首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Weight control by dietary calorie restriction (DCR) or exercise has been shown to prevent cancer in various models. However, the mechanisms as to how weight control is beneficial are not well understood. While previous reports have investigated the effects of weight control on total lipid levels or lipid composition within cellular membranes, there has been little work surrounding changes to individual lipids following weight control interventions. In this study, using a model of skin carcinogenesis centered on the tumor promotion stage, CD-1 mice were randomly assigned into 4 groups: ad libitum and sedentary (control), ad libitum with exercise (AL+Exe), exercise with pair feeding of a diet isocaloric with control (PF+Exe), and sedentary with 20% DCR compared to control. After ten weeks, body weight and body fat percentages significantly decreased in the PF+Exe and DCR groups but not AL+Exe when compared with sedentary controls. Murine skin and plasma samples were obtained for analysis. Lipidomics using electrospray ionization MS/MS was employed to profile triacylglycerol (TG) and diacylglycerol (DG) species. Both plasma and tissue TG species containing fatty acid chains with length 18:1 were significantly decreased following DCR when compared to sedentary control animals. In regards to DG, the most significant changes occurred in the plasma. DG species containing fatty acids with lengths 16:1 or 18:1 were significantly decreased in PF+Exe and DCR groups when compared to sedentary controls. Due to the significant role of TG in energy storage and DG in cellular signaling, our findings of the effects of weight control on individual TG and DG species in plasma and skin tissue following exposure to a tumor promoter, may provide insight into the mechanism of weight control on cancer prevention.  相似文献   

2.
Unlike calorie restriction, exercise fails to extend maximum life span, but the mechanisms that explain this disparate effect are unknown. We used a 24-wk protocol of treadmill running, weight matching, and pair feeding to compare the effects of exercise and calorie restriction on biomarkers related to aging. This study consisted of young controls, an ad libitum-fed sedentary group, two groups that were weight matched by exercise or 9% calorie restriction, and two groups that were weight matched by 9% calorie restriction + exercise or 18% calorie restriction. After 24 wk, ad libitum-fed sedentary mice were the heaviest and fattest. When weight-matched groups were compared, mice that exercised were leaner than calorie-restricted mice. Ad libitum-fed exercise mice tended to have lower serum IGF-1 than fully-fed controls, but no difference in fasting insulin. Mice that underwent 9% calorie restriction or 9% calorie restriction + exercise, had lower insulin levels; the lowest concentrations of serum insulin and IGF-1 were observed in 18% calorie-restricted mice. Exercise resulted in elevated levels of tissue heat shock proteins, but did not accelerate the accumulation of oxidative damage. Thus, failure of exercise to slow aging in previous studies is not likely the result of increased accrual of oxidative damage and may instead be due to an inability to fully mimic the hormonal and/or metabolic response to calorie restriction.  相似文献   

3.
4.
5.
Exercise can ameliorate vascular dysfunction in hypertension, but its underlying mechanism has not been explored thoroughly. We aimed to investigate whether the high-intensity exercise could enhance vasorelaxation mediated by insulin and insulin-like growth factor-1 (IGF-1) in hypertension. Sixteen-week-old spontaneously hypertensive rats were randomly divided into non-exercise sedentary (SHR) and high-intensity exercise (SHR+Ex) groups conducted by treadmill running at a speed of 30 m/ min until exhaustion. Age-matched Wistar-Kyoto rats (WKY) were used as the normotensive control group. Immediately after exercise, the agonist-induced vasorelaxation of aortas was evaluated in organ baths with or without endothelial denudation. Selective inhibitors were used to examine the roles of nitric oxide synthase (NOS) and phosphatidylinositol-3 kinase (PI3K) in the vasorelaxation. By adding superoxide dismutase (SOD), a superoxide scavenger, the role of superoxide production in the vasorelaxation was also clarified. We found that, the high-intensity exercise significantly (P < 0.05) induced higher vasorelaxant responses to insulin and IGF-1 in the SHR+Ex group than that in the SHR group; after endothelial denudation and pre-treatment of the PI3K inhibitor, NOS inhibitor, or SOD, vasorelaxant responses to insulin and IGF-1 became similar among three groups; the protein expression of insulin receptor, IGF-1 receptor, and endothelial NOS (eNOS) was significantly (P < 0.05) increased in the SHR+Ex group compared with the SHR group;] the relaxation to sodium nitroprusside, a NO donor, was not different among three groups. Our findings suggested that the high-intensity exercise ameliorated the insulin- and IGF-1-mediated vasorelaxation through the endothelium-dependent pathway, which was associated with the reduced level of superoxide production.  相似文献   

6.
Time-dependent alterations in several biological processes of an organism may be characterized as aging. One of the effects of aging is the decline in cognitive functions. Dietary restriction (DR), an intervention where the consumption of food is lessened but without malnutrition, is a well-established mechanism that has a wide range of important outcomes including improved health span, delayed aging, and extension of lifespan of various species. It also plays a beneficial role in protecting against age-dependent deterioration of cognitive functions, and has neuroprotective properties against neurodegenerative diseases. Insulin-like growth factor (IGF)-1 plays an important role in the regulation of cellular and tissue functions, and relating to the aging process the most important pathway of IGF-1 is the phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt/PKB) signaling cascade. Although many have studied the changes in the level of IGF-1 and its effect on neural proliferation, the downstream signaling proteins have not been fully elucidated. Hence in the present investigation, the IGF-1 gene expression and the normal endogenous levels of IGF1R (IGF-1 receptor), PI3K, Akt, pAkt, and pFoxO in the hippocampus of young, adult, and old mice were determined using real-time PCR and Western blot analyses. The effects of DR on these protein levels were also studied. Results showed a decrease in the levels of IGF-1, IGF1R, PI3K, and pAkt, while pFoxO level increased with respect to age. Under DR, these protein levels are maintained in adult mice, but old mice displayed diminished expression levels of these proteins as compared to ad libitum-fed mice. Maintenance of PI3K/Akt pathway results in the phosphorylation of FoxOs, necessary for the enhancement of neural proliferation and survival in adult mice. The down-regulation of IGF-I signaling, as observed in old mice, leads to increasing the activity of FoxO factors that may be important for the neuroprotective effects seen with DR.  相似文献   

7.
The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is important for tissue proliferation. Previously, we found that tissue regeneration after partial pancreatic resection was markedly attenuated in aged mice as compared to young mice and that this attenuation was because of an age-dependent reduction of PI3K/Akt signaling in the pancreatic acini; however, the mechanisms for the age-associated decline of pancreatic PI3K/Akt signaling remained unknown. To better delineate the mechanisms for the decreased PI3K/Akt activation with aging, age-associated changes in cell proliferation and PI3K/Akt signaling were investigated in the present study using in vitro primary pancreatic acinar cell cultures derived from young and aged mice. In response to treatment with insulin-like growth factor 1 (IGF-1), acinar cells from young but not aged mice showed increased activation of PI3K/Akt signaling and cell proliferation, indicating that intrinsic cellular mechanisms cause the age-associated changes in pancreatic acinar cells. We also found that the expression of PI3K p85α subunit, but not IGF-1 receptor or other PI3K subunits, was significantly reduced in pancreatic acinar cells from aged mice; this age-associated reduction of p85α was confirmed in both mouse and human pancreatic tissues. Finally, small interfering RNA (siRNA)-mediated knockdown of p85α expression in acinar cells from young mice resulted in markedly attenuated activation of PI3K/Akt downstream signaling in response to IGF-1. From these results, we conclude that exocrine pancreatic expression of PI3K p85α subunit is attenuated by aging, which is likely responsible for the age-associated decrease in activation of pancreatic PI3K signaling and acinar cell proliferation in response to growth-promoting stimuli.  相似文献   

8.
We have studied the relevance of H-Ras and its downstream effectors to osteoblast functions. 1) Purified human osteoblasts highly expressed integrins beta1, alpha4, alpha5, alpha6 and the activation epitope of beta1. However, these molecules were markedly down-regulated on osteoblasts transfected with expression vector encoding fully activated H-Ras(V12), H-Ras(V12)T35S, activating Raf-1/mitogen-activated protein kinase (MAPK), or an active Raf-1 but not on cells having H-Ras(V12)Y40C, a phosphoinositide 3-kinase (PI3K)-binding mutant. 2) Although osteoblasts spontaneously adhered to fibronectin and laminin in beta1-dependent manner, the expression of H-Ras(V12) or H-Ras(V12)T35S, but not H-Ras(V12)Y40C, in osteoblasts reduced their adhesion. 3) Osteoblasts bearing H-Ras(V12), H-Ras(V12)T35S, or Raf-1 failed to proliferate, whereas those with H-Ras(V12)Y40C proliferated well. (4) The up-regulation of Fas and down-regulation of Bcl-2 were observed in osteoblasts expressing H-Ras(V12), H-Ras(V12)T35S, or Raf-1. (5) Most of the cells having H-Ras(V12), H-Ras(V12)T35S, or Raf-1 became annexin-V(high)/propidium iodide (PI)(high or low) and terminal deoxynucleotidyl-transferase-mediated dUTP nick-end labeling (TUNEL)(high)/PI(low) after 24 and 72 h incubation, respectively. Thus, we propose that H-Ras signals followed by Raf-1/MAPK pathway but not PI3K not only reduces beta(1)-mediated adhesion of osteoblasts to matrix proteins but induces apoptosis presumably via the Fas up-regulation and Bcl-2 down-regulation.  相似文献   

9.
Exercise is well-known in improving vascular functions, but the underlying mechanism has not been totally understood. The aim of this study was to examine whether single exercise session acutely enhances insulin-induced and insulin-like growth factor-1 (IGF-1)-induced vasorelaxation. Twenty-four male Wistar rats at age of 12 weeks were randomly divided into two groups, control (n = 12) and exercise (n = 12) group. The exercise group ran on a treadmill at a speed of 18 m/min for 60 min. Immediately after exercise, insulin-induced and IGF-1-induced vasorelaxant responses were evaluated by the isometric tension of aortic rings in the organ baths. The roles of phosphatidylinositol 3-kinase (PI3K) and nitric oxide synthase (NOS) in vasorelaxant responses were examined by treating selective inhibitors, such as wortmannin (an inhibitor of PI3K) and N(omega)-nitro-L-arginine methyl ester (L-NAME, a NOS inhibitor). In addition, the vascular responses to sodium nitroprusside (SNP), a NO donor, were examined. We found that single exercise session significantly enhanced vasorelaxation mediated by insulin and IGF-1 in rat aortas (P < 0.01). Also, the exercise-enhanced vasorelaxation was abolished by wortmannin or L-NAME. There was no significant difference of SNP-induced vasorelaxation between control and exercise groups. These results indicate that single exercise session acutely enhances insulin-induced and IGF-1-induced vasorelaxation through the PI3K-NOS-dependent pathway.  相似文献   

10.
目的:以运动作为对比,观察不同时长(14 d、28 d)间歇性禁食的体重控制效果,探究其对骨骼肌质量及自噬的影响。方法:选取60只SD大鼠(雄)随机分为3组(n=20):安静对照组(Sed组)、间歇性禁食组(InF组)、有氧运动组(Exe组),设实验周期分别为14 d和28 d。InF组采用间歇性禁食(隔日禁食),Exe组施加跑台运动干预,每周记录体重。DEXA检测体脂并计算体脂指数,天平称量比目鱼肌湿重(双侧)并计算湿重指数,免疫荧光检测细胞外基质蛋白laminin反映肌纤维横截面积、检测LC3标记自噬体,透射电镜观察自噬体数量及形态,Western blot检测自噬相关蛋白ULK1、LC3、p62及调控蛋白AMPKα、p-AMPKα(Thr172)的表达情况。结果:①干预7 d开始,InF、Exe组大鼠体重显著低于Sed组,且InF组体重显著低于Exe组(P<0.01),28 d干预后InF、Exe组体脂指数显著低于Sed组,且InF组体脂指数显著低于Exe组(P<0.05)。②干预28 d时Exe组单根肌纤维面积较Sed、InF组明显增大(P<0.01)。③在各...  相似文献   

11.
12.
Reduced dietary methionine intake (0.17% methionine, MR) and calorie restriction (CR) prolong lifespan in male Fischer 344 rats. Although the mechanisms are unclear, both regimens feature lower body weight and reductions in adiposity. Reduced fat deposition in CR is linked to preservation of insulin responsiveness in older animals. These studies examine the relationship between insulin responsiveness and visceral fat in MR and test whether, despite lower food intake observed in MR animals, decreased visceral fat accretion and preservation of insulin sensitivity is not secondary to CR. Accordingly, rats pair fed (pf) control diet (0.86% methinone, CF) to match the food intake of MR for 80 weeks exhibit insulin, glucose, and leptin levels similar to control-fed animals and comparable amounts of visceral fat. Conversely, MR rats show significantly reduced visceral fat compared to CF and PF with concomitant decreases in basal insulin, glucose, and leptin, and increased adiponectin and triiodothyronine. Daily energy expenditure in MR animals significantly exceeds that of both PF and CF. In a separate cohort, insulin responses of older MR animals as measured by oral glucose challenge are similar to young animals. Longitudinal assessments of MR and CF through 112 weeks of age reveal that MR prevents age-associated increases in serum lipids. By 16 weeks, MR animals show a 40% reduction in insulin-like growth factor-1 (IGF-1) that is sustained throughout life; CF IGF-1 levels decline much later, beginning at 112 weeks. Collectively, the results indicate that MR reduces visceral fat and preserves insulin activity in aging rats independent of energy restriction.  相似文献   

13.
目的:以有氧运动作为参照,观察4周电针干预对大鼠白色脂肪"棕色化"的影响,探究其可能的分子机制。方法:将24只8周龄雄性SD大鼠随机分为安静对照组(Sed组)、有氧运动组(Exe组)、电针组(El A组),每组8只,每组分别干预4周。Exe组采用65%最大摄氧量强度跑台运动,1 h/d,每周6 d。El A组采用电针刺激"足三里"和"天枢"穴,20 min/d,每周6 d,每周记录大鼠体重。4周干预结束后,心尖和腹主动脉取血处死,分离双侧腓肠肌、肾周和附睾周围白色脂肪组织并称湿重,检测大鼠体脂含量和血清Irisin的水平,检测大鼠腓肠肌中AMPKα、p-AMPKα、PGC-1α、FNDC5和脂肪组织中UCP1蛋白的表达,检测大鼠棕色脂肪组织脂滴的形态。结果:①与Sed组相比,从第2周开始,Exe、El A组大鼠体重的增长明显降低,4周后Exe、El A组大鼠体重和体脂含量明显降低(P<0.01),而Exe、El A组之间未见显著差异(P>0.05)。②4周干预后,El A组和Exe组大鼠白色脂肪湿重均明显降低(P<0.05或P<0.01)。③Exe和El A组大...  相似文献   

14.
Ras proteins mediate signals both via extracellular signal-regulated kinase 1 and 2 (ERK), and phosphoinositide 3-kinase (PI3K). These signals are key events in cell protection and compensatory cell growth after exposure to cell damaging and pro-apoptotic stimuli, thus maintaining homeostasis. By transfection techniques, we found that both H-Ras and K-Ras were expressed and appeared functionally active in primary hepatocytes. We compared the ability of H-Ras and K-Ras homologues to preferentially activate one of the two pathways, thereby differentially controlling cell survival and growth. We found that ectopic expression of dominant negative (DN) H-RasN17, but not DN K-RasN17, efficiently inhibited both phosphorylation and translocation of ERK to the nuclear compartment, which are prerequisites for cell cycle progression. Furthermore, ectopic expression of constitutive active (CA) H-RasV12, but not CA K-RasV12, potentiated EGF-induced proliferation. We also found that expression of CA mutants of either H-Ras or K-Ras protected hepatocytes from transforming growth factor-beta1 (TGF-beta1)-induced apoptosis. However, H-Ras-induced survival was mediated by ERK/RSK as well as by PI3K, whereas K-Ras-induced survival was mediated by PI3K only. In conclusion, H-Ras and K-Ras had differential functions in proliferation and survival of primary hepatocytes. H-Ras was the major mediator of ERK-induced proliferation and survival, whereas H-Ras and K-Ras both mediated PI3K-induced survival.  相似文献   

15.
Yang AL  Su CT  Lin KL  Chao JI  You HP  Lee SD 《Life sciences》2006,79(21):2017-2021
Improved vasorelaxant response is one of the beneficial effects of exercise training on vascular function. The mechanism for this response is, however, poorly understood. The aim of this study was to investigate the effects of exercise training on insulin-induced and insulin-like growth factor-1 (IGF-1)-induced vasorelaxation. Fourteen 6-week-old male Wistar rats were randomly divided into sedentary control and exercise groups. For 12 weeks, the exercise group ran on a treadmill 60 min/day, 5 days/week. After exercise training, insulin-induced and IGF-1-induced vasorelaxant responses were evaluated by measuring the isometric tension of aortic rings. The vasorelaxant role of phosphatidylinositol 3-kinase (PI3K) and nitric oxide synthase (NOS) was examined by applying inhibitors, such as wortmannin (an inhibitor of PI3K) and N(omega)-nitro-L-arginine methyl ester (L-NAME, a NOS inhibitor). In addition, we examined the vascular response to the NO donor, sodium nitroprusside (SNP). We found that: (1) exercise training significantly enhanced both insulin-induced and IGF-1-induced vasorelaxation in rat aortas; (2) this vasorelaxant effect disappeared after the use of wortmannin or L-NAME; (3) there was no significant difference in SNP-induced vasorelaxation between control and exercise groups. Our findings indicate that exercise training enhances insulin-induced and IGF-1-induced vasorelaxant responses which are mediated through the PI3K-NOS-dependent pathway.  相似文献   

16.
Ghrelin, known to stimulate adipogenesis, displays an endogenous secretory rhythmicity closely related to meal patterns. Therefore, a chronic imposed feeding schedule might induce modified ghrelin levels and consequently adiposity. Growing Wistar rats were schedule-fed by imposing a particular fixed feeding schedule of 3 meals/day without caloric restriction compared with total daily control intake. After 14 days, their body composition was measured by DEXA and compared with ad libitum-fed controls and to rats daily intraperitoneal injection with ghrelin. Feeding patterns, circadian activity, and pulsatile acylated ghrelin variations were monitored. After 14 days, rats on the imposed feeding schedule displayed, despite an equal daily calorie intake, a slower growth rate compared with ad libitum-fed controls. Moreover, schedule-fed rats exhibiting a feeding pattern with intermittent fasting periods had a higher fat/lean ratio compared with ad libitum-fed controls. Interestingly, ghrelin-treated rats also showed an increase in fat mass, but the fat/lean ratio was not significantly increased compared with controls. In the schedule-fed rats, spontaneous activity and acylated ghrelin levels were increased and associated with the scheduled meals, indicating anticipatory effects. Our results suggest that scheduled feeding, associated with intermittent fasting periods, even without nutrient/calorie restriction on a daily basis, results in adipogenesis. This repartitioning effect is associated with increased endogenous acylated ghrelin levels. This schedule-fed model points out the delicate role of meal frequency in adipogenesis and provides an investigative tool to clarify any effects of endogenous ghrelin without the need for ghrelin administration.  相似文献   

17.
18.
In multiple myeloma, the Akt/PI3K pathway is involved in the proliferation of myeloma cells. In the current study, we have investigated the impact of the CD45 phosphatase in the control of Akt/PI3K activation. We show that Akt activation in response to insulin-like growth factor-1 (IGF-1) is highly variable from one human myeloma cell line to another one. Actually, Akt activation is highly related to whether CD45 is expressed or not. Indeed, both the magnitude and the duration of Akt phosphorylation in response to IGF-1 are more important in CD45- than in CD45+ myeloma cell lines. We next demonstrate a physical association between CD45 and IGF-1 receptor (IGF-1R) suggesting that CD45 could be involved in the dephosphorylation of the IGF-1R. Furthermore, the growth of CD45- myeloma cell lines is mainly or even totally controlled by the PI3K pathway whereas that of CD45+ myeloma cell lines is modestly controlled by it. Indeed, wortmannin, a specific PI3K inhibitor, induced a dramatic growth inhibition in the CD45- myeloma cell lines characterized by a G1 growth arrest, whereas it has almost no effect on CD45+ myeloma cell lines. Altogether, these results suggest that CD45 negatively regulates IGF-1-dependent activation of PI3K. Thus, strategies that block IGF-1R signaling and consequently the Akt/PI3K pathway could be a priority in the treatment of patients with multiple myeloma, especially those lacking CD45 expression that have a very poor clinical outcome.  相似文献   

19.
The evolutionarily conserved phosphoinositide 3-kinase (PI3K) signaling pathway mediates both the metabolic effects of insulin and the growth-promoting effects of insulin-like growth factor-1 (IGF-1). We have generated mice deficient in both the p85alpha/p55alpha/p50alpha and the p85beta regulatory subunits of class I(A) PI3K in skeletal muscles. PI3K signaling in the muscle of these animals is severely impaired, leading to a significant reduction in muscle weight and fiber size. These mice also exhibit muscle insulin resistance and whole-body glucose intolerance. Despite their ability to maintain normal fasting and fed blood glucose levels, these mice show increased body fat content and elevated serum free fatty acid and triglyceride levels. These results demonstrate that in vivo p85 is a critical mediator of class I(A) PI3K signaling in the regulation of muscle growth and metabolism. Our finding also indicates that compromised muscle PI3K signaling could contribute to symptoms of hyperlipidemia associated with human type 2 diabetes.  相似文献   

20.
Mutations of the thyroid hormone receptor beta (TRbeta) gene cause resistance to thyroid hormone (RTH). RTH is characterized by increased serum thyroid hormone associated with nonsuppressible thyroid-stimulating hormone (TSH) and impaired growth. It is unclear how the actions of TRbeta mutants are modulated in vivo to affect the manifestation of RTH. Using a mouse model of RTH that harbors a knockin mutation of the TRbeta gene (TRbetaPV mouse), we investigated the effect of the steroid hormone receptor coactivator 3 (SRC-3) on RTH. In TRbetaPV mice deficient in SRC-3, dysfunction of the pituitary-thyroid axis and hypercholesterolemia was lessened, but growth impairment of RTH was worsened. The lessened dysfunction of the pituitary-thyroid axis was attributed to a significant decrease in growth of the thyroid and pituitary. Serum insulin-like growth factor 1 (IGF-1) was further reduced in TRbetaPV mice deficient in SRC-3. This effect led to reduced signaling of the IGF-1/phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway that is known to mediate cell growth and proliferation. Thus, SRC-3 modulates RTH by at least two mechanisms, one via its role as a receptor coregulator and the other via its growth regulatory role through the IGF-1/PI3K/AKT/mTOR signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号