首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
T-cell protein tyrosine phosphatase (TCPTP) exists as two forms generated by alternative splicing: a 48-kDa endoplasmic reticulum (ER)-associated form (TC48) and a 45-kDa nuclear form (TC45). To identify TCPTP substrates, we have generated substrate-trapping mutants, in which the invariant catalytic acid of TCPTP (D182) is mutated to alanine. The TCPTP D182A substrate-trapping mutants were transiently overexpressed in COS cells, and their ability to form complexes with tyrosine-phosphorylated (pTyr) proteins was assessed. No pTyr proteins formed complexes with wild-type TCPTP. In contrast, TC48-D182A formed a complex in the ER with pTyr epidermal growth factor receptor (EGFR). In response to EGF, TC45-D182A exited the nucleus and accumulated in the cytoplasm, where it bound pTyr proteins of ~50, 57, 64, and 180 kDa. Complex formation was disrupted by vanadate, highlighting the importance of the PTP active site in the interaction and supporting the characterization of these proteins as substrates. Of these TC45 substrates, the ~57- and 180-kDa proteins were identified as p52Shc and EGFR, respectively. We examined the effects of TC45 on EGFR signaling and observed that it did not modulate EGF-induced activation of p42Erk2. However, TC45 inhibited the EGF-induced association of p52Shc with Grb2, which was attributed to the ability of the PTP to recognize specifically p52Shc phosphorylated on Y239. These results indicate that TC45 recognizes not only selected substrates in a cellular context but also specific sites within substrates and thus may regulate discrete signaling events.  相似文献   

2.
Glioblastoma multiforme (GBM) is the most aggressive type of glioma and GBMs frequently contain amplifications or mutations of the EGFR gene. The most common mutation results in a truncated receptor tyrosine kinase known as Delta EGFR that signals constitutively and promotes GBM growth. Here, we report that the 45-kDa variant of the protein tyrosine phosphatase TCPTP (TC45) can recognize Delta EGFR as a cellular substrate. TC45 dephosphorylated Delta EGFR in U87MG glioblastoma cells and inhibited mitogen-activated protein kinase ERK2 and phosphatidylinositol 3-kinase signaling. In contrast, the substrate-trapping TC45-D182A mutant, which is capable of forming stable complexes with TC45 substrates, suppressed the activation of ERK2 but not phosphatidylinositol 3-kinase. TC45 inhibited the proliferation and anchorage-independent growth of Delta EGFR cells but TC45-D182A only inhibited cellular proliferation. Notably, neither TC45 nor TC45-D182A inhibited the proliferation of U87MG cells that did not express Delta EGFR. Delta EGFR activity was necessary for the activation of ERK2, and pharmacological inhibition of ERK2 inhibited the proliferation of Delta EGFR-expressing U87MG cells. Expression of either TC45 or TC45-D182A also suppressed the growth of Delta EGFR-expressing U87MG cells in vivo and prolonged the survival of mice implanted intracerebrally with these tumor cells. These results indicate that TC45 can inhibit the Delta EGFR-mediated activation of ERK2 and suppress the tumorigenicity of Delta EGFR-expressing glioblastoma cells in vivo.  相似文献   

3.
The protein tyrosine phosphatase PTP1B is a negative regulator of insulin signaling and a therapeutic target for type 2 diabetes. Our previous studies have shown that the closely related tyrosine phosphatase TCPTP might also contribute to the regulation of insulin receptor (IR) signaling in vivo (S. Galic, M. Klingler-Hoffmann, M. T. Fodero-Tavoletti, M. A. Puryer, T. C. Meng, N. K. Tonks, and T. Tiganis, Mol. Cell. Biol. 23:2096-2108, 2003). Here we show that PTP1B and TCPTP function in a coordinated and temporally distinct manner to achieve an overall regulation of IR phosphorylation and signaling. Whereas insulin-induced phosphatidylinositol 3-kinase/Akt signaling was prolonged in both TCPTP-/- and PTP1B-/- immortalized mouse embryo fibroblasts (MEFs), mitogen-activated protein kinase ERK1/2 signaling was elevated only in PTP1B-null MEFs. By using phosphorylation-specific antibodies, we demonstrate that both IR beta-subunit Y1162/Y1163 and Y972 phosphorylation are elevated in PTP1B-/- MEFs, whereas Y972 phosphorylation was elevated and Y1162/Y1163 phosphorylation was sustained in TCPTP-/- MEFs, indicating that PTP1B and TCPTP differentially contribute to the regulation of IR phosphorylation and signaling. Consistent with this, suppression of TCPTP protein levels by RNA interference in PTP1B-/- MEFs resulted in no change in ERK1/2 signaling but caused prolonged Akt activation and Y1162/Y1163 phosphorylation. These results demonstrate that PTP1B and TCPTP are not redundant in insulin signaling and that they act to control both common as well as distinct insulin signaling pathways in the same cell.  相似文献   

4.
Many studies have illustrated that the production of reactive oxygen species (ROS) is important for optimal tyrosine phosphorylation and signaling in response to diverse stimuli. Protein-tyrosine phosphatases (PTPs), which are important regulators of signal transduction, are exquisitely sensitive to inhibition after generation of ROS, and reversible oxidation is becoming recognized as a general physiological mechanism for regulation of PTP function. Thus, production of ROS facilitates a tyrosine phosphorylation-dependent cellular signaling response by transiently inactivating those PTPs that normally suppress the signal. In this study, we have explored the importance of reversible PTP oxidation in the signaling response to insulin. Using a modified ingel PTP assay, we show that stimulation of cells with insulin resulted in the rapid and transient oxidation and inhibition of two distinct PTPs, which we have identified as PTP1B and TC45, the 45-kDa spliced variant of the T cell protein-tyrosine phosphatase. We investigated further the role of TC45 as a regulator of insulin signaling by combining RNA interference and the use of substrate-trapping mutants. We have shown that TC45 is an inhibitor of insulin signaling, recognizing the beta-subunit of the insulin receptor as a substrate. The data also suggest that this strategy, using ligand-induced oxidation to tag specific PTPs and using interference RNA and substrate-trapping mutants to illustrate their role as regulators of particular signal transduction pathways, may be applied broadly across the PTP family to explore function.  相似文献   

5.
The chimeric oncoprotein BCR-Abl exhibits deregulated protein tyrosine kinase activity and is responsible for the pathogenesis of certain human leukemias, such as chronic myelogenous leukemia. The activities of cellular Abl (c-Abl) and BCR-Abl are stringently regulated and the cellular mechanisms involved in their inactivation are poorly understood. Protein tyrosine phosphatases can negatively regulate Abl mediated signaling by dephosphorylating the kinase and/or its substrates. This study investigated the ability of the intracellular T cell protein tyrosine phosphatase (TCPTP/PTPN2) to dephosphorylate and regulate the functions of BCR-Abl and c-Abl. TCPTP is expressed as two alternately spliced isoforms — TC48 and TC45, which differ in their C-termini and localize to the cytoplasm and nucleus respectively. We show that TC48 dephosphorylates BCR-Abl but not c-Abl and inhibits its activity towards its substrate, CrkII. Y1127 and Y1294 residues whose phosphorylation corresponds with BCR-Abl activation status were the primary sites targeted by TC48. Co-localization and immunoprecipitation experiments showed that TC48 interacted with BCR-Abl but not with c-Abl, and BCR domain was sufficient for interaction. TC48 expression resulted in the stabilization of Bcr-Abl protein dependent on its phosphatase activity. Inactivation of cellular TC48 in K562 cells by stable expression of a dominant negative catalytically inactive mutant TC48, enhanced proliferation. TC48 expressing K562 clones showed reduced proliferation and enhanced sensitivity to STI571 compared to control clones suggesting that TC48 can repress the growth of CML cells. This study identifies a novel cellular regulator that specifically inhibits the activity of oncogenic BCR-Abl but not that of the cellular Abl kinase.  相似文献   

6.
In this study we have investigated the down-regulation of epidermal growth factor (EGF) receptor signaling by protein-tyrosine phosphatases (PTPs) in COS1 cells. The 45-kDa variant of the PTP TCPTP (TC45) exits the nucleus upon EGF receptor activation and recognizes the EGF receptor as a cellular substrate. We report that TC45 inhibits the EGF-dependent activation of the c-Jun N-terminal kinase, but does not alter the activation of extracellular signal-regulated kinase 2. These data demonstrate that TC45 can regulate selectively mitogen-activated protein kinase signaling pathways emanating from the EGF receptor. In EGF receptor-mediated signaling, the protein kinase PKB/Akt and the mitogen-activated protein kinase c-Jun N-terminal kinase, but not extracellular signal-regulated kinase 2, function downstream of phosphatidylinositol 3-kinase (PI 3-kinase). We have found that TC45 and the TC45-D182A mutant, which is capable of forming stable complexes with TC45 substrates, inhibit almost completely the EGF-dependent activation of PI 3-kinase and PKB/Akt. TC45 and TC45-D182A act upstream of PI 3-kinase, most likely by inhibiting the recruitment of the p85 regulatory subunit of PI 3-kinase by the EGF receptor. Recent studies have indicated that the EGF receptor can be activated in the absence of EGF following integrin ligation. We find that the integrin-mediated activation of PKB/Akt in COS1 cells is abrogated by the specific EGF receptor protein-tyrosine kinase inhibitor tyrphostin AG1478, and that TC45 and TC45-D182A can inhibit activation of PKB/Akt following the attachment of COS1 cells to fibronectin. Thus, TC45 may serve as a negative regulator of growth factor or integrin-induced, EGF receptor-mediated PI 3-kinase signaling.  相似文献   

7.
Insulin produces an influx of Ca(2+) into isolated rat hepatocyte couplets that is important to couple its tyrosine kinase receptor to MAPK activity (Benzeroual et al., Am. J. Physiol. 272, (1997) G1425-G1432. In the present study, we have examined the implication of Ca(2+) in the phosphorylation state of the insulin receptor (IR) beta-subunit and of insulin receptor substrate-1 (IRS-1), as well as in the stimulation of PI 3-kinase activity in cultured hepatocytes. External Ca(2+) chelation (EGTA 4 mM) or administration of Ca(2+) channel inhibitors gadolinium 50 microM or nickel 500 microM inhibited insulin-induced PI 3-kinase activation by 85, 50 and 50%, respectively, whereas 200 microM verapamil was without effect. In contrast, the insulin-induced tyrosine phosphorylation of IR beta-subunit and of IRS-1 was not affected by any of the experimental conditions. Our data demonstrate that the stimulation of PI 3-kinase activity by the activated insulin receptor, but not the phosphorylation of IR beta-subunit and IRS-1, requires an influx of Ca(2+). Ca(2+) thus appears to play an important role as a second messenger in insulin signaling in liver cells.  相似文献   

8.
Impaired insulin receptor (IR) signaling leads to insulin resistance and type 2 diabetes mellitus. Several inhibitors of the IR tyrosine kinase activity have recently been described and associated with human insulin resistance. Among these negative regulators, protein tyrosine phosphatases (PTPs) are likely to play a pivotal role in IR signaling. Transgenic studies revealed that PTP1B and TCPTP are primary candidates but IR of these animals can be finally dephosphorylated, suggesting that other PTPs are also involved in the dephosphorylation of IR. In this study, we showed that receptor-type PTPepsilon (PTP epsilonM) dephosphorylated IR in rat primary hepatocytes and tyrosines 972, 1158, 1162 and 1163 were primary targets of PTP epsilonM. Wild type as well as substrate-trapping DA forms of PTPepsilonM suppressed phosphorylation of IR downstream enzymes such as Akt, extracellular regulated kinase (ERK) and glycogen synthase kinase 3 (GSK3). It was also demonstrated that PTPepsilonM suppressed insulin-induced glycogen synthesis and inhibited insulin-induced suppression of phosphoenol pyruvate carboxykinase (PEPCK) expression in primary hepatocytes. Furthermore, adenovirally introduced PTPepsilonM also exhibited inhibitory activity against suppression of PEPCK expression in mouse liver. These results suggest that PTPepsilonM is a negative regulator of IR signaling and involved in insulin-induced glucose metabolism mainly through direct dephosphorylation and inactivation of IR in hepatocytes and liver.  相似文献   

9.
Insulin stimulation of skeletal muscle results in rapid activation of protein kinase Cdelta (PKCdelta), which is associated with its tyrosine phosphorylation and physical association with insulin receptor (IR). The mechanisms underlying tyrosine phosphorylation of PKCdelta have not been determined. In this study, we investigated the possibility that the Src family of nonreceptor tyrosine kinases may be involved upstream insulin signaling. Studies were done on differentiated rat skeletal myotubes in primary culture. Insulin caused an immediate stimulation of Src and induced its physical association with both IR and PKCdelta. Inhibition of Src by treatment with the Src family inhibitor PP2 reduced insulin-stimulated Src-PKCdelta association, PKCdelta tyrosine phosphorylation and PKCdelta activation. PP2 inhibition of Src also decreased insulin-induced IR tyrosine phosphorylation, IR-PKCdelta association and association of Src with both PKCdelta and IR. Finally, inhibition of Src decreased insulin-induced glucose uptake. We conclude that insulin activates Src tyrosine kinase, which regulates PKCdelta activity. Thus, Src tyrosine kinase may play an important role in insulin-induced tyrosine phosphorylation of both IR and PKCdelta. Moreover, both Src and PKCdelta appear to be involved in IR activation and subsequent downstream signaling.  相似文献   

10.
11.
Insulin signals are mediated through tyrosine phosphorylation of specific proteins such as insulin receptor substrate 1 (IRS-1) and Shc by the activated insulin receptor (IR). Phosphorylation of both proteins is nearly abolished by an alanine substitution at Tyr-960 (A960) in the beta-subunit of the receptor. However, overexpression of IRS-1 in CHO cells expressing the mutant receptor (A960 cells) restored sufficient tyrosine phosphorylation of IRS-1 to rescue IRS-1/Grb-2 binding and phosphatidylinositol 3' kinase activation during insulin stimulation. Shc tyrosine phosphorylation and its binding to Grb-2 were impaired in the A960 cells and were unaffected by overexpression of IRS-1. Although overexpression of IRS-1 increased IRS-1 binding to Grb-2, ERK-1/ERK-2 activation was not rescued. These data suggest that signaling molecules other than IRS-1, perhaps including Shc, are critical for insulin stimulation of p21ras. Interestingly, overexpression of IRS-1 in the A960 cells restored insulin-stimulated mitogenesis and partially restored insulin stimulation of glycogen synthesis. Thus, IRS-1 tyrosine phosphorylation is sufficient to increase the mitogenic response to insulin, whereas insulin stimulation of glycogen synthesis appears to involve other factors. Moreover, IRS-1 phosphorylation is either not sufficient or not involved in insulin stimulation of ERK.  相似文献   

12.
A soluble derivative of the human insulin receptor cytoplasmic domain, as expressed in insect cells via a Baculovirus vector, is an active protein-tyrosine kinase. In the present study, we find that three forms of the enzyme (48, 43, and 38 kDa) can be partially purified by MonoQ fast protein liquid chromatography. Two-dimensional thin layer phosphopeptide mapping reveals that the 48-kDa enzyme undergoes a rapid autophosphorylation on the same tyrosines (residues 1158, 1162, 1163, 1328, and 1334) that have previously been shown to be major autophosphorylation sites on the native insulin receptor beta-subunit in intact cells. Furthermore, the 48- and 43-kDa proteins are phosphorylated on serine residues by a serine kinase(s) that copurifies through MonoQ fast protein liquid chromatography. Tyrosine autophosphorylation sites 1328 and 1334 and virtually all serine phosphorylation sites are absent in the 38-kDa kinase. Partial tryptic proteolysis of the 48-kDa kinase generates a core 38-kDa enzyme that undergoes autophosphorylation almost exclusively on tyrosines 1158, 1162, and 1163. Phosphorylation of these tyrosine residues occurs in a cascade manner analogous to that found in the intact insulin receptor beta-subunit.  相似文献   

13.
The cytoplasmic domain of the insulin receptor (IR) beta-subunit contains cysteine (Cys) residues whose reactivity and function remain uncertain. In this study, we examined the ability of the bifunctional cross-linking reagent 1,6-bismaleimidohexane (BMH) to covalently link IR with interacting proteins that possess reactive thiols. Transfected Chinese hamster ovary cells expressing either the wild-type human IR, C-terminally truncated receptors, or mutant receptors with Cys --> Ala substitutions and mouse 3T3-L1 adipocytes were used to compare the BMH effect. The results showed the formation of a large complex between the wild-type human receptor beta-subunit and molecule X, a thiol-reactive membrane-associated protein, in both intact and semipermeabilized cells in response to BMH. Prior cell stimulation with insulin had only a modest effect in this process. Western blot analysis revealed that the receptor alpha-subunit was not present in the beta-X complex. The BMH cross-linking did not inhibit in vitro tyrosine phosphorylation of the receptor complexed with molecule X. Both the human IR Cys981Ala mutant and murine IR, that lacks the equivalent of human Cys(981), failed to react with BMH. Finally, no covalent association between IR beta-subunit and IRS-1, the protein tyrosine phosphatase LAR or SHP-2 was observed in BMH-treated cells expressing the wild-type human IR. These results demonstrate a striking difference in reactivity among the cytoplasmic IR beta-subunit thiols and clearly show that Cys(981) of human IR beta-subunit is in close proximity to a thiol-reactive membrane-associated protein under basal and insulin-stimulated conditions.  相似文献   

14.
Metabolic deregulation accompanying type II diabetes is characterized by insulin resistance in peripheral tissues (liver, muscle, and adipose), mediated by impairments in insulin receptor (IR) signaling. Two closely-related protein tyrosine phosphatases, PTP1B and TCPTP both showed abilities to negatively regulate insulin receptor signaling. In order to test whether these two phosphatases can act synergistically, hydrodynamic injection was applied to deliver small interfering RNA (siRNA) of PTP1B and/or TCPTP to mouse liver. By measuring insulin-sensitive reporter gene expression and plasma glucose of diabetic mice, we found siRNA of PTP1B or TCPTP alone can sensitize insulin signal transduction, but combined treatment of both siRNAs had no better effects than siRNA of PTP1B. These results suggested siRNA of PTP1B and TCPTP can strengthen insulin signaling, but their effects do not appear to be synergistic in mouse liver.  相似文献   

15.
Certain protein kinase C (PKC) isoforms, in particular PKCs beta II, delta, and zeta, are activated by insulin stimulation. In primary cultures of skeletal muscle, PKCs beta II and zeta, but not PKC delta, are activated via a phosphatidylinositol 3-kinase (PI3K)-dependent pathway. The purpose of this study was to investigate the possibility that PKC delta may be activated upstream of PI3K by direct interaction with insulin receptor (IR). Experiments were done on primary cultures of newborn rat skeletal muscle, age 5--6 days in vitro. The time course of insulin-induced activation of PKC delta closely paralleled that of IR. Insulin stimulation caused a selective coprecipitation of PKC delta with IR, and these IR immunoprecipitates from insulin-stimulated cells displayed a striking induction of PKC activity due specifically to PKC delta. To examine the involvement of PKC delta in the IR signaling cascade, we used recombinant adenovirus constructs of wild-type (W.T.) or dominant negative (D.N.) PKC delta. Overexpression of W.T.PKC delta induced PKC delta activity and coassociation of PKC delta and IR without addition of insulin. Overexpression of D.N.PKC delta abrogated insulin- induced coassociation of PKC delta and IR. Insulin-induced tyrosine phosphorylation of IR was greatly attenuated in cells overexpressing W.T.PKC delta, whereas in myotubes overexpressing D.N.PKC delta, tyrosine phosphorylation occurred without addition of insulin and was sustained longer than that in control myotubes. In control myotubes IR displayed a low level of serine phosphorylation, which was increased by insulin stimulation. In cells overexpressing W.T.PKC delta, serine phosphorylation was strikingly high under basal conditions and did not increase after insulin stimulation. In contrast, in cells overexpressing D.N.PKC delta, the level of serine phosphorylation was lower than that in nonoverexpressing cells and did not change notably after addition of insulin. Overexpression of W.T.PKC delta caused IR to localize mainly in the internal membrane fractions, and blockade of PKC delta abrogated insulin-induced IR internalization. We conclude that PKC delta is involved in regulation of IR activity and routing, and this regulation may be important in subsequent steps in the IR signaling cascade.  相似文献   

16.
Growth hormone (GH) counteracts insulin action on lipid and glucose metabolism. However, the sequence of molecular events leading to these changes is poorly understood. Insulin action is initiated by binding of the hormone to its cell surface receptor (IR). This event activates the intrinsic tyrosine kinase activity residing in the beta-subunit of the IR and leads to autophosphorylation of the cytoplasmic portion of the beta-subunit and further activation of its tyrosine kinase towards several intermediate proteins, including the family of IR substrates (IRS) and the Shc proteins. When tyrosine phosphorylated, these cellular substrates connect the IR with several downstream signaling molecules. One of them is the enzyme phosphatidylinositol (PI) 3-kinase. The insulin antagonistic action of GH is not a consequence of a direct interaction with the IR. Instead, long-term exposure to GH is, in general, associated with hyperinsulinemia, which leads to a reduction of IR levels and an impairment of its tyrosine kinase activity. The signals of GH and insulin may converge at post-receptor levels. The signaling pathway leading to activation of PI 3-kinase appears to be an important site of convergence between the signals of these two hormones and seems to be mediated principally by IRS-1. Rodent models of chronic GH excess have been useful tools to investigate the mechanism by which GH induces insulin resistance. Decreased IR, IRS-1, and IRS-2 tyrosyl phosphorylation in response to insulin was found in skeletal muscle, whereas a chronic activation of the IRS-PI 3-kinase pathway was found in liver. The induction of the expression of proteins that inhibit IR signaling such as suppressors of cytokine signaling (SOCS)-1 and -6 may also be involved in this alteration. Interestingly, the modulation of insulin signaling and action observed in states of GH excess, deficiency, or resistance seems to be relevant to the changes in longevity associated with those states.  相似文献   

17.
In response to insulin, tyrosine kinase activity of the insulin receptor is stimulated, leading to autophosphorylation and tyrosine phosphorylation of proteins including insulin receptor subunit (IRS)-1, IRS-2, and Shc. Phosphorylation of these proteins leads to activation of downstream events that mediate insulin action. Insulin receptor kinase activity is requisite for the biological effects of insulin, and understanding regulation of insulin receptor phosphorylation and kinase activity is essential to understanding insulin action. Receptor tyrosine kinase activity may be altered by direct changes in tyrosine kinase activity, itself, or by dephosphorylation of the insulin receptor by protein-tyrosine phosphatases. After 1 min of insulin stimulation, the insulin receptor was tyrosine phosphorylated 8-fold more and Shc was phosphorylated 50% less in 32D cells containing both IRS-1 and insulin receptors (32D/IR+IRS-1) than in 32D cells containing only insulin receptors (32D/IR), insulin receptors and IRS-2 (32D/IR+IRS-2), or insulin receptors and a form of IRS-1 that cannot be phosphorylated on tyrosine residues (32D/IR+IRS-1F18). Therefore, IRS-1 and IRS-2 appeared to have different effects on insulin receptor phosphorylation and downstream signaling. Preincubation of cells with pervanadate greatly decreased protein-tyrosine phosphatase activity in all four cell lines. After pervanadate treatment, tyrosine phosphorylation of insulin receptors in insulin-treated 32D/IR, 32D/ IR+IRS-2, and 32D/IR+IRS-1F18 cells was markedly increased, but pervanadate had no effect on insulin receptor phosphorylation in 32D/IR+IRS-1 cells. The presence of tyrosine-phosphorylated IRS-1 appears to increase insulin receptor tyrosine phosphorylation and potentially tyrosine kinase activity via inhibition of protein-tyrosine phosphatase(s). This effect of IRS-1 on insulin receptor phosphorylation is unique to IRS-1, as IRS-2 had no effect on insulin receptor tyrosine phosphorylation. Therefore, IRS-1 and IRS-2 appear to function differently in their effects on signaling downstream of the insulin receptor. IRS-1 may play a major role in regulating insulin receptor phosphorylation and enhancing downstream signaling after insulin stimulation.  相似文献   

18.
Both hyperglycemia and tumor necrosis factor alpha (TNFalpha) were found to induce insulin resistance at the level of the insulin receptor (IR). How this effect is mediated is, however, not understood. We investigated whether oxidative stress and production of hydrogen peroxide could be a common mediator of the inhibitory effect. We report here that micromolar concentrations of H(2)O(2) dramatically inhibit insulin-induced IR tyrosine phosphorylation (pretreatment with 500 microM H(2)O(2) for 5 min inhibits insulin-induced IR tyrosine phosphorylation to 8%), insulin receptor substrate 1 phosphorylation, as well as insulin downstream signaling such as activation of phosphatidylinositol 3-kinase (inhibited to 57%), glucose transport (inhibited to 36%), and mitogen-activated protein kinase activation (inhibited to 7.2%). Both sodium orthovanadate, a selective inhibitor of tyrosine-specific phosphatases, as well as the protein kinase C inhibitor G?6976 reduced the inhibitory effect of hydrogen peroxide on IR tyrosine phosphorylation. To investigate whether H(2)O(2) is involved in hyperglycemia- and/or TNFalpha-induced insulin resistance, we preincubated the cells with the H(2)O(2) scavenger catalase prior to incubation with 25 mM glucose, 25 mM 2-deoxyglucose, 5.7 nM TNFalpha, or 500 microM H(2)O(2), respectively, and subsequent insulin stimulation. Whereas catalase treatment completely abolished the inhibitory effect of H(2)O(2) and TNFalpha on insulin receptor autophosphorylation, it did not reverse the inhibitory effect of hyperglycemia. In conclusion, these results demonstrate that hydrogen peroxide at low concentrations is a potent inhibitor of insulin signaling and may be involved in the development of insulin resistance in response to TNFalpha.  相似文献   

19.
BACKGROUND: The immune response is regulated through a tightly controlled cytokine network. The counteracting balance between protein tyrosine kinase (PTK) and protein tyrosine phosphatase (PTP) activity regulates intracellular signaling in the immune system initiated by these extracellular polypeptides. Mice deficient for the T cell protein tyrosine phosphatase (TCPTP) display gross defects in the hematopoietic compartment, indicating a critical role for TCPTP in the regulation of immune homeostasis. To date, the molecular basis underlying this phenotype has not been reported. RESULTS: We have identified two members of the Janus family of tyrosine kinases (JAKs), JAK1 and JAK3, as bona fide substrates of TCPTP. Inherent substrate specificity in the TCPTP-JAK interaction is demonstrated by the inability of other closely related PTP family members to form an in vivo interaction with the JAKs in hematopoietic cells. In keeping with a negative regulatory role for TCPTP in cytokine signaling, expression of TCPTP in T cells abrogated phosphorylation of STAT5 following interleukin (IL)-2 stimulation. TCPTP-deficient lymphocytes treated with IL-2 had increased levels of tyrosine-phosphorylated STAT5, and thymocytes treated with interferon (IFN)-alpha or IFN-gamma had increased tyrosine-phosphorylated STAT1. Hyperphosphorylation of JAK1 and elevated expression of iNOS was observed in IFN-gamma-treated, TCPTP-deficient, bone marrow-derived macrophages. CONCLUSIONS: We have identified JAK1 and JAK3 as physiological substrates of TCPTP. These results indicate a negative regulatory role for TCPTP in cytokine signaling and provide insight into the molecular defect underlying the phenotype of TCPTP-deficient animals.  相似文献   

20.
The present study demonstrates negative intracellular cross-talk between angiotensin II type 2 (AT2) and insulin receptors. AT2 receptor stimulation leads to inhibition of insulin-induced extracellular signal-regulated protein kinase (ERK2) activity and cell proliferation in transfected Chinese hamster ovary (CHO-hAT2) cells. We show that AT2 receptor interferes at the initial step of insulin signaling cascade, by impairing tyrosine phosphorylation of the insulin receptor (IR) beta-chain. AT2-mediated inhibition of IR phosphorylation is insensitive to pertussis toxin and is also detected in neuroblastoma N1E-115 and pancreatic acinar AR42J cells that express endogenous receptors. We present evidence that AT2 receptor inhibits the autophosphorylating tyrosine kinase activity of IR, with no significant effect on insulin binding properties. AT2-mediated inactivation of IR does not mainly involve tyrosine dephosphorylation by vanadate-sensitive tyrosine phosphatases nor serine/threonine phosphorylation by protein kinase C. As a consequence of IR inactivation, AT2 receptor inhibits tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and signal-regulatory protein (SIRPalpha1) and prevents subsequent association of both IRS-1 and SIRPalpha1 with Src homology 2 (SH2)-containing tyrosine phosphatase SHP-2. Our results thus demonstrate functional trans-inactivation of IR kinase by G protein-coupled AT2 receptor, illustrating a novel mode of negative communication between two families of membrane receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号