首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stimulatory and inhibitory effects of adenosine on the adenylate cyclases of human and pig platelets were studied. Stimulation occurred at lower concentrations than did inhibition, and the stimulatory effect was prevented by methylxanthines. Stimulation by adenosine was immediate in onset and was reversible, under conditions when cyclic AMP formation was linear with respect to time and protein concentration. The stimulatory and inhibitory effects could be distinguished further by the use of various analogues of adenosine and could be prevented by adenosine deaminase. The data suggest that both stimulation and inhibition were due to adenosine itself and not one of its degradation products and that in the platelet preparation, neither formation nor degradation of adenosine during the adenylate cyclase incubation appreciably influenced measured activity. Stimulation by adenosine was additive with the effects of GMP-P(NH)P, and alpha- or beta-adrenergic stimulation, but was abolished by prostaglandin E1 or by NaF. Prostaglandin E1 and NaF increased the sensitivity of adenylate cyclase to inhibition by adenosine. The data suggest that guanyl-5'-yl-(beta-gamma-imino)diphosphate and/or adrenergic stimulation and adenosine exert their effects on adenylate cyclase by distinct mechanisms, but that prostaglandin E1 or F- and adenosine increase enzyme activity by mechanisms which may involve common intermediates in the coupling to adenylate cyclase.  相似文献   

2.
We report that the adenylate cyclase system in human platelets is subject to multiple regulation by guanine nucleotides. Previously it has been reported that GTP is either required for or has little effect on the response of the enzyme to prostaglandin E1. We have found that when platelet lysates were prepared in the presence of 5 mM EDTA, GTP lowered the basal and prostaglandin E1-stimulated adenylate cyclase activity when the enzyme was assayed in the presence of Mg2+. The basal and prostaglandin E1-stimulated adenylate cyclase activities were also increased by washing, which presumably removes endogenous GTP. The analog, guanyl-5′-yl-imidodiphosphate mimics the inhibitory effect of GTP on prostaglandin E1-stimulated adenylate cyclase activity but it stimulates basal enzyme activity. The onset of the inhibitory effect of GTP on the adenylate cyclase system is rapid (1 min) and is maintained at a constant rate during incubation for 10 min. GTP and guanyl-5′-yl-imidodiphosphate were noncompetitive inhibitors of prostaglandin E1. An increase in the concentration of Mg2+ gradually reduces the effect of GTP while having little influence on the effect of guanyl-5′-yl-imidodiphosphate. Neither the substrate concentration nor the pH (7.2–8.5) is related to the inhibitory effect of guanine nucleotides. The inhibition by nucleotides was found to show a specificity for purine nucleotides with the order of potency being guanyl-5′-yl-imidodiphosphate > dGTP > GTP > ITP > XTP > CTP > TTP. The inhibitory effect of GTP is reversible while the effect of guanyl-5′-yl-imidodiphosphate is irreversible. The GTP inhibitory effect was abolished by preparing the lysates in the presence of Ca2+. However, the inhibitory effect of guanyl-5′-yl-imidodiphosphate persisted. Substitution of Mn2+ for Mg2+ in the assay medium resulted in a diminution of the inhibitory effect of GTP on basal activity and converted the inhibitory effect of GTP on prostaglandin E1-stimulated activity to a stimulatory effect. At a lower concentration of Mn2+ (less than 2 mM) guanyl-5′-yl-imidodiphosphate inhibited prostaglandin E1-stimulated adenylate cyclase activity, but at a higher concentration of Mn2+, it caused an increase in enzyme activity exceeding that occuring in the presence of prostaglandin E1. In the presence of Mn2+, dGTP mimics the effect of GTP and is 50% as effective as GTP. Our data suggest that the inhibitory effect of GTP on prostaglandin E1-stimulated adenylate cyclase is mainly due to its direct effect on the enzyme itself, whereas the stimulatory effect of GTP on prostaglandin E1-stimulated adenylate cyclase is due to enhancement of the coupling between the prostaglandin E1 receptor and adenylate cyclase. These studies also indicate that the method of preparation of platelet lysates can profoundly alter the nature of guanine nucleotide regulation of adenylate cyclase.  相似文献   

3.
In hamster adipocyte ghosts, ACTH and β-adrenergic agonists stimulate adenylate cyclase by a GTP-dependent process; in contrast, inhibition of the enzyme by hormonal factors requires both GTP and sodium ions. The interaction of various monovalent cations and guanine nucleotides was studied on basal, stimulated and inhibited adenylate cyclase activities. In the presence of GTP (0.03–10 μM), which reduced basal activity by up to 90%, monovalent cations (10–500 mM, added as chloride salts) increased the enzyme activity by up to about 8-fold. The potency order obtained was Na+>Li+>K+>choline. The stable GTP analogue, guanylyl-5′-imidodiphosphate, which like GTP was capable of decreasing basal activity, diminished the cation-induced activation. The stimulatory effects of ACTH and isoproterenol on adipocyte adenylate cyclase activity were impaired by the cations in the potency order, Na+>Li+>K+>choline. Additionally, NaCl shifted the concentration-response for ACTH to the right and caused an increase in the maximal activation by the hormone. Similar to basal activity, fluoride-stimulated activity was increased by NaCl, when GTP was present. The inhibitory effect of prostaglandin E1 on basal adipocyte adenylate cyclase activity was revealed by the cations in the above mentioned potency order by an apparent reversal of the cation-induced activation. In the presence of NaCl, the ACTH- or fluoride-stimulated activities were also reduced by prostaglandin E1, but the inhibitory hormonal factor did not reverse the NaCl-induced shift in the concentration-response curve for ACTH. Guanylyl-5′-imidodiphosphate completely prevented hormonal inhibition. The data suggest that monovalent cations interact with the guanine nucleotide-binding regulatory component of the adipocyte adenylate cylase system and that this interaction somehow changes the properties of this component, now revealing hormone-induced inhibition partially impairing hormone-induced stimulation.  相似文献   

4.
Epinephrine, histamine and prostaglandin E1 stimulated adenylate cyclase activity in lung membranes and their stimulation of the enzyme activity was completely blocked by propranolol, metiamide and indomethacin, respectively. A partially-purified activator from the adult rat lung also enhanced adenylate cyclase activity in membranes. However, stimulation of adenylate cyclase by the rat lung activator was not abolished by the above receptor antagonists. Further, epinephrine, NaF and Gpp(NH)p stimulated adenylate cyclase activity rather readily, whereas stimulation of the enzyme activity by the lung activator was evident after an initial lag phase of 10 min. Also, the lung activator produced additive activation of adenylate cyclase with epinephrine, NaF and Gpp(NH)p. These results indicate that the lung activator potentiates adenylate cyclase activity in membranes by a mechanism independent from those known for epinephrine, NaF and Gpp(NH)p. Incubation of lung membranes for 30 min at 40°C resulted in a loss of adenylate cyclase activation by NaF and Gpp(NH)p. Addition of the released proteins to the heat-treated membranes did not restore the enzyme response to these agonists. However, heat treatment of lung membranes in the presence of 2-mercaptoethanol or dithiothreitol prevented the loss of adenylate cyclase response to NaF and Gpp (NH)p. N-ethylmaleimide abolished adenylate cyclase activation by epinephrine, NaF, Gpp(NH)p and the lung activator. These results indicate that the sulfhydryl groups are important for adenylate cyclase function in rat lung membranes.Abbreviations Gpp(NH)p 5-Guanylimidodiphosphate  相似文献   

5.
The interdependent effects of divalent cations, pH, and various activators of adenylate cyclase were examined in partially purified plasma membranes from rat liver. This adenylate cyclase was found to exhibit largely alkaline pH optima, in the range of 8.3 to 9.3, for the expression of basal activity, and activities with GTP, GPP(NH)P, prostaglandin E1 and GTP, and N6-(phenylisopropyl)adenosine and GTP. Glucagon and GTP, while increasing activity 8- to 10-fold, shifted the optimum activity to about pH 7.5. However, stimulation of the enzyme by 10 mm NaF or 3 mm Na3VO4 was strikingly dependent on pH. In both cases activation was optimal at pH values between 6.3 and 7.3, though above about pH 8.5 fluoride was barely stimulatory and vanadate was slightly inhibitory. This effect of elevated pH to reduce fluoride- or vanadate-stimulated activity could be prevented by glucagon plus guanine nucleotide, but could not be reversed once activity was lowered during preincubation. The data suggest that this effect was not due to the formation of an inhibitor of adenylate cyclase per se, nor to an artifact of assay methods. The effect of elevated pH was more pronounced with Mn2+ as activating cation than with Mg2+. With fluoride and lower pH adenylate cyclase was essentially Mn2+ requiring, whereas with fluoride and higher pH activity was comparable with either cation. The data suggested that combinations of pH, divalent cation, and activating ligand dictate the interactions of the constitutive subunits of the adenylate cyclase and provide additional criteria with which current models for the regulation of adenylate cyclase may be tested.  相似文献   

6.
Abstract

The influence of sodium was studied on hormone and guanine nucleotide-induced stimulation and inhibition of adenylate cyclase and on ß-adrenoceptor binding in various membrane systems. Sodium exerted almost identical effects on stimulation and inhibition of adenylate cyclase by various stimulatory and inhibitory hormones in all of the systems studied. The potencies of the hormones and of GTP to increase or to decrease the enzyme activity were reduced by sodium ions, without changing the maximal degree of adenylate cyclase stimulation or inhibition. Stimulation and inhibition of adenylate cyclase by the stable GTP analog, GTPγS, was affected in an identical manner by sodium, causing a retardation in the onset without a change in final stimulation or inhibition by the analog. Similar to the well-known reduction in α2-adrenoceptor affinity for agonists, sodium also reduced the apparent affinity of ß-ad-renoceptors for the agonist, isoproterenol. It is concluded that sodium exerts identical effects on Ns and Ni, inhibiting the activation process of these two coupling components of the adenylate cyclase.  相似文献   

7.
Synthetic substance P stimulated adenylate cyclase activity in particulate preparations from rat and human brain.The concentration of substance P for half maximal stimulation in rat brain was 1.8 · 10−7 M.The stimulatory effect of substance P on the rat brain adenylate cyclase activity was 88% compared with 48% by noradrenalin, 163% by prostaglandin E1 and 184% by prostaglandin E2.Both the basal and substance P-stimulated adenylate cyclase activity in rat brain were inhibited by concentration of Ca2+ above 10−6 M.The chelating agent ethyleneglycol-bis-(β-aminoethylether)-N,N′-tetraacetic acid at a concentration of 0.1 mM reduced the basal adenylate cyclase activity by 64% and eliminated the substance P-stimulated activity.The inhibition by ethyleneglycol-bis-(β-aminoethylether)-N,N′-tetraacetic acid was completely reversed by increasing concentrations of Ca2+.  相似文献   

8.
Some effects of salts on the adenylate cyclase of partially purified plasma membranes from rat liver have been studied. Under conditions where cyclic adenosine 3':5'-monophosphate formation was linear with respect to time and protein concentration, the enzyme was stimulated 3- to 6-fold by 10 mM NaF, 10- to 30-fold by 1 muM glucagon, 4- to 5-fold by 0.1 mM 5'-guanylylimidodiphosphate, and in the presence of 3 muM GTP, 2-fold by 10 mug/ml of prostaglandin E1. Various salts were found to stimulate basal activity slightly, but enhanced the response to NaF 3- to 4-fold, to glucagon 1.5- to 2-fold, to 5'-guanylylimidodiphosphate 2- to 3-fold, and to prostaglandin E1 1.5-fold. This enhancement was observed at maximally effective concentrations of each of the respective activators. Of the salts tested, NaN3 and the Na- or K-halides were most effective. Their action appeared to be due to the respective anions. Stimulation was detectable with 1.5 mM NaN3 or 3 mM NaCl and was maximal with 30 mM NaN3 or 60 mM NaCl. The stimulatory effect of NaN3 was not due to ATP-sparing, nor to an altered cyclic adenosine 3':5'-monophosphate recovery. It was independent of the chromatography and assay methods used, and was therefore not due to procedural artifact. Fluoride-stimulated cyclase activity was enhanced by salts to a greater degree than were 5'-guanylylimidodiphosphate-, glucagon-, or (prostaglandin E1 + GTP)-stimulated activities. The effects of NaN3 were not the result of significant changes in the enzyme's responses to GTP, which increased basal and glucagon-stimulated activities but inhibited F--stimulated activity. The effects of NaN3 were greater when cyclase was assayed with Mn2+ than with Mg2+. The facilitatory effect of NaN3 or NaCl on fluoride-stimulated adenylate cyclase activity was partially reversible as was the stimulatory effect of fluoride in the presence of NaN3. Enhancement of hormonal stimulation by NaN3 was also demonstrable with cardiac and adipose tissue adenylate cyclase. However, NaN3 did not stimulate detergent-dispersed adenylate cyclases from either liver plasma membranes or brain. The data suggest that stimulation of adenylate cyclase by salts may require the added presence of other stimulatory agents and an intact membrane structure.  相似文献   

9.
Prostacyclin (Prostaglandin I2) effects on the rat kidney adenylate cyclase-cyclic AMP system were examined. Prostaglandin I2 and prostaglandin E2, from 8 · 10?4 to 8 · ?7 M stimulated adenylate cyclase to a similar extent in cortex and outer medulla. In inner medulla, prostaglandin I2 was more effective than prostaglandin E2 at all concentrations tested. Both prostaglandin I2 and prostaglandin E2 were additive with antidiuretic hormone in outer and inner medulla. Prostaglandin I2 and prostaglandin E2 were not additive in any area of the kidney, indicating both were working by similar mechanisms. Prostaglandin I2 stimulation of adenylate cyclase correlated with its ability to increase renal slice cyclic AMP content. Prostaglandin I2 and prostaglandin E2 (1.5 · 10?4 M) elevated cyclic AMP content in cortex and outer medulla slices. In inner medulla, with Santoquin® (0.1 mM) present to suppress endogenous prostaglandin synthesis, prostaglandin I2 and prostaglandin E2 increased cyclic AMP content. 6-Ketoprostaglandin F, the stable metabolite of prostaglandin I2, did not increase adenylate cyclase activity or tissue cyclic AMP content. Thus, prostaglandin I2 activates renal adenylate cyclase. This suggests that the physiological actions of prostaglandin I2 may be mediated through the adenylate cyclase-cyclic AMP system.  相似文献   

10.
Heparin inhibits (I50 = 2 μg/ml) the activity of luteinizing hormone and human chorionic gonadotropin-stimulated adenylate cyclase in purified rat ovarian plasma membranes. Unstimulated enzyme activity and activity stimulated by NaF, GTP or guanosine 5′-(β,γ-imido)triphosphate were inhibited to a lesser extent. Human chorionic gonadotropin binding to this membrane preparation was inhibited by hepatin (I50 = 6 μg/ml). The inhibition with respect to hormone concentration was of a mixed type for hormone binding and adenylate cyclase stimulation. Inhibition by heparin was not eliminated at saturating hormone concentration. The degree of inhibition was unaffected by the order in which enzyme, hormone and heparin were introduced into the assay system. Herapin (3 μg/ml) did not affect the pH activity relationship of basal and hormone-stimulated adenylate cyclase activity and did not change the dependence of enzyme activity on magnesium ion concentration. The inhibitory action of heparin cannot be solely attributed to interference with either catalysis or hormone binding. The possibility is considered that the highly charged herapin molecule interferes with enzyme receptor coupling, by restricting the mobility of these components or by effecting their conformation.  相似文献   

11.
Abstract: Chronic etorphine treatment of neuroblastoma × glioma NG108-15 cells results in both an increase in adenylate cyclase activity (upon addition of the opiate antagonist naloxone) as well as an homologous desensitization of the opiate receptor. The continued ability of opiate agonists to regulate adenylate cyclase activity following opiate receptor desensitization can be understood by proposing that the catalytic subunit of adenylate cyclase in NG108-15 cells is under tonic regulation by both guanine nucleotide regulatory (Ni) and stimulatory (Ns) components. Inactivation of Ni by pertussis toxin (PT) treatment resulted in elevated adenylate cyclase activities comparable to those observed in control cells following chronic opiate treatment. This increased enzymatic activity could not be further induced by PT treatment of cells exposed to opiate previously. In addition, procedures that prevented receptor-mediated activation of Ns, i.e., treatment with NaF or desensitization of the stimulatory receptors (prostaglandin E1, adenosine) eliminated the increase in adenylate cyclase activity induced by naloxone following chronic opiate exposure. Hence, the increase in enzymatic activity observed following chronic opiate treatment may be due to a loss in tonic inhibitory regulation of adenylate cyclase mediated through Ni resulting in the unimpeded expression of Ns activity. This tonic inhibition of adenylate cyclase activity is one of the multiple mechanisms by which Ni regulates adenylate cyclase in this cell line.  相似文献   

12.
Intact LM cells, a line of cultured mouse fibroblasts, exhibited and adenylate cyclase (APT pyrophosphate-lyase (cyclizing), EC 4.6.1.1) activity in the presence exogenous [α-32]ATP which was 20–30% of that observed with comparable preparations of lysed cells. The extent of NaF and prostaglandin E1 stimulation was comparable in intact cells and lysed cells. 96% of the added ATP and 92% of the cyclic AMP produced by intact cells could be isolated extracellularly in the incubation medium. Cellular integrity under assay conditions was monitored by trypan blue exclusion. These data suggest that LM cells contain an endenylate cyclase activity whic is accessible to extracellular ATP.  相似文献   

13.
The possible roles of adenosine and the GTP analogue Gpp(NH)p in regulating mouse sperm adenylate cyclase activity were investigated during incubation in vitro under conditions in which after 30 min the spermatozoa are essentially uncapacitated and poorly fertile, whereas after 120 min they are capacitated and highly fertile. Adenylate cyclase activity, assayed in the presence of 1 mM ATP and 2 mM Mn2+, was determined by monitoring cAMP production. When adenosine deaminase (1 U/ml) was included in the assay to deplete endogenous adenosine, enzyme activity was decreased in the 30-min suspensions but increased in the 120-min samples (P < 0.02). This suggests that endogenous adenosine has a stimulatory effect on adenylate cyclase in uncapacitated spermatozoa but is inhibitory in capacitated cells. Since the expression of adenosine effects at low nucleoside concentrations usually requires guanine nucleotides, the effect of adding adenosine in the presence of 5 x 10–5 M Gpp(NH)p was examined. While either endogenous adenosine or adenosine deaminase may have masked low concentration (10?9?10?7 M) effects of exogenous adenosine, a marked inhibition (P < 0.001) of adenylate cyclase activity in both uncapacitated and capacitated suspensions was observed with higher concentrations (>10?5 M) of adenosine. Similar inhibition was also observed in the absence of Gpp(NH)p, suggesting the presence of an inhibitory P site on the enzyme. In further experiments, the effects of Gpp(NH)p in the presence and absence of adenosine deaminase were examined. Activity in 30-min suspensions was stimulated by the guanine nucleotide and in the presence of adenosine deaminase this stimulation was marked, reversing the inhibition seen with adenosine deaminase alone. In capacitated suspensions the opposite profile was observed, with Gpp(NH)p plus adenosine deaminase being inhibitory; again, this was a reversal of the effects obtained in the presence of adenosine deaminase alone, which had stimulated enzyme activity. These results suggest the existence of a stimulatory adenosine receptor site (Ra) on mouse sperm adenylate cyclase that is expressed in uncapacitated spermatozoa and an inhibitory receptor site (Ri) that is expressed in capacitated cells, with guanine nucleotides modifying the final response to adenosine. It is concluded that adenosine and guanine nucleotides may regulate mouse sperm adenylate cyclase activity during capacitation.  相似文献   

14.
The effects on human platelets of two synthetic analogues of prostaglandin endoperoxides were examined in order to explore the relationship between aggregation and prostaglandin and cyclic nucleotide metabolism, and to help elucidate the role of the natural endoperoxide intermediates in regulating platelet function.Both analogues (Compound I, (15S)-hydroxy-9α,11α-(epoxymethano)-prosta-(5Z,13E)-dienoic acid, and Compound II, (15S)-hydroxy-11α,9α-(epoxymethano)-prosta-(5Z,13E)-dienoic acid) caused platelets to aggregate, an effect which could be inhibited by prostaglandin E1 but not by indomethacin. Compound II produced primary, reversible aggregation at concentrations which did not induce release of 5-hydroxytryptamine. Production of thromboxane B2 and malonyldialdehyde was monitored as an index of endogenous production of prostaglandin endoperoxides and thromboxane A2 and were increased after incubation of human platelets with thrombin, collagen or arachidonic acid. However, neither malonydialdehyde nor thromboxane B2 levels were significantly influenced by the endoperoxide analogues. Both analogues produced a small elevation of adenylate cyclase activity in platelet membranes and of cyclic AMP content in intact platelets, but neither had any modifying effect on the much greater stimulation of adenylate cyclase and cyclic AMP levels by prostaglandin E1. Of all the aggregating agents tested, only arachidonic acid produced any significant increase in platelet cyclic GMP levels.These results suggest that the epoxymethano analogues of prostaglandin endoperoxides induce platelet aggregation independently of thromboxane biosynthesis and without inhibiting adenylate cyclase or lowerin platelet cyclic AMP levels. They therefore differ from better known aggregating agents such as ADP, epinephrine and collagen, which increase thromboxane A2 production and reduce cyclic AMP levels, at least in platelets previously exposed to prostaglandin E1.  相似文献   

15.
Regulation of Adenosine-Sensitive Adenylate Cyclase from Rat Brain Striatum   总被引:7,自引:5,他引:2  
An adenosine-sensitive adenylate cyclase has been characterized from rat brain striatum. In whole homogenates as well as in particulate fractions, N6-phenylisopropyl adenosine (PIA), 2-chloroadenosine, and adenosine N′-oxide were equipotent in stimulating adenylate cyclase. Although GTP inhibited basal as well as PIA-stimulated activity of whole homogenates, the enzyme showed an absolute dependency on GTP for stimulation by PIA, dopamine, epinephrine, and norepinephrine in a particulate fraction derived from discontinuous sucrose gradient centrifugation. Adenosine exerts two effects on this adenylate cyclase, stimulation at low concentrations and inhibition at high concentrations, suggesting the presence of two adenosine binding sites. The stimulation of adenylate cyclase by PIA was dependent on the concentration of Mg2-. The degree of stimulation by PIA was greater at a low concentration of Mg2+, which suggests that stimulation by PIA was accompanied by increasing the apparent affinity for Mg2+. Activation of adenylate cyclase by PIA was blocked by theophylline or 3-isobutyl- 1-methylxanthine (IBMX). The pH optimum for basal or (PIA + GTP)-stimulated activities was broad, with a peak between 8.5 and 9.5. In the presence of GTP, stimulation by an optimal concentration of PIA was additive, with maximal stimulation by the catecholamines. Phospholipase A2 treatment at a concentration of 1 U/ml for 5 min completely abolished the stimulatory effect of dopamine, whereas PIA-stimulated activity remained unaltered. These data suggest that rat brain striatum either has a single adenylate cyclase, which is stimulated by catecholamines and adenosine by distinct mechanisms, or has different cyclase populations, stimulated by either adenosine or catecholamines.  相似文献   

16.
Regulation of adenylate cyclase by adenosine   总被引:15,自引:0,他引:15  
Summary Adenosine may well be as important in the regulation of adenylate cyclase as hormones. Sattin and Rall first demonstrated in 1970 that adenosine was a potent stimulator of adenylate cyclase in the brain. However, adenosine is an equally potent inhibitor of adenylate cyclase in other cells such as adipocytes. The concentration of adenosine required for this regulation of adenylate cyclase is in the nanomolar range (10 to 100 nm). Both the inhibitory and stimulatory effects of low concentrations of adenosine on adenylate cyclase are antagonized by methylxanthines. This antagonism of adenosine action may account for all or part of the effects of methyl xanthines on cyclic AMP levels in many tissues. Adenosine appears to be a particularly important endogenous regulator of adenylate cyclase in brain, smooth muscle and fat cells. Under conditions in which intracellular AMP rises, adenosine formation and release is accelerated. In addition to its direct effects on adenylate cyclase, adenosine (at higher concentrations approaching millimolar) exerts multiple effects on cellular metabolism as a result of its intracellular metabolism and especially conversion to nucleotides.The effects of nanomolar concentrations of adenosine on adenylate cyclase are mediated through an adenosine site possessing strict structural specificity for the ribose moiety of the molecule (the R adenosine site) which is presumably located on the external surface of the plasma membrane. In brain, lung, platelets, bone, lymphocytes, skin, adrenals, Leydig tumors, and coronary arteries adenosine stimulates adenylate cyclase via this site. However, in rat adipocytes, brain astroblasts and ventricular myocardium adenosine inhibits adenylate cyclase through the R or adenosine site. Although the R site requires an intact ribose moiety, adenosine analogs modified in the purine ring such as N6-phenylisopropyladenosine appear to be potent agonists for this site. All effects of adenosine mediated via the R site are competitively antagonized by methyl xanthines.The effects of micromolar concentrations of adenosine appear to be mediated via a site with strict structural specificity with respect to the purine moiety of the molecule (the P or adenine adenosine site). This P site is postulated to be located on the intracellular face of the plasma membrane and mediates the effects of adenosine due to conversion of adenosine to 5-AMP or perhaps other nucleotides. The effects of high concentrations of adenosine are always inhibitory to adenylate cyclase activity, are readily demonstrated in broken cell preparations, and are unaffected by methylxanthines. An intact purine ring is required for these adenosine effects but modifications of the ribose moiety of the molecule generally increases the potency of the analog. A prime example is 2,5-dideoxyadenosine, which is the most potent known R-site specific adenosine analog.We propose a unitary model which explains both the stimulatory and inhibitory effects of low concentrations of adenosine on adenylate cyclase. In brief, adenylate cyclase is postulated to exist in three interconvertible activity states: (i) an inactive state (E0); (ii) a GTP-liganded state with high activity (EGTP); and (iii) a GDP-liganded state (EGDP) which is inactive in cells where adenosine stimulates adenylate cyclase, but active in cells where adenosine inhibits adenylate cyclase. We postulate that the enzyme cycles through these states in the following manner: the E0 state binds GTP and forms the EGTP state; hydrolysis of bound GTP converts the EGTP to the EGDP state; and release of bound GDP converts EGDP to the E0 state. The E0 state is the only form of the enzyme which can be stimulated by either hormones or GTP and its formation from the EGDP state is rate-limiting in this cycle. The conversion of EGDP to E0 regulates the ability of hormones and GTP to activate adenylate cyclase and is postulated to be adenosine sensitive.In cells where both EGDP and E0 states are inactive, adenosine stimulates adenylate cyclase activity. In cells where E0 is inactive, but EGDP is active, adenosine inhibits adenylate cyclase activity. In addition we suggest that in cells where adenosine inhibits adenylate cyclase activity (cells postulated to have an EGDP state which is active) high concentrations of GTP favor accumulation of the enzyme in EGDP and thus are inhibitory to activity. Prostaglandins may also regulate adenylate cyclase in a manner similar to that described above for adenosine.We conclude that adenosine is an important regulator of adenylate cyclase whose role has only been appreciated recently. Further studies are warranted on both its binding to cells and mechanisms by which it regulates adenylate cyclase.This work was supported by United States Public Health Service Research Grant AM-10149 from the National Institute of Arthritis, Metabolism and Digestive Diseases.  相似文献   

17.
In hamster adipocyte ghosts, ACTH stimulates adenylate cyclase by a GTP-dependent process, whereas prostaglandin E E1, α-adrenergic agonists and nicotinic acid inhibit the enzyme by a mechanism which is both GTP- and sodium-dependent. The influence of the divalent cations Mn2+ and Mg2+, was studied on these two different, apparently receptor-mediated effects on the adipocyte adenylate cyclase. At low Mn2+ concentrations, GTP (1 μM) decreased enzyme activity by about 80%. Under this condition, ACTH (0.1 μM) stimulated the cyclase by 6- to 8-fold, and NaCl (100 mM) caused a similar activation. In the presence of both GTP and NaCl, prostaglandin E1 (1 or 10 μM) and nicotinic acid (30 μM) inhibited the enzyme by about 70–80% and epinephrine (300 μM, added in combination with a β-adrenergic blocking agent) by 40–50%. With increasing concentrations of Mn2+, the GTP-induced decrease and the NaCl-induced increase in activity diminished, with a concomitant decrease in prostaglandin E1?, nicotinic acid- and epinephrine-induced inhibitions as well as in ACTH-induced stimulation. At 1 mM Mn2+, inhibition of the enzyme was almost abolished and stimulation by ACTH was largely reduced, whereas activation of the enzyme by KF (10 mM) was only partially impaired. The uncoupling action of Mn2+ on hormone-induced inhibition was half-maximal at 100–200 μM and appeared not to be due to increased formation of the enzyme substrate, Mn · ATP. It occurred without apparent lag phase and could not be overcome by increasing the concentration of GTP. Similar but not identical findings with regard to adenylate cyclase stimulation and inhibition by hormonal factors were obtained with Mg2+, although about 100-fold higher concentrations of Mg2+ than of Mn2+ were required. The data indicate that Mn2+at low concentrations functionally uncouples inhibitory and stimulatory hormone receptors from adenylate adenylate cyclase in membrane preparations of hamster adipocytes, and they suggest that the mechanism leading to uncoupling involves an action of Mn2+ on the functions of the guanine nucleotide site(s) in the system.  相似文献   

18.
The results reported here show some characteristics of adenylate cyclase (EC 4.6.1.1) derived from homogenates of rat spleen, and describe the in vitro stimulation of this enzyme by prostaglandins, nucleotides, and F under conditions where cyclic nucleotide degradative pathways are effectively inhibited.Particulate fractions from rat spleen homogenates contain high adenylate cyclase activities, and the highest specific activity is recovered in a particulate fraction prepared by low speed (1200 × g) centrifugation. Activity found in all particulate fractions is stimulated by fluoride, prostaglandins E1 and E2, catecholamines, and purine nucleotides. No stimulation is caused by prostaglandins F and F. Stimulation by prostaglandin E1 or E2 is augmented by GTP and other purine nucleotides, and stimulation by the combination of GTP and prostaglandin E1 is equal to that caused by optimal fluoride concentrations. Stimulation c caused by L-isoproterenol is additive to that caused by GTP but is not increased by GTP.  相似文献   

19.
Stimulation of basal adenylate cyclase activity in membranes of neuroblastoma x glioma hybrid cells by prostaglandin E1 (PGE1) is half-maximal and maximal (about 8-fold) at 0.1 and 10 microM respectively. This hormonal effect requires GTP, being maximally effective at 10 microM. However, at the same concentrations that stimulate adenylate cyclase in the presence of GTP, PGE1 inhibited basal adenylate cyclase activity when studied in the absence of GTP, by maximally 60%. A similar dual action of PGE1 was observed with the forskolin-stimulated adenylate cyclase, although the potency of PGE1 in both stimulating and inhibiting adenylate cyclase was increased and the extent of stimulation and inhibition of the enzyme by PGE1 was decreased by the presence of forskolin. The inhibition of forskolin-stimulated adenylate cyclase by PGE1 occurred without apparent lag phase and was reversed by GTP and its analogue guanosine 5'-[gamma-thio]triphosphate at low concentrations. Treatment of neuroblastoma x glioma hybrid cells or membranes with agents known to eliminate the function of the inhibitory GTP-binding protein were without effect on PGE1-induced inhibition of adenylate cyclase. The data suggest that stimulatory hormone agonist, apparently by activating one receptor type, can cause both stimulation and inhibition of adenylate cyclase, and that the final result depends only on the activity state of the stimulatory GTP-binding protein, Gs. Possible mechanisms responsible for the observed adenylate cyclase inhibition by the stimulatory hormone PGE1 are discussed.  相似文献   

20.
Heparin was found to be the most potent inhibitor of rat ovarian luteinizing hormone-sensitive adenylate cyclase (I50 = 2 μg/ml) when compared to other naturally occurring glycosaminoglycans. This inhinibition was also appparent when this enzyme was stimulated by follicle-stimulating hormone or prostaglandin E 2. Heparin was also found to inhibit glucagon-sensitive rat hepatice adenylate cyclase, and the prostaglandin E1-sensitive enzyme from rat ileum and human platelets. In contrast, heparin stimulated the dopamine sensitive adenylate cyclase from rat caudate nucleus. The sulfade polysugar dextran sulfate exerts similar effects on adenylate cyclase activity of the rat ovary was shown to inhibit hormone binding to rat ovarian plasma membrane in a manner similar to that exerted by heparin. In contrast to heparin, dextran sulfate inhibited dopamine-sensitive adenylate cyclase from rat caudate nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号