首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dog thyroid contractile proteins are characterized by their ATPase activity at high KCl concentration. In the presence of Ca(2+), 80 nmol ATP are hydrolyzed per min per mg protein. This Ca(2+) -ATPase activity is inhibited by Mg(2+) but not influenced by sodium azide. The 26 000 molecular weight protein which is present in thyroid contractile protein preparations and the phosphorylation of which is stimulated by thyroid stimulating hormone (TSH) is suggested to be identical to the lysine-rich histones (H1). Indeed, radioactive thyroid H1 histones added to unlabelled thyroid slices copurify with the contractile proteins and migrate at the same level as the 26 000 molecular weight when submitted to electrophoresis in polyacrylamide sodium dodecyl sulfate gels of different acrylamide concentrations.  相似文献   

2.
H.Linton Wray  R.Richard Gray 《BBA》1977,461(3):441-459
Ca2+-activated ATPase (EC 3.6.1.15) in canine cardiac sarcoplasmic reticulum was stimulated 50–80% by cyclic adenosine 3′ : 5′-monophosphate. The relationship of this stimulation to cyclic AMP-dependent membrane phosphorylation with phosphoester bands was studied. Cyclic AMP stimulation of ATPase activity was specific for Ca2+-activated ATPase and was half-maximal at about 0.1 μM which is similar to the concentration required for half-maximal stimulation of membrane phosphorylation by endogenous cyclic AMP-stimulated protein kinase (EC 2.7.1.37). Cyclic AMP stimulation of Ca2+-activated ATPase was calcium dependent and maximal at calculated Ca2+ concentrations of 2.0 μM. Cyclic AMP-dependent Ca2+-activated ATPase correlated well with the cyclic AMP-dependent membrane phosphorylation of which 80% was 20 000 molecular weight protein identified by sodium dodecyl sulfate discontinuous polyacrylamide gel electrophoresis. In trypsin-treated microsomes, cyclic AMP did not stimulate Ca2+-activated ATPase or phosphorylation of the 20 000 molecular weight membrane protein. An endogenous calcium-stimulated protein kinase (probably phosphorylase b kinase) with an apparent Km for ATP of 0.21–0.32 mM was present and appeared to be involved in the cyclic AMP-dependent phosphorylation of the 20 000 molecular weight protein which was calcium dependent. Cyclic guanosine 3′ : 5′-monophosphate did not inhibit any of the stimulatory effects of cyclic AMP. These data suggest that the cyclic AMP stimulation of Ca2+-activated ATPase in cardiac sarcoplasmic reticulum is mediated by the 20 000 molecular weight phosphoprotein product of a series of kinase reactions similar to those activating phosphorylase b.  相似文献   

3.
Smooth muscles are important constituents of vertebrate organisms that provide for contractile activity of internal organs and blood vessels. Basic molecular mechanism of both smooth and striated muscle contractility is the force-producing ATP-dependent interaction of the major contractile proteins, actin and myosin II molecular motor, activated upon elevation of the free intracellular Ca2+ concentration ([Ca2+]i). However, whereas striated muscles display a proportionality of generated force to the [Ca2+]i level, smooth muscles feature molecular mechanisms that modulate sensitivity of contractile machinery to [Ca2+]i. Phosphorylation of proteins that regulate functional activity of actomyosin plays an essential role in these modulatory mechanisms. This provides an ability for smooth muscle to contract and maintain tension within a broad range of [Ca2+]i and with a low energy cost, unavailable to a striated muscle. Detailed exploration of these mechanisms is required to understand the molecular organization and functioning of vertebrate contractile systems and for development of novel advances for treating cardiovascular and many other disorders. This review summarizes the currently known and hypothetical mechanisms involved in regulation of smooth muscle Ca2+-sensitivity with a special reference to phosphorylation of regulatory proteins of the contractile machinery as a means to modulate their activity.  相似文献   

4.
A fibrillar protein complex, possessing ouabain-insensitive Ca2+-ATPase activity was isolated from human erythrocyte membranes by using a low ionic strength extraction procedure. Mg2+-ATPase activity was revealed upon addition of rabbit skeletal muscle actin, thus demonstrating the presence of a myosin-like protein in the crude extract of the erythrocyte membrane. Upon sodium dodecylsulfate gel electrophoresis, the extract showed mainly the doublet of subunit molecular weight bands of 230 000 and 210 000, and more than 10 faster moving hands. Gel filtration of the erythrocyte membrane extract on Sepharose 4B furnished 4 fractions. Fraction I, containing the doublet and 80 000, 60 000 and 46 000 subunit molecular weight bands was 5-fold purified with respect to Ca2+-ATPase activity, but was devoid of actin-activated Mg2+-ATPase activity. Fraction II, containing only the doublet, was devoid of Ca2+ and actin-activated Mg2+-ATPase activity. The 210 000 subunit molecular weight protein could be phosphorylated in the presence of Mg2+ in the crude extract and Fraction I but not in Fraction II.  相似文献   

5.
The procedure for the isolation of the highly active fraction of sarcoplasmic reticulum from pigeon and dog hearts is described. The method is based on the partial loading of heart microsomes with calcium and oxalate ions and the precipitation of loaded vesicles in sucrose and potassium chloride concentration gradients. Preparations obtained possess high activity of Ca2+-dependent ATPase and are also able to accumulate up to 10 μmol Ca2+ per mg protein. Purification of sarcoplasmic reticulum membranes is accompanied by a decrease in concentration of cytochrome a+a3 and an increase in the content of [32P]phosphoenzyme. The basic components in “calcium-oxalate preparation” from hearts are proteins with molecular weights of about 100 000 (Ca2+-dependent ATPase) and 55 000 Calcium-oxalate preparation from pigeon hearts was used for subsequent purification of Ca2+-dependent ATPase. Specific activity of purified enzyme from pigeon hearts is 12–16 μmol Pi/min per mg protein. Enzyme activity of purified Ca2+-dependent ATPase is inhibited by EGTA and is not sensitive to azide, 2,4-dinitrophenol and ouabain. The data obtained demonstrate the similarity of calcium pump systems and Ca2+-dependent ATPases isolated from heart and skeletal muscles.  相似文献   

6.
Almost all the Ca2+-dependent protein kinase activity in nuclei purified from etiolated pea (Pisum sativum, L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.3 molar NaCl. This protein kinase can be further purified 80,000-fold by salt fractionation and high performance liquid chromatography, after which it has a high specific activity of about 100 picomoles per minute per microgram in the presence of Ca2+ and reaches half-maximal activation at about 3 ×10−7 molar free Ca2+, without calmodulin. It is a monomer with a molecular weight near 90,000. It can efficiently use histone III-S, ribosomal S6 protein, and casein as artificial substrates, but it phosphorylates phosvitin only weakly. Its Ca2+-dependent kinase activity is half-maximally inhibited by 0.1 millimolar chlorpromazine, by 35 nanomolar K-252a and by 7 nanomolar staurosporine. It is insensitive to sphingosine, an inhibitor of protein kinase C, and to basic polypeptides that block other Ca2+-dependent protein kinases. It is not stimulated by exogenous phospholipids or fatty acids. In intact isolated pea nuclei it preferentially phosphorylates several chromatin-associated proteins, with the most phosphorylated protein band being near the same molecular weight (43,000) as a nuclear protein substrate whose phosphorylation has been reported to be stimulated by phytochrome in a calcium-dependent fashion.  相似文献   

7.
Activation of Ca2+-calmodulin- and cyclic AMP-dependent protein kinases has been suggested to be involved in stimulus-secretion coupling in the pancreatic β-cell. To study the properties of such kinases and their endogenous protein substrates homogenates of rat islets of Langerhans were incubated with [γ-32P]ATP. Phosphorylated proteins were separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis and detected by autoradiography. The phosphorylation of certain proteins could be enhanced by Ca2+ plus calmodulin or by cyclic AMP. The major effect of Ca2+ and calmodulin was to stimulate the phosphorylation of a protein (P53) of molecular weight 53 100±500 (n = 15). Maximum phosphorylation of protein P53 occurred within 2 min with 2 μM free Ca2+ and 0.7 μM calmodulin. Incorporation of label into protein P53 was inhibited by trifluoperazine or W7 but not by cyclic AMP-dependent protein kinase inhibitor. Phosphorylation of a protein of similar molecular weight could be enhanced to a lesser extent in the absence of Ca2+ but in the presence of cyclic AMP and 3-isobutylmethylxanthine: this phosphorylation was blocked by cyclic AMP-dependent protein kinase inhibitor. Cyclic AMP also stimulated incorporation of label into polypeptides of molecular weights 55 000 and 70–80 000. The results are consistent with the hypothesis that protein phosphorylation mechanisms may play a role in the regulation of insulin secretion.  相似文献   

8.
Purification of Hydrogenase from Chlamydomonas reinhardtii   总被引:2,自引:1,他引:1       下载免费PDF全文
A method is described which results in a 2750-fold purification of hydrogenase from Chlamydomonas reinhardtii, yielding a preparation which is approximately 40% pure. With a saturating amount of ferredoxin as the electron mediator, the specific activity of pure enzyme was calculated to be 1800 micromoles H2 produced per milligram protein per minute. The molecular weight was determined to be 4.5 × 104 by gel filtration and 4.75 × 104 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme has an abundance of acidic side groups, contains iron, and has an activation energy of 55.1 kilojoules per mole for H2 production; these properties are similar to those of bacterial hydrogenases. The enzyme is less thermally stable than most bacterial hydrogenases, however, losing 50% of its activity in 1 hour at 55°C. The Km of purified hydrogenase for ferredoxin is 10 micromolar, and the binding of these proteins to each other is enhanced under slightly acidic conditions. Purified hydrogenase also accepts electrons from a variety of artificial electron mediators, including sodium metatungstate, sodium silicotungstate, and several viologen dyes. A lag period is frequently observed before maximal activity is expressed with these artificial electron mediators, although the addition of sodium thiosulfate at least partially overcomes this lag.  相似文献   

9.
Bovine thyroid tissue exhibited cAMP-dependent and Ca2+-dependent protien kinase activities as well as a basal (cAMP- and Ca2+-independent) one, and phosphoprotein phosphatase activity. Although the former two protein kiniase activities were not clearly demonstrated using endogenous protein as substrate, they were clearly shown in soluble, particulate and plasma membrane fractions using exogenous histones as substrate. The highest specific activities were in the plasma membrane. The apparent Km values of cAMP and Ca2+ for the membrane-bound protein kinase were 5·10?8 M and 8.3·10?4M (in the presence of 1 mM EGTA), respectively. The apparent Km values of Mg2+ were 7·10?4 M (without cAMP and Ca2+, 5·10?4 M (with cAMP) and 1.3·10?3 M (with Ca2+), and those ATP were 3.5·10?5 M (with or without cAMP) and 8.5·10?5 M (with Ca2+). The Ca2+-dependent protein kinase could be dissociated from the membrane by EGTA-washing. The enzyme activity so released was further activated by added phospholipid (phosphatidylserine/1,3-diolein), but not by calmodulin. Phosphoprotein phosphatase activity was also clearly demonstrated in all of the fractions using 32P-labeled mixed histones as substrate. The activity was not modified by either cAMP or Ca2+, but was sitmulated by a rather broad range (5–25 mM) of Mg2+ and Mn2+. NaCl and substrate concentrations also influenced the activity. Pyrophosphate, ATP, inorganic phosphate and NaF inhibited the activity in a dose-dependent manner. Trifluoperazine, chlorpromazine, dibucaine and Triton X-100 (above 0.05%, w/v) specifically inhibited the Ca2+-dependent protein kinase in plasma membranes. Repetitive phosphorylation of intrinsic and extrinsic proteins by the membrane-bound enzyme activities clearly showed an important co-ordination of them at the step of protein phosphorylation. These findings suggest that these enzyme activities in plasma membranes may contribute to regulation of thyroid function in response to external stimuli.  相似文献   

10.
The usefulness of chemical cross-linking and 125I-labeling techniques in the analysis of protein-protein interactions and membrane polarity was evaluated on sarcoplasmic reticulum membranes. Treatment of fragmented sarcoplasmic reticulum vesicles with glutaraldehyde, dimethylsuberimidate, or copper-phenanthroline leads to the formation of high molecular weight aggregates of the Ca2+ transport ATPase; intermediate polymers of functionally and structurally interesting sizes accumulated only occasionally and in amounts of questionable significance. Coupling of membrane proteins with tolylene 2,4-diisocyanate-albumin inhibited tht ATPase activity and caused the appearance of high molecular weight aggregates and a band of about 160 000 dalton which corresponds to the ATPase-albumin complex.Even after the 100 000 dalton band of the Ca2+-transport ATPase was severely diminished by cross-linking with copper-phenanthroline or toluene diisocyanate-albumin, the Ca2+ binding proteins of sarcoplasmic reticulum remained unreacted. A consistent finding was the presence of dimers of the Ca2+ transport ATPase in aged preparations of sarcoplasmic reticulum which were converted upon reduction with β-mercaptoethanol into 100 000 dalton units.Microsomes were labeled with 125I in the presence of lactoperoxidase, glucose oxidase, and glucose and the radioactivity oft he various protein components was measured after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The specific activity of calsequestrin was many times greater than that of the Ca+ transport ATPase suggesting that it is exposed on the outside surface may be sterically hindered from access by bulky reagents (tolylene diisocyanate-albumin, ferritin-labeled anti-calsequestrin antibodies, proteolytic enzymes, etc.), as calsequestin becomes highly reactive with these agents only after its release from the membrane.  相似文献   

11.
The major protein in the sarcoplasmic reticulum (SR) membrane is the Ca2+ transporting ATPase which carries out active Ca2+ pumping at the expense of ATP hydrolysis. The aim of this work was to elucidate the mechanisms by which oxidative stress induced by Fenton's reaction (Fe2+ + H2O2 HO· + OH+ Fe3+) alters the function of SR. ATP hydrolysis by both SR vesicles (SRV) and purified ATPase was inhibited in a dose-dependent manner in the presence of 0–1.5 MM H2O2 plus 50 M Fe2+ and 6 mM ascorbate. Ca2+ uptake carried out by the Ca2+-ATPase in SRV was also inhibited in parallel. The inhibition of hydrolysis and Ca2+ uptake was not prevented by butylhydroxytoluene (BHT) at concentrations which significantly blocked formation of thiobarbituric acid-reactive substances (TBARS), suggesting that inhibition of the ATPase was not due to lipid peroxidation of the SR membrane. In addition, dithiothreitol (DTT) did not prevent inhibition of either ATPase activity or Ca2+ uptake, suggesting that inhibition was not related to oxidation of ATPase thiols. The passive efflux of 45Ca2+ from pre-loaded SR vesicles was greatly increased by oxidative stress and this effect could be only partially prevented (ca 20%) by addition of BHT or DTT. Trifluoperazine (which specifically binds to the Ca2+-ATPase, causing conformational changes in the enzyme) fully protected the ATPase activity against oxidative damage. These results suggest that the alterations in function observed upon oxidation of SRV are mainly due to direct effects on the Ca2+-ATPase. Electrophoretic analysis of oxidized Ca2+-ATPase revealed a decrease in intensity of the silver-stained 110 kDa Ca2+-ATPase band and the appearance of low molecular weight peptides (MW < 100 kDa) and high molecular weight protein aggregates. Presence of DTT during oxidation prevented the appearance of protein aggregates and caused a simultaneous increase in the amount of low molecular weight peptides. We propose that impairment of function of the Ca2+-pump may be related to aminoacid oxidation and fragmentation of the protein.Abbreviations AcP acetylphosphate - BHT butylhydroxytoluene - DTT dithiothreitol - Hepes 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid - SDS sodium dodecyl sulfate - SDS-PAGE polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate - SR sarcoplasmic reticulum - SRV sarcoplasmic reticulum vesicles - TBA thiobarbituric acid - TBARS thiobarbituric acid-reactive substances - TFP trifluoperazine  相似文献   

12.
Ca2+-ATPase and other membrane proteins of the sarcoplasmic reticulum membrane from rabbit skeletal muscle have been reconstituted into lipid vesicles with increasing amounts of phosphatidylcholine. The protein composition and phospholipid concentration of these vesicles were analyzed by determining the density of the reconstituted membrane vesicles on linear H2O-2H2O gradients, in a constant concentration of sucrose. In all combinations of the Ca2+-ATPase with a weight excess of phosphatidylcholine, the reconstituted vesicles had a phospholipid-to-protein ratio similar to that of the native sarcoplasmic reticulum membrane, even though both solubilization and mixing had occurred. These vesicles of low phospholipid and high protein content exhibited all the original Ca2+-ATPase activity and ATP-stimulated calcium transport. The Ca2+-ATPase, and the calcium-binding proteins to a lesser extent, may order the lipid in such a manner so as to maintain the initial stoichiometry of lipid to protein observed in the native sarcoplasmic reticulum membrane.  相似文献   

13.
Calmodulin and the regulation of smooth muscle contraction   总被引:8,自引:0,他引:8  
Calmodulin, the ubiquitous and multifunctional Ca2+-binding protein, mediates many of the regulatory effects of Ca2+, including the contractile state of smooth muscle. The principal function of calmodulin in smooth muscle is to activate crossbridge cycling and the development of force in response to a [Ca2+]i transientvia the activation of myosin light-chain kinase and phosphorylation of myosin. A distinct calmodulin-dependent kinase, Ca2+/calmodulin-dependent protein kinase II, has been implicated in modulation of smooth-muscle contraction. This kinase phosphorylates myosin light-chain kinase, resulting in an increase in the calmodulin concentration required for half-maximal activation of myosin light-chain kinase, and may account for desensitization of the contractile response to Ca2+. In addition, the thin filament-associated proteins, caldesmon and calponin, which inhibit the actin-activated MgATPase activity of smooth-muscle myosin (the cross-bridge cycling rate), appear to be regulated by calmodulin, either by the direct binding of Ca2+/calmodulin or indirectly by phosphorylation catalysed by Ca2+/calmodulin-dependent protein kinase II. Another level at which calmodulin can regulate smooth-muscle contraction involves proteins which control the movement of Ca2+ across the sarcolemmal and sarcoplasmic reticulum membranes and which are regulated by Ca2+/calmodulin, e.g. the sarcolemmal Ca2+ pump and the ryanodine receptor/Ca2+ release channel, and other proteins which indirectly regulate [Ca2+]i via cyclic nucleotide synthesis and breakdown, e.g. NO synthase and cyclic nucleotide phosphodiesterase. The interplay of such regulatory mechanisms provides the flexibility and adaptability required for the normal functioning of smooth-muscle tissues.  相似文献   

14.
The mechanisms that control phasic and tonic contractions of lymphatic vessels are poorly understood. We hypothesized that rho kinase ROCK, previously shown to increase calcium (Ca2+) sensitivity in vascular smooth muscle, enhances lymphatic contractile activity in a similar fashion. Contractions of isolated rat mesenteric lymphatic vessels were observed at a luminal pressure of 2 cm H2O in a 37°C bath. The expression of ROCK in isolated rat mesenteric lymphatic vessels was assessed by Western blotting and confocal microscopy. The role of ROCK in contractile function was tested using two specific yet structurally distinct inhibitors: H1152 (0.1–10 μM) and Y-27632 (0.5–50 μM). In addition, lymphatics were transfected with constitutively active (ca)-ROCK protein (2 μg/ml) to assess gain of contractile function. Vessel diameter and the concentration of intracellular free Ca2+ ([Ca2+]i) were simultaneously measured in a subset of isolated lymphatics loaded with the Ca2+-sensing dye fura-2. The results show expression of both the ROCK1 and ROCK2 isoforms in lymphatic vessels. Inhibition of ROCK increased lymphatic end diastolic diameter and end systolic diameter in a concentration-dependent manner. Significant reductions in lymphatic tone and contraction amplitude were observed after treatment 1–10 μM H1152 or 25–50 μM Y-27632. H1152 (10 μM) also significantly reduced contraction frequency. Transient increases in [Ca2+]i preceded each phasic contraction, however this pattern was disrupted by either 10 μM H1152 or 50 μM Y-27632 in the majority of lymphatics studied. The significant decrease in tone caused by H1152 or Y-27632 was not associated with a significant change in the basal [Ca2+]i between transients. Transfection with ca-ROCK protein enhanced lymphatic tone, but was not associated with a significant change in basal [Ca2+]i. Our data suggest that ROCK mediates normal tonic constriction and influences phasic contractions in lymphatics. We propose that ROCK modulates Ca2+ sensitivity of contractile proteins in lymphatics.  相似文献   

15.
The effect of purified calmodulin on the calcium-dependent phosphorylation of human erythrocyte membranes was studied. Under the conditions employed, only one major peak of phosphorylation was observed when solubilized membrane proteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular weight of this phosphorylated protein band was estimated to be 130 000 and in the presence of purified red blood cell calmodulin, the rate of phosphorylation of this band was increased. These data suggest that calmodulin activation of (Ca2+ + Mg2+)-ATPase could be a partial reflection of an increased rate of phosphorylation of the (Ca2+ + Mg2+)-ATPase of human erythrocyte membranes.  相似文献   

16.
Calmodulin copurifies with platelet plasma membranes isolated by glycerol-induced lysis and density gradient centrifugation. These membranes also bind 125I-labeled calmodulin in vitro in the presence of Ca2+. Binding is largely reduced by replacing Ca2+ by Mg2+ or by addition of an excess unlabeled calmodulin. The specific component of binding is saturable, with an apparent Kd of 27 nM and a maximum of 15.9 pmol binding sites per mg of membrane protein. This is equivalent to approx. 4100 binding sites per platelet. Binding was inhibited by addition of phenothiazines, a group of calmodulin antagonists. Half-maximal inhibition was attained with approx. 20 μM trifluoperazine or 50 μM chlorpromazine. In contrast, chlorpromazine-sulfoxide which is inactive towards calmodulin, did not affect the binding. Calmodulin binding polypeptides of the plasma membrane were identified by a gel-overlay technique. A major calmodulin-binding component of molecular weight 149 000 was detected. Binding to this band was Ca2+-dependent and inhibited by chlorpromazine. The molecular weight of this polypeptide is similar to that of glycoprotein I and also that of the red cell (Ca2+ + Mg2+)-stimulated ATPase, which is known to bind calmodulin. The possible role of calmodulin in platelet activation is analysed.  相似文献   

17.
MthK is a Ca2+-gated K+ channel whose activity is inhibited by cytoplasmic H+. To determine possible mechanisms underlying the channel’s proton sensitivity and the relation between H+ inhibition and Ca2+-dependent gating, we recorded current through MthK channels incorporated into planar lipid bilayers. Each bilayer recording was obtained at up to six different [Ca2+] (ranging from nominally 0 to 30 mM) at a given [H+], in which the solutions bathing the cytoplasmic side of the channels were changed via a perfusion system to ensure complete solution exchanges. We observed a steep relation between [Ca2+] and open probability (Po), with a mean Hill coefficient (nH) of 9.9 ± 0.9. Neither the maximal Po (0.93 ± 0.005) nor nH changed significantly as a function of [H+] over pH ranging from 6.5 to 9.0. In addition, MthK channel activation in the nominal absence of Ca2+ was not H+ sensitive over pH ranging from 7.3 to 9.0. However, increasing [H+] raised the EC50 for Ca2+ activation by ∼4.7-fold per tenfold increase in [H+], displaying a linear relation between log(EC50) and log([H+]) (i.e., pH) over pH ranging from 6.5 to 9.0. Collectively, these results suggest that H+ binding does not directly modulate either the channel’s closed–open equilibrium or the allosteric coupling between Ca2+ binding and channel opening. We can account for the Ca2+ activation and proton sensitivity of MthK gating quantitatively by assuming that Ca2+ allosterically activates MthK, whereas H+ opposes activation by destabilizing the binding of Ca2+.  相似文献   

18.
Microsomal membrane vesicles isolated from the petals of young carnation (Dianthus caryophyllus L. cv White Sim) flowers accumulate Ca2+ in the presence of ATP. The specific activity of ATP-dependent uptake is ~20 nanomoles per milligram of protein per 30 minutes. The membranes also hydrolyze ATP, but Ca2+ stimulation of ATP hydrolysis was not discernible above the high background of Ca2+-insensitive ATPase activity. The initial velocity of uptake showed a sigmoidal rise with increasing Ca2+ concentration, suggesting that Ca2+ serves both as substrate and activator for the enzyme complex mediating its uptake. The concentration of Ca2+ at half maximal velocity of uptake (S0.5) was 12.5 micromolar and the Hill coefficient (nH) was 2.5. The addition of calmodulin to membrane preparations that had been isolated in the presence of chelators did not promote ATP-dependent accumulation of Ca2+, although this may reflect the fact that the treatment with chelators did not fully remove endogenous calmodulin. Transport of Ca2+ into membrane vesicles was unaffected by 50 micromolar ruthenium red and 5 micromolar sodium azide, indicating that uptake is primarily into vesicles of non-mitochondrial origin. By subfractionating the microsomes on a linear sucrose gradient, it was established that the ATP-dependent Ca2+ transport activity comigrates with endoplasmic reticulum and plasma membrane. During post-harvest development of cut flowers, ATP-dependent uptake of Ca2+ into microsomal vesicles declined by ~70%. This occurred before the appearance of petal-inrolling and the climacteric-like rise in ethylene production, parameters that denote the onset of senescence. There were no significant changes during this period in S0.5 or nH, but Vmax for ATP-dependent Ca2+ uptake decreased by ~40%. A similar decline in ATP-dependent uptake of Ca2+ into microsomal vesicles was induced by treating young flowers with physiological levels of exogenous ethylene.  相似文献   

19.
Lymphatic vessels comprise a multifunctional transport system that maintains fluid homeostasis, delivers lipids to the central circulation, and acts as a surveillance system for potentially harmful antigens, optimizing mucosal immunity and adaptive immune responses1. Lymph is formed from interstitial fluid that enters blind-ended initial lymphatics, and then is transported against a pressure gradient in larger collecting lymphatics. Each collecting lymphatic is made up of a series of segments called lymphangions, separated by bicuspid valves that prevent backflow. Each lymphangion possesses a contractile cycle that propels lymph against a pressure gradient toward the central circulation2. This phasic contractile pattern is analogous to the cardiac cycle, with systolic and diastolic phases, and with a lower contraction frequency4. In addition, lymphatic smooth muscle generates tone and displays myogenic constriction and dilation in response to increases and decreases in luminal pressure, respectively5. A hybrid of molecular mechanisms that support both the phasic and tonic contractility of lymphatics are thus proposed.Contraction of smooth muscle is generally regulated by the cytosolic Ca2+ concentration ([Ca2+]i) plus sensitivity to Ca2+, of the contractile elements in response to changes in the environment surrounding the cell6. [Ca2+]i is determined by the combination of the movement of Ca2+ through plasma membrane ligand or voltage gated Ca2+ channels and the release and uptake of Ca2+ from internal stores. Cytosolic Ca2+ binds to calmodulin and activates enzymes such as myosin light chain (MLC) kinase (MLCK), which in turn phosphorylates MLC leading to actin-myosin-mediated contraction8. However, the sensitivity of this pathway to Ca2+ can be regulated by the MLC phosphatase (MLCP)9. MLCP activity is regulated by Rho kinase (ROCK) and the myosin phosphatase inhibitor protein CPI-17.Here, we present a method to evaluate changes in [Ca2+]i over time in isolated, perfused lymphatics in order to study Ca2+-dependent and Ca2+-sensitizing mechanisms of lymphatic smooth muscle contraction. Using isolated rat mesenteric collecting lymphatics we studied stretch-induced changes in [Ca2+]i and contractile activity. The isolated lymphatic model offers the advantage that pressure, flow, and the chemical composition of the bath solution can be tightly controlled. [Ca2+]i was determined by loading lymphatics with the ratiometric, Ca2+-binding dye Fura-2. These studies will provide a new approach to the broader problem of studying the different molecular mechanisms that regulate phasic contractions versus tonic constriction in lymphatic smooth muscle.  相似文献   

20.
ATPase was found in plasma membrane of cultured endothelial cells from bovine carotid artery. The activity of the enzyme solubilized by octaethyleneglycol mono-n-dodecyl ether was enhanced by the addition of Ca2+ or Mg2+ and was not affected by F-actin and ouabain. Vmax was 2.8 and 10.0 μmol Pi/mg protein per h for Ca2+- and Mg2+-dependent activity, respectively, and the corresponding Km was 4.8·10?4 M and 3.2·10?4 M. Molecular weight of the protein was estimated to be approx. 250 000, as determined by activity-staining electrophoresis with polyacrylamide gels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号