首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
One of the important questions in the serpin mechanism of inhibition of serine and cysteine proteinases of different specificities and structural classes is whether a common "crushing" mechanism of proteinase inactivation is used in all cases. This mechanism was seen in an X-ray structure of the complex between alpha(1)-proteinase inhibitor and trypsin and required the full insertion of the reactive center loop into beta-sheet A and translocation of the proteinase from one pole of the serpin to the other. However, it has yet to be shown to be general for serine proteinases of structural classes other than the trypsin-fold or for cysteine proteinases with the papain-fold or for the caspases. Fluorescence resonance energy transfer offers a potential means of obtaining an answer to this question for each of these classes, without the concern for the effect that increasing size has on the observed signal that applies to NMR spectroscopy. However, care must be taken to ensure that measurements made represent sufficient overdetermination that the answer obtained is unambiguous.  相似文献   

2.
Current methods for fluorescence resonance energy transfer (FRET) microscopy of living cells involve taking a series of images with alternating excitation colors in separate camera exposures. Here we present a new FRET method based on polarization that requires only one camera exposure and thereby offers the possibility for better time resolution of dynamic associations among subcellular components. Polarized FRET (p-FRET) uses a simultaneous combination of excitation wavelengths from two orthogonally polarized sources, along with an emission channel tri-image splitter outfitted with appropriate polarizers, to concurrently excite and collect fluorescence from free donors, free acceptors, and FRET pairs. Based upon the throughput in each emission channel as premeasured on pure samples of each of the three species, decoupling of an unknown sample's three polarized fluorescence images can be performed to calculate the pixel-by-pixel concentrations of donor, acceptor, and FRET pairs. The theory of this approach is presented here, and its feasibility is experimentally confirmed by measurements on mixtures of cyan fluorescent protein (CFP), citrine ((Cit) a yellow fluorescent protein variant), and linked fusion proteins (CFP-L16-Cit, CFP-L7-Cit, CFP-L54-Cit) in living cells. The effects of shot noise, acceptor polarization, and FRET efficiency on the statistical accuracy of p-FRET experimental results are investigated by a noise-simulation program.  相似文献   

3.
A new microscopic technique is demonstrated that combines attributes from both near-field scanning optical microscopy (NSOM) and fluorescence resonance energy transfer (FRET). The method relies on attaching the acceptor dye of a FRET pair to the end of a near-field fiber optic probe. Light exiting the NSOM probe, which is nonresonant with the acceptor dye, excites the donor dye introduced into a sample. As the tip approaches the sample containing the donor dye, energy transfer from the excited donor to the tip-bound acceptor produces a red-shifted fluorescence. By monitoring this red-shifted acceptor emission, a dramatic reduction in the sample volume probed by the uncoated NSOM tip is observed. This technique is demonstrated by imaging the fluorescence from a multilayer film created using the Langmuir-Blodgett (LB) technique. The film consists of L-alpha-dipalmitoylphosphatidylcholine (DPPC) monolayers containing the donor dye, fluorescein, separated by a spacer group of three arachidic acid layers. A DPPC monolayer containing the acceptor dye, rhodamine, was also transferred onto an NSOM tip using the LB technique. Using this modified probe, fluorescence images of the multilayer film reveal distinct differences between images collected monitoring either the donor or acceptor emission. The latter results from energy transfer from the sample to the NSOM probe. This method is shown to provide enhanced depth sensitivity in fluorescence measurements, which may be particularly informative in studies on thick specimens such as cells. The technique also provides a mechanism for obtaining high spatial resolution without the need for a metal coating around the NSOM probe and should work equally well with nonwaveguide probes such as atomic force microscopy tips. This may lead to dramatically improved spatial resolution in fluorescence imaging.  相似文献   

4.
Fluorescence resonance energy transfer (FRET) detects the proximity of fluorescently labeled molecules over distances >100 A. When performed in a fluorescence microscope, FRET can be used to map protein-protein interactions in vivo. We here describe a FRET microscopy method that can be used to determine whether proteins that are colocalized at the level of light microscopy interact with one another. This method can be implemented using digital microscopy systems such as a confocal microscope or a wide-field fluorescence microscope coupled to a charge-coupled device (CCD) camera. It is readily applied to samples prepared with standard immunofluorescence techniques using antibodies labeled with fluorescent dyes that act as a donor and acceptor pair for FRET. Energy transfer efficiencies are quantified based on the release of quenching of donor fluorescence due to FRET, measured by comparing the intensity of donor fluorescence before and after complete photobleaching of the acceptor. As described, this method uses Cy3 and Cy5 as the donor and acceptor fluorophores, but can be adapted for other FRET pairs including cyan fluorescent protein and yellow fluorescent protein.  相似文献   

5.
The ternary lipid system palmitoylsphingomyelin (PSM)/palmitoyloleoylphosphatidylcholine (POPC)/cholesterol is a model for lipid rafts. Previously the phase diagram for that mixture was obtained, establishing the composition and boundaries for lipid rafts. In the present work, this system is further studied in order to characterize the size of the rafts. For this purpose, a time-resolved fluorescence resonance energy transfer (FRET) methodology, previously applied with success to a well-characterized phosphatidylcholine/cholesterol binary system, is used. It is concluded that: (1) the rafts on the low raft fraction of the raft region are small (below 20 nm), whereas on the other side the domains are larger; (2) on the large domain region, the domains reach larger sizes in the ternary system (> approximately 75-100 nm) than in binary systems phosphatidylcholine/cholesterol (between approximately 20 and approximately 75-100 nm); (3) the raft marker ganglioside G(M1) in small amounts (and excess cholera toxin subunit B) does not affect the general phase behaviour of the lipid system, but can increase the size of the rafts on the small to intermediate domain region. In summary, lipid-lipid interactions alone can originate lipid rafts on very different length scales. The conclusions presented here are consistent with the literature concerning both model systems and cell membrane studies.  相似文献   

6.
Fluorescence resonance energy transfer (FRET) is a technique used for quantifying the distance between two molecules conjugated to different fluorophores. By combining optical microscopy with FRET it is possible to obtain quantitative temporal and spatial information about the binding and interaction of proteins, lipids, enzymes, DNA, and RNA in vivo. In conjunction with the recent development of a variety of mutant green fluorescent proteins (mtGFPs), FRET microscopy provides the potential to measure the interaction of intracellular molecular species in intact living cells where the donor and acceptor fluorophores are actually part of the molecules themselves. However, steady-state FRET microscopy measurements can suffer from several sources of distortion, which need to be corrected. These include direct excitation of the acceptor at the donor excitation wavelengths and the dependence of FRET on the concentration of acceptor. We present a simple method for the analysis of FRET data obtained with standard filter sets in a fluorescence microscope. This method is corrected for cross talk (any detection of donor fluorescence with the acceptor emission filter and any detection of acceptor fluorescence with the donor emission filter), and for the dependence of FRET on the concentrations of the donor and acceptor. Measurements of the interaction of the proteins Bcl-2 and Beclin (a recently identified Bcl-2 interacting protein located on chromosome 17q21), are shown to document the accuracy of this approach for correction of donor and acceptor concentrations, and cross talk between the different filter units.  相似文献   

7.
Advances in molecular biology provide various methods to define the structure and function of the individual proteins that form the component parts of subcellular structures. The ability to see the dynamic behavior of a specific protein inside the living cell became possible through the application of advanced fluorescence resonance energy transfer (FRET) microscope techniques. The fluorophore molecule used for FRET imaging has a characteristic absorption and emission spectrum that should be considered for characterizing the FRET signal. In this article we describe the system development for the image acquisition for one- and two-photon excitation FRET microscopy. We also describe the precision FRET (PFRET) data analysis algorithm that we developed to remove spectral bleed-through and variation in the fluorophore expression level (or concentration) for the donor and acceptor molecules. The acquired images have been processed using a PFRET algorithm to calculate the energy transfer efficiency and the distance between donor and acceptor molecules. We implemented the software correction to study the organization of the apical endosome in epithelial polarized MDCK cells and dimerization of the CAATT/enhancer binding protein alpha (C/EBPalpha). For these proteins, the results revealed that the extent of correction affects the conventionally calculated energy transfer efficiency (E) and the distance (r) between donor and acceptor molecules by 38 and 9%, respectively.  相似文献   

8.
Fluorescence resonance energy transfer (FRET) is a potential method for the characterization of DNA-cationic lipid complexes (lipoplexes). In this work, we used FRET models assuming a multilamellar lipoplex arrangement. The application of these models allows the determination of the distance between the fluorescent intercalator on the DNA and a membrane dye on the lipid, and/or the evaluation of encapsulation efficiencies of this liposomal vehicle. The experiments were carried out in 1,2-dioleoyl-3-trimethylammonium-propane/pUC19 complexes with different charge ratios. We used 2-(3-(diphenylhexatrienyl)propanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine (DPH-PC) and 2-(4,4-difluoro-5-octyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine (BODIPY-PC) as membrane dyes, and ethidium bromide (EtBr) and BOBO-1 as DNA intercalators. In cationic complexes (charge ratios (+/-) >or= 2), we verified that BOBO-1 remains bound to DNA, and FRET occurs to the membrane dye. This was also confirmed by anisotropy and lifetime measurements. In complexes with all DNA bound to the lipid (charge ratio (+/-) = 4), we determined 27 A as the distance between the donor and acceptor planes (half the repeat distance for a multilamellar arrangement). In complexes with DNA unbound to the lipids (charge ratio (+/-) = 0.5 and 2), we calculated the encapsulation efficiencies. The presented FRET methodology is, to our knowledge, the first procedure allowing quantification of lipid-DNA contact.  相似文献   

9.
Future developments in cellulosic materials are predicated by the need to understand the fundamental interactions that occur at cellulose fibre interfaces. These interfaces strongly influence the material properties of fibre networks and fibre reinforced composites. This study takes advantage of fluorescence resonance energy transfer (FRET) and fluorescence microscopy to image cellulose interfaces. Steady-state epi-fluorescence microscopy suggests that energy transfer from coumarin dyed fibres to fluorescein dyed fibres is occurring at the fibre–fibre interface. The FRET response for natural spruce fibre interfaces is distinctly different from that observed in synthetic viscose fibres. This approach constitutes a novel methodology for the characterization of soft material interfaces on the molecular scale, and represents a major opportunity for advancing the understanding of fibrous network structures.  相似文献   

10.
The mechanism of quenching to tryptophan fluorescence was studied for a number of proteins and membranes of sarcoplasmic reticulum. The inductive-resonance energy transfer from tryptophanyls to pyrene was shown to be absent though all the necessary and sufficient F?rster's conditions were met. The quenching proceeds by a dynamic mechanism. The quenching efficiency characterises the sterical accessibility of tryptophanyls for pyrene. The simultaneously observed rise of luminescence of the quencher is trivial. It was concluded that measuring intermolecular distances and defining protein conformational states using F?rster's theory is wrong in case of the tryptophany-pyrene pair.  相似文献   

11.
The phospholipid composition that surrounds a membrane protein is critical to maintain its structural integrity and, consequently, its functional properties. To understand better this in the present work we have performed FRET measurements between the single tryptophan residue of a lactose permease Escherichia coli mutant (single-W151/C154G LacY) and pyrene-labeled phospholipids (Pyr-PE and Pyr-PG) at 37 °C. We have reconstituted this LacY mutant in proteoliposomes formed with heteroacid phospholipids, POPE and POPG, and homoacid phospholipids DOPE and DPPE, resembling the same PE/PG proportion found in the E. coli inner membrane (3:1, mol/mol). A theoretical model has been fitted to the experimental data. In the POPE/POPG system, quantitative model calculations show accordance with the experimental values that requires an annular region composed of approximately ∼ 90 mol% PE. The experimental FRET efficiencies for the gel/fluid phase-separated DOPE/POPG system indicate a higher presence of PG in the annular region, from which it can be concluded that LacY shows clear preference for the fluid phase. Similar conclusions are obtained from analysis of excimer-to-monomer (E/M) pyrene ratios. To test the effects of this on cardiolipin (CL) on the annular region, myristoyl-CL and oleoyl-CL were incorporated in the biomimetic POPE/POPG matrix. The experimental FRET efficiency values, slightly larger for Pyr-PE than for Pyr-PG, suggest that CL displaces POPE and, more extensively, POPG from the annular region of LacY. Model fitting indicates that CL enrichment in the annular layer is, in fact, solely produced by replacing PG and that myristoyl-CL is not able to displace PE in the same way that oleoyl-CL does. One of the conclusions of this work is the fact that LacY inserts preferentially in fluid phases of membranes.  相似文献   

12.
Calculations are presented which demonstrate the efficacy of a Förster resonance energy transfer technique to measurement of the aggregation of cells and lipid vesicles.  相似文献   

13.
J Connor  A J Schroit 《Biochemistry》1987,26(16):5099-5105
This report describes the application of a resonance energy transfer assay to determine the transbilayer distribution of 7-nitro-2,1,3-benzoxadiazol-4-yl (NBD)-labeled lipid analogues. The validity of this technique was established by determining the relationship between the distance of separation of lissamine rhodamine B labeled phosphatidylethanolamine (N-Rho-PE) acceptor lipid and NBD-labeled donor lipid and energy transfer efficiency. By determination of the distance between probes at 50% transfer efficiency (R0), the distance between fluorophores distributed symmetrically (outer leaflet label) and asymmetrically in artificially generated vesicles was determined. Calculation of the average distance between probes revealed a 14-A difference between NBD-lipid and N-Rho-PE localized in the same leaflet and in opposing leaflets, respectively. Application of this technique to the study of the transbilayer distribution of NBD-lipid in human red blood cells (RBC) showed that exogenously supplied NBD-phosphatidylserine (NBD-PS) was selectively transported to the inner leaflet, whereas NBD-phosphatidylcholine remained in the outer leaflet. In contrast, pretreatment of the RBC with diamide (a SH cross-linking reagent) blocked the transport of NBD-PS. The absence or presence of NBD-PS in the outer leaflet was independently verified by employing "back-exchange", trinitrobenzenesulfonic acid derivatization, and decarboxylation with PS decarboxylase experiments. These control experiments yielded results which confirmed the lipid distributions determined by the resonance energy transfer assay.  相似文献   

14.
Lipid microdomains (‘lipid rafts’) are plasma membrane subregions, enriched in cholesterol and glycosphingolipids, which participate dynamically in cell signaling and molecular trafficking operations. One strategy for the study of the physicochemical properties of lipid rafts in model membrane systems has been the use of nuclear magnetic resonance (NMR), but until now this spectroscopic method has not been considered a clinically relevant tool. We performed a proof-of-concept study to test the feasibility of using NMR to study lipid rafts in human tissues. Platelets were selected as a cost-effective and minimally invasive model system in which lipid rafts have previously been studied using other approaches. Platelets were isolated from plasma of medication-free adult research participants (n=13) and lysed with homogenization and sonication. Lipid-enriched fractions were obtained using a discontinuous sucrose gradient. Association of lipid fractions with GM1 ganglioside was tested using HRP-conjugated cholera toxin B subunit dot blot assays. 1H high resolution magic-angle spinning nuclear magnetic resonance (HRMAS NMR) spectra obtained with single-pulse Bloch decay experiments yielded spectral linewidths and intensities as a function of temperature. Rates of lipid lateral diffusion that reported on raft size were measured with a two-dimensional stimulated echo longitudinal encode-decode NMR experiment. We found that lipid fractions at 10–35% sucrose density associated with GM1 ganglioside, a marker for lipid rafts. NMR spectra of the membrane phospholipids featured a prominent ‘centerband’ peak associated with the hydrocarbon chain methylene resonance at 1.3 ppm; the linewidth (full width at half-maximum intensity) of this ‘centerband’ peak, together with the ratio of intensities between the centerband and ‘spinning sideband’ peaks, agreed well with values reported previously for lipid rafts in model membranes. Decreasing temperature produced decreases in the 1.3 ppm peak intensity and a discontinuity at ~18 °C, for which the simplest explanation is a phase transition from Ld to Lo phases indicative of raft formation. Rates of lateral diffusion of the acyl chain lipid signal at 1.3 ppm, a quantitative measure of microdomain size, were consistent with lipid molecules organized in rafts. These results show that HRMAS NMR can characterize lipid microdomains in human platelets, a methodological advance that could be extended to other tissues in which membrane biochemistry may have physiological and pathophysiological relevance.  相似文献   

15.
Oligomerization or dimerization of G-protein-coupled receptors (GPCRs) has emerged as an important theme in signal transduction. This concept has recently gained widespread interest due to the application of direct and noninvasive biophysical techniques such as fluorescence resonance energy transfer (FRET), which have shown unequivocally that several types of GPCR can form dimers or oligomers in living cells. Current challenges are to determine which GPCRs can self-associate and/or interact with other GPCRs, to define the molecular principles that govern these specific interactions, and to establish which aspects of GPCR function require oligomerization. Although these questions ultimately must be addressed by using GPCRs expressed endogenously in their native cell types, analysis of GPCR oligomerization in heterologous expression systems will be useful to survey which GPCRs can interact, to conduct structure-function studies, and to identify peptides or small molecules that disrupt GPCR oligomerization and function. Here, we describe methods employing scanning fluorometry to detect FRET between GPCRs tagged with enhanced cyan and yellow fluorescent proteins (CFP and YFP) in living yeast cells. This approach provides a powerful means to analyze oligomerization of a variety of GPCRs that can be expressed in yeast, such as adrenergic, adenosine, C5a, muscarinic acetylcholine, vasopressin, opioid, and somatostatin receptors.  相似文献   

16.
Several studies suggest that the plasma membrane is composed of micro-domains of saturated lipids that segregate together to form lipid rafts. Lipid rafts have been operationally defined as cholesterol- and sphingolipid-enriched membrane micro-domains resistant to solubilization by non-ionic detergents at low temperatures. Here we report a biophysical approach aimed at investigating lipid rafts of MDA-MB-231 human breast cancer cells by coupling an atomic force microscopy (AFM) study to biochemical assays namely Western blotting and high performance thin layer chromatography. Lipid rafts were purified by ultracentrifugation on discontinuous sucrose gradient using extraction with Triton X-100. Biochemical analyses proved that the fractions isolated at the 5% and 30% sucrose interface (fractions 5 and 6) have a higher content of cholesterol, sphingomyelin and flotillin-1 with respect to the other purified fractions. Tapping mode AFM imaging of fraction 5 showed membrane patches whose height corresponds to the one awaited for a single lipid bilayer as well as the presence of micro-domains with lateral dimensions in the order of a few hundreds of nanometers. In addition, an AFM study using specific antibodies suggests the presence, in these micro-domains, of a characteristic marker of lipid rafts, the protein flotillin-1.  相似文献   

17.
To examine the oligomeric state and trafficking of the dopamine transporter (DAT) in different compartments of living cells, human DAT was fused to yellow (YFP) or cyan fluorescent protein (CFP). YFP-DAT and CFP-DAT were transiently and stably expressed in porcine aortic endothelial (PAE) cells, human embryonic kidney (HEK) 293 cells, and an immortalized dopaminergic cell line 1RB3AN27. Fluorescence microscopic imaging of cells co-expressing YFP-DAT and CFP-DAT revealed fluorescence resonance energy transfer (FRET) between CFP and YFP, which is consistent with an intermolecular interaction of DAT fusion proteins. FRET signals were detected between CFP- and YFP-DAT located at the plasma membrane and in intracellular membrane compartments. Phorbol esters or amphetamine induced the endocytosis of YFP/CFP-DAT to early and recycling endosomes, identified by Rab5, Rab11, Hrs and EEA.1 proteins. Interestingly, however, DAT was mainly excluded from Rab5- and Hrs-containing microdomains within the endosomes. The strongest FRET signals were measured in endosomes, indicative of efficient oligomerization of internalized DAT. The intermolecular DAT interactions were confirmed by co-immunoprecipitation. A DAT mutant that was retained in the endoplasmic reticulum (ER) after biosynthesis was used to show that DAT is oligomeric in the ER. Moreover, co-expression of an ER-retained DAT mutant and wild-type DAT resulted in the retention of wild-type DAT in the ER. These data suggest that DAT oligomers are formed in the ER and then are constitutively maintained both at the cell surface and during trafficking between the plasma membrane and endosomes.  相似文献   

18.
19.
The current advances in fluorescence microscopy, coupled with the development of new fluorescent probes, make fluorescence resonance energy transfer (FRET) a powerful technique for studying molecular interactions inside living cells with improved spatial (angstrom) and temporal (nanosecond) resolution, distance range, and sensitivity and a broader range of biological applications.  相似文献   

20.
Recent data are reviewed on the employment of fluorescence resonance energy transfer (FRET) in studying hybridization and higher structures of nucleic acids as well as their enzyme- and ribozyme-catalyzed reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号