consists of choosing constituent codons connected by mutational neighbouring in such a way that random application of mutations on such a code minimize the occurrence of nonsense n-uplets or terminators. New coding symmetries are then described and screened using Galois's polynomials properties and Baudot's code. Such a study can be applied to any length of the codons. Here we present the principles of this optimization for the most simple doublet codes. Another constraint is discussed: the distribution of optimal subcodes for synonymity and the frequencies of utilization of the different codons.We compare these results to those of the present genetic code, and we observe that all coded amino acids (except the particular case of SER) are using optimal sub-codes of synonymity.This work suggests that the appearance of the genetic code was provoked by mutations while optimizing on several levels its resistance to their effects. Thus genetic coding would have been the best automata that could be produced in prebiotic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号