首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary It could be shown that Streptomyces griseus, the microorganism producing the antibiotic streptomycin and also mutant strains of this species that cannot synthesize streptomycin, possess myo-inositol-1-phosphate synthase (EC 5.5.1.4), the enzyme cyclizing D-glucose 6-phosphate. The enzyme isolated from that organism is extremely instable, its molecular weight is approximately 260,000, and it requires a divalent metal ion for its activity. This is the first instance that an enzyme of this specificity has been found in a prokaryotic organism.  相似文献   

2.
The steady-state kinetics of alcohol dehydrogenases (alcohol:NAD+ oxidoreductase, EC 1.1.1.1 and alcohol:NADP+ oxidoreductase, EC 1.1.1.2), lactate dehydrogenases (l-lactate:NAD+ oxidoreductase, EC 1.1.1.27 and d-lactate:NAD+ oxidoreductase, EC 1.1.1.28), malate dehydrogenase (l-malate:NAD+ oxidoreductase, EC 1.1.1.37), and glyceraldehyde-3-phosphate dehydrogenases [d-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12] from different sources (prokaryote and eukaryote, mesophilic and thermophilic organisms) have been studied using NAD(H), N6-(2-carboxyethyl)-NAD(H), and poly(ethylene glycol)-bound NAD(H) as coenzymes. The kinetic constants for NAD(H) were changed by carboxyethylation of the 6-amino group of the adenine ring and by conversion to macromolecular form. Enzymes from thermophilic bacteria showed especially high activities for the derivatives. The relative values of the maximum velocity (NAD = 1) of Thermus thermophilus malate dehydrogenase for N6-(2-carboxyethyl)-NAD and poly(ethylene glycol)-bound NAD were 5.7 and 1.9, respectively, and that of Bacillus stearothermophilus glyceraldehyde-3-phosphate dehydrogenase for poly(ethylene glycol)-bound NAD was 1.9.  相似文献   

3.
Summary The bald mutants from streptomycin (SM)-producingStreptomyces griseus 2247 obtained by incubation at high temperature (36° C), designated as HT strains, lost resistance to their own antibiotic and scarcely produced the antibiotic. Although SM susceptibility in the mutant was due to loss of SM 6-phosphotransferase activity produced in the cell, the gene coding for the enzyme cloned from an HT strain was surely expressed inS. lividans 1326 as a host. Northern blot analysis showed that the corresponding RNA is not detected in the mutant, indicating that though the gene encoding SM 6-phosphotransferase, at least, the structural gene is not deleted in the cell, the expression is silent.  相似文献   

4.
The subcellular distribution of NADP+ and NAD+-dependent glucose-6-phosphate and galactose-6-phosphate dehydrogenases were studied in rat liver, heart, brain, and chick brain. Only liver particulate fractions oxidized glucose-6-phosphate and galactose-6-phosphate with either NADP+ or NAD+ as cofactor. While all of the tissues examined had NADP+-dependent glucose-6-phosphate dehydrogenase activity, only rat liver and rat brain soluble fractions had NADP+-dependent galactose-6-phosphate dehydrogenase activity. Rat liver microsomal and rat brain soluble galactose-6-phosphate dehydrogenase activities were kinetically different (Km's 0.5 mm and 10 mm, respectively, for galactose-6-phosphate), although their reaction products were both 6-phosphogalactonate. Rat brain subcellular fractions did not oxidize 6-phosphogalactonate with either NADP+ or NAD+ cofactors but phosphatase activities hydrolyzing 6-phosphogalactonate, galactose-6-phosphate and galactose-1-phosphate were found in crude brain homogenates. In addition, galactose-6-phosphate and 6-phosphogalactonate were tested as inhibitors of various enzymes, with largely negative results, except that 6-phosphogalactonate was a competitive inhibitor (Ki = 0.5 mM) of rat brain 6-phosphogluconate dehydrogenase.  相似文献   

5.
Changes in subcellular distributions of glucose-6-phosphate dehydrogenase (G6PDH) were observed after fertilization or artificial (KCl) activation of Spisula eggs. Though the total activity of G6PDH did not change during early stages, that in the 100,000g supernatant fraction increased after fertilization, attained a maximum at the first meiotic metaphase, and then decreased. This change of activity in the supernatant was accompanied by a mirror-image change of activity in the pellet. Most of the G6PDH was localized in the 3000g pellet fraction; furthermore, the activity in isolated cortices showed fluctuations during meiosis similar to that of the 3000g pellet fraction. Conditions for the release and binding of the NADP-specific G6PDH from the pellet fraction were investigated in vitro. NADP+ or NADPH can induce release of G6PDH, although NADPH is three to four times more efficient than NADP+. NAD+ does not affect release. High concentrations of salts (ionic strength >0.3) caused complete G6PDH release from the pellet. Although raising the pH alone showed only a slight releasing effect, increase of pH to pH 7 or above considerably augmented release due to NADP+ or NADPH. The release of G6PDH from the pellet fraction was shown to be reversible. These results suggest that the reversible association of G6PDH with particulate components of the cytoplasm may play an important role in regulation of G6PDH activity in marine eggs and that the cortex is one of the sites which may be involved in such regulation. The mechanism of recombination of G6PDH with its sites remains to be elucidated.  相似文献   

6.
Upon subcellular fractionation of (murine) Friend erythroleukaemic cells (FELCs), purified plasma membranes were identified by their high enrichment in specific marker enzymes and typical plasma membrane lipids. When FELCs were incubated for short periods with 32Pi before cell fractionation, the lipid-bound radioactivity was almost exclusively present in phosphatidylinositol-4-phosphate (DPI) and phosphatidylinositol-4,5-bisphosphate (TPI), and its distribution closely matched that of the plasma membrane markers. In addition, purified plasma membranes actively incorporated 32P from [γ-32P]ATP into polyphosphoinositides, and the specific activities of the involved kinases were again mostly enriched in the plasma membrane fraction.  相似文献   

7.
Sorbitol-1-phosphate and sorbitol-6-phosphate were isolated from Prunus armeniaca leaves that had been labelled with 14C by photosynthesis in 14CO2. Each hexitol phosphate was present at ca 7 μmol/kg fr. wt in the tissue and formed ca 4% of the hexose monophosphate fraction. 14C-specific activity measurements suggest that each hexitol monophosphate is formed from a hexose monophosphate, and that one or other could be an intermediate in photosynthesis of sorbitol from CO2.  相似文献   

8.
Summary Streptomycin-like antibiotics cause hereditary and irreversible aplastidity of Euglena gracilis by inhibiting the replication of plastids, while normal cell division is maintained.Therefore, a gradual dilution of plastids takes place in a multiplying culture. Streptomycin was found to be more effective as bleaching agent than dihydrostreptomycin. The cells of Euglena gracilis are totally deprived of plastids by streptomycin treatment after 4.5 cell divisions, while 9 cell divisions are required with dihydrostreptomycin. In addition to the inhibition of plastid replication both antibiotics bring about formation of pathological plastids, both in growing and in stationary cultures. In this latter case pathological plastids are released from cells only after further cell division has taken place.  相似文献   

9.
Two isoenzymes of glucose 6-phosphate dehydrogenase (EC 1.1.1.49) have been separated from the plant fraction of soybean (Glycine max L. Merr. cv Williams) nodules by a procedure involving (NH4)2SO4 gradient fractionation, gel chromatography, chromatofocusing, and affinity chromatography. The isoenzymes, which have been termed glucose 6-phosphate dehydrogenases I and II, were specific for NADP+ and glucose 6-phosphate and had optimum activity at pH 8.5 and pH 8.1, respectively. Both isoenzymes were labile in the absence of NADP+. The apparent molecular weight of glucose 6-phosphate dehydrogenases I and II at pH 8.3 was estimated by gel chromatography to be approximately 110,000 in the absence of NADP+ and double this size in the presence of NADP+. The apparent molecular weight did not increase when glucose 6-phosphate was added with NADP+ at pH 8.3. Both isoenzymes had very similar kinetic properties, displaying positive cooperativity in their interaction with NADP+ and negative cooperativity with glucose 6-phosphate. The isoenzymes had half-maximal activity at approximately 10 micromolar NADP+ and 70 to 100 micromolar glucose 6-phosphate. NADPH was a potent inhibitor of both of the soybean nodule glucose 6-phosphate dehydrogenases.  相似文献   

10.
In this study, glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate: NADP+ oxidoreductase, EC 1.1.1.49; G6PD) was purified from parsley (Petroselinum hortense) leaves, and analysis of the kinetic behavior and some properties of the enzyme were investigated. The purification consisted of three steps: preparation of homogenate, ammonium sulfate fractionation, and DEAE-Sephadex A50 ion exchange chromatography. The enzyme was obtained with a yield of 8.79% and had a specific activity of 2.146 U (mg protein)(-1). The overall purification was about 58-fold. Temperature of +4 degrees C was maintained during the purification process. Enzyme activity was spectrophotometrically measured according to the Beutler method, at 340 nm. In order to control the purification of enzyme, SDS-polyacrylamide gel electrophoresis was carried out in 4% and 10% acrylamide for stacking and running gel, respectively. SDS-polyacrylamide gel electrophoresis showed a single band for enzyme. The molecular weight was found to be 77.6 kDa by Sephadex G-150 gel filtration chromatography. A protein band corresponding to a molecular weight of 79.3 kDa was obtained on SDS-polyacrylamide gel electrophoresis. For the enzymes, the stable pH, optimum pH, and optimum temperature were found to be 6.0, 8.0, and 60 degrees C, respectively. Moreover, KM and Vmax values for NADP+ and G6-P at optimum pH and 25 degrees C were determined by means of Lineweaver-Burk graphs. Additionally, effects of streptomycin sulfate and tetracycline antibiotics were investigated for the enzyme activity of glucose-6-phosphate dehydrogenase in vitro.  相似文献   

11.
In the course of studying mammalian erythrocytes we noted prominent differences in the red cells of the rat. Analysis of ghosts by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis showed that membranes of rat red cells were devoid of band 6 or the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate: NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12). Direct measurements of this enzyme showed that glyceraldehyde-3-phosphate dehydrogenase activity in rat erythrocytes was about 25% of that in human cells; all of the glyceraldehyde-3-phosphate dehydrogenase activity in rat erythrocytes was within the cytoplasm and none was membrane bound; and in the human red cell, about 1/3 of the enzyme activity was within the cytoplasm and 2/3 membrane bound. The release of glyceraldehyde-3-phosphate dehydrogenase from fresh rat erythrocytes immediately following saponin lysis was also determined using the rapid filtration technique recently described. The extrapolated zero-time intercepts of these reactions confirmed that, in the rat erythrocyte, none of the cellular glyceraldehyde-3-phosphate dehydrogenase was membrane bound. Failure of rat glyceraldehyde-3-phosphate dehydrogenase to bind to the membranes of the intact rat erythrocyte seems to be due to cytoplasmic metabolites which interact with the enzyme and render it incapable of binding to the membrane.  相似文献   

12.
Summary We have described the observation that Streptomyces griseus colonies grow group-wise on agar media containing streptomycin. We have found that this phenomenon is due to a substance (s) produced by germinating Str. griseus spores in media containing streptomycin, and this substance made the neighbouring spores more tolerant to increasing streptomycin concentrations. The substance is produced specifically by Str. griseus strains. The substance has probably a great molecular size, is thermolabile, not a nucleic acid and the applied enzymes did not inactivate it. Some investigated enzyme-poisons did not influence either its production or its effect on Str. griseus spores. We succeeded in carrying over the substance into liquid phase and separate it from the producing culture and this enables us to furterh purification and investigation of the substance.  相似文献   

13.

Background

Trehalose is the most important multifunctional, non-reducing disaccharide found in nature. It is synthesized in yeast by an enzyme complex: trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP).

Methods

In the present study TPS is purified using a new methodology from Candida utilis cells by inclusion of 100 mM l-arginine during cell lysis and in the mobile phase of high performance gel filtration liquid chromatography (HPGFLC).

Results

An electrophoretically homogenous TPS that was purified was a 60 kDa protein with 22.1 fold purification having a specific activity of 2.03 U/mg. Alignment of the N-terminal sequence with TPS from Saccharomyces cerevisiae confirmed the 60 kDa protein to be TPS. Optimum activity of TPS was observed at a protein concentration of 1 μg, at a temperature of 37 °C and pH 8.5. Aggregation mediated enzyme regulation was indicated. Metal cofactors, especially MnCl2, MgCl2 and ZnSO4, acted as stimulators. Metal chelators like CDTA and EGTA stimulated enzyme activity. Among the four glucosyl donors, the highest Vmax and lowest Km values were calculated as 2.96 U/mg and 1.36 mM when adenosine di phosphate synthase (ADPG) was used as substrate. Among the glucosyl acceptors, glucose-6-phosphate (G-6-P) showed maximum activity followed by fructose-6-phosphate (F-6-P). Polyanions heparin and chondroitin sulfate were seen to stimulate TPS activity with different glucosyl donors.

General significance

Substrate specificity, Vmax and Km values provided an insight into an altered trehalose metabolic pathway in the C. utilis strain where ADPG is the preferred substrate rather than the usual substrate uridine diphosphaphate glucose (UDPG). The present work employs a new purification strategy as well as highlights an altered pathway in C. utilis.  相似文献   

14.
Summary The cluster of streptomycin (SM) production genes in Streptomyces griseus was further analysed by determining the nucleotide sequence of genes strFGHIK. The products of the strF and/or strG genes may be involved in the formation of N-methyl-l-glucosamine, and that of the strH gene in the first glycosylation step condensing streptidine-6-phosphate and dihydrostreptose. The putative Strl protein showed strong similarity to the amino-terminal NAD(P)-binding sites of many dehydrogenases, especially of the glyceraldehyde-3-phosphate dehydrogenases. The product of the strK gene strongly resembles the alkaline phosphatase of Escherichia coli. It was shown that S. griseus excretes an enzyme that specifically cleaves both SM-6-phosphate and — more slowly — SM-3-phosphate during the production phase for SM. The identity of this enzyme with the StrK protein was demonstrated by expression of the strK gene in Streptomyces lividans 66. Further evidence for an involvement of these genes in SM biosynthesis came from the fact that genes homologous to them were found in the equivalent gene cluster of the hydroxy-SM producer Streptomyces glaucescens; these, however, were in part differently organized. The ca. 5 kb DNA segment downstream of strI in S. griseus which contains the strK gene was found to be located in inverse orientation between the homologues of the aphD and strR genes in S. glaucescens.  相似文献   

15.
Summary Streptomycin (SM)-producingStreptomyces griseus was permeable to extracellular SM during exponential growth, and less permeable during the stationary phase when antibiotic production was maximal. Uptake of [3H] dihydrostreptomycin ([3H]DSM) by the producer organism was abolished by inhibitors of electron transport, sulfhydryl reagents and an uncoupler of oxidative phosphorylation, and it was competitively inhibited by spermidine. These results indicate that SM was taken up by an active transport process via a polyamine transport system. A mutant with lower SM-resistance showed the same level of SM 6-phosphotransferase as the parent strain. It is suggested that selfresistance in the SM-producers is at least partly determined by transport and permeability mechanisms.  相似文献   

16.
17.
Membranes isolated from abscission zones of Phaseolus vulgaris L., cv. Red Kidney, contained cellulase activity. This particulate activity was enhanced 10- to 20-fold by treatment with Triton X-100. Sucrose density gradient analyses of cell fractions showed that the membranes with which cellulase was associated had a peak equilibrium density of 1.16 to 1.17 g/cm3 which coincided with that of ion-activated ATPase, a marker for plasma membranes. The membrane fraction having the highest cellulase activity also contained a high proportion of plasma membranes as shown by electron microscopy of sucrose density gradient fractions after staining by periodic acid-chromic acid-phosphotungstic acid. It was concluded that the particulate cellulase was associated with the plasma membrane.  相似文献   

18.
The erythrocyte glucose 6-phosphate dehydrogenase activity characteristic of each of 16 inbred mouse strains falls into one of three distinct classes. Strains C57L/J and C57BR/cdJ represent the low activity class: strains A/J and A/HeJ represent the high activity class; other strains have intermediate activities. There is no evidence that structural variation is responsible for the variation in G6PD activity, since partially purified enzyme from each class has the same thermal stability, pH-activity profile, Michaelis constants for G6P and NADP, electrophoretic mobility, and activity using 2-deoxy d-glucose 6-phosphate as substrate. The activities of 6-phosphogluconate dehydrogenase and glucose phosphate isomerase do not differ in erythrocytes of the three G6PD activity classes. Young red cells have higher G6PD activities than old red cells and there is evidence that the intracellular stability of the enzyme is reduced in red cells of strain C57L/J. G6PD activities in kidney and skeletal and cardiac muscle from animals with low red cell G6PD are slightly lower than the activities in kidney and muscle from animals with high red cell G6PD activity. The quantitative differences in red cell G6PD activity are not regulated by X-linked genes, but by alleles at two or more autosomal loci. A simple genetic model is proposed in which alleles at two unlinked, autosomal loci, called Gdr-1 and Gdr-2 regulate G6PD activity in the mouse erythrocyte.  相似文献   

19.
Isoenzymes of glucose-6-phosphate dehydrogenase and 6-P-gluconate dehydrogenase from a 70% ammonium sulfate precipitate of spinach leaf homogenate were separated by differential solubilization in a gradient of 70-0% ammonium sulfate and analyzed by disc gel electrophoresis. Isolated whole chloroplasts contained isoenzyme 1 of both glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase 1, whereas isoenzyme 2 of each was found in the soluble cytosol fraction. Both isoenzymes of each dehydrogenase were present in about equal amounts. Glucose-6-phosphate dehydrogenase isoenzymes 1 and 2 had pH optima of 9.2 and 9.0 and Km values of 400 and 330 μm, respectively. Molecular weights for both isoenzyme of glucose-6-phosphate dehydrogenase were very similar at about 105,000 ± 10% as estimated by sedimentation velocity measurements. For 6-phosphogluconate dehydrogenase isoenzymes 1 and 2 the pH optima were 9.0 and 9.3, respectively, the Km values were 100 and 80 μm, and the apparent molecular weights were also nearly identical at about 110,000 ± 10%. The data support the hypothesis that leaf cells have two oxidative pentose phosphate pathways, one in the chloroplast and the other in the cytosol.  相似文献   

20.
Dubinský P., Rybo? M. and Tur?eková ?. 1985. Enzymes regulating glucosamine 6-phosphate synthesis in the zygote of Ascaris suum. International Journal for Parasitology15: 415–419. Formation of glucosamine 6-phosphate, a basic intermediate product of chitin synthesis in the zygote of Ascaris suum is catalyzed by glutamine-fructose-6-phosphate aminotransferase (EC 2.6.1.16). The highest activity of the enzyme was observed immediately after fertilization of mature oocytes. High enzyme activity also found in unfertilized oocytes indicates that formation of glucosamine 6-phosphate is catalyzed by enzymes that were present in the oocytes prior to their fertilization. In the Ascaris suum zygote, in contrast to the situation in other organisms, glucosaminephosphate isomerase (EC 5.3.1.10) plays no part in glucosamine 6-phosphate synthesis. The paper discusses possible participation of glucosaminephosphate isomerase in the resynthesis of fructose 6-phosphate from the surplus glucosamine 6-phosphate not utilized for chitin synthesis, and accordingly its involvement in the metabolism of the zygote.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号