首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 317 毫秒
1.
Membrane association of cytochrome c (cyt c) was monitored by the efficiency of resonance energy transfer from a pyrene-fatty acid containing phospholipid derivative (1-palmitoyl-2[6-(pyren-1-yl)]hexanoyl-sn-glycero-3-phosphocholine (PPHPC)) to the heme of cyt c. Liposomes consisted of 85 mol% egg phosphatidylcholine (egg PC), 10 mol% cardiolipin, and 5 mol% PPHPC. Cardiolipin was necessary for the membrane binding of cyt c over the pH range studied, from 4 to 7. In accordance with the electrostatic nature of the membrane association of cyt c at neutral pH both 2 mM MgCl2 and 80 mM NaCl dissociated cyt c from the vesicles completely. At neutral pH also adenine nucleotides in millimolar concentrations were able to displace cyt c from liposomes, their efficiency decreasing in the sequence ATP > ADP > AMP. In addition, both CTP and GTP were equally effective as ATP. The detachment of cyt c from liposomes by nucleotides is likely to result from a competition between cardiolipin and the nucleotides for a common binding site in cyt c. When pH was decreased to 4 there was a small yet significant increase in the apparent affinity of cyt c to cardiolipin containing liposomes. Notably, at pH 4 the above nucleotides as well as NaCl and MgCl2 were no longer able to dissociate cyt c and, on the contrary, they slightly enhanced the quenching of pyrene fluorescence by cyt c. The above results do suggest that the membrane association of cyt c at acidic pH was non-ionic and presumably due to hydrogen bonding. The pH-dependent binding of cyt c to membranes was fully reversible. Accordingly, in the presence of sufficient concentrations of either nucleotides or salts rapid detachment and membrane association of cyt c could be induced by varying pH between neutral and acidic values, respectively.  相似文献   

2.
Binding of cytochrome c (cyt c) to fatty acids and acidic phospholipid membranes produces pronounced and essentially identical changes in the spectral properties of cyt c, revealing conformational changes in the protein. The exact mechanism of the interaction of fatty acids and acidic phospholipids with cyt c is unknown. Binding of cyt c to liposomes with high contents (mole fraction X > 0.7) of acidic phospholipids caused spectral changes identical to those due to binding of oleic acid. Fluorescence spectroscopy of a cyt c analog containing a Zn(2+) substituted heme moiety and brominated lipid derivatives (9,10)-dibromostearate and 1-palmitoyl-2-(9,10)-dibromo-sn-glycero-3-phospho-rac-glycerol demonstrated a direct contact between the fluorescent [Zn(2+)-heme] group and the brominated acyl chain. These data constitute direct evidence for interaction between an acyl chain of a membrane phospholipid and the inside of the protein containing the heme moiety and provide direct evidence for the so-called extended-lipid anchorage of cyt c to phospholipid membranes. In this mechanism, one of the phospholipid acyl chains protrudes out of the membrane and intercalates into a hydrophobic channel in cyt c while the other chain remains in the bilayer.  相似文献   

3.
The peptide-induced fusion of neutral and acidic liposomes was studied in relation to the amphiphilicities evaluated by alpha-helical contents of peptides by means of a carboxyfluorescein leakage assay, light scattering, a membrane intermixing assay and electron microscopy. An amphipathic mother peptide, Ac-(Leu-Ala-Arg-Leu)3-NHCH3 (4(3], and its derivatives, [Pro6]4(3) (1), [Pro2,6]4(3) (2), and [Pro2,6,10]4(3) (3), which have very similar hydrophobic moments, caused a leakage of contents from small unilamellar vesicles composed of egg yolk phosphatidylcholine and egg yolk phosphatidic acid (3:1). The abilities of the peptides to induce the fusion of the acidic liposomes increased with increasing alpha-helical content: in acidic liposomes the helical contents were in the order of 4(3) greater than 1 greater than 2 greater than 3 (Lee et al. (1989) Chem. Lett., 599-602). Electron microscopic data showed that 1 caused a transformation of the small unilamellar vesicles (20-50 nm in diameter) to large ones (100-300 nm). Based on the fact that these peptides have very similar hydrophobic moments despite of decreasing in the mean residue hydrophobicities to some extent, it was concluded that the abilities of the peptides to induce the fusion of liposomes depend on the extent of amphiphilic conformation evaluated by alpha-helical contents of the peptides in the presence of liposomes. For neutral liposomes of egg yolk phosphatidylcholine, all the proline-containing peptides showed no fusogenic ability but weak leakage abilities, suggesting that the charge interaction between the basic peptides and acidic phospholipid is an important factor to induce the perturbation and fusion of the bilayer.  相似文献   

4.
Tacrine (1,2,3,4-tetrahydro-9-acridinamine monohydrate) is an inhibitor of acetylcholinesterase currently used in the treatment of the symptoms of Alzheimer's disease. The present study demonstrates preferential binding of this drug to acidic phospholipids, as revealed by fluorescence polarization, penetration into lipid monolayers, and effects on the thermal phase behavior of dimyristoyl phosphatidic acid (DMPA). A fivefold enhancement in the polarization of tacrine emission is evident above the main phase transition temperature (T(m)) of DMPA vesicles, whereas below T(m) only a 0.75-fold increase is observed. In contrast, the binding of tacrine to another acidic phospholipid, dimyristoylphosphatidylglycerol, did not exhibit strong dependence on T(m). In accordance with the electrostatic nature of the membrane association of tacrine, the extent of binding was augmented with increasing contents of egg PG in phosphatidylcholine liposomes. Furthermore, [NaCl] > 50 mM dissociates tacrine (albeit incompletely) from the liposomes composed of acidic phospholipids. Inclusion of the cationic amphiphile sphingosine in egg PG vesicles decreased the membrane association of tacrine until at 1:1 sphingosine: egg PG stoichiometry binding was no longer evident. Tacrine also penetrated into egg PG but not into egg PC monolayers. Together with broadening of the main transition and causing a shoulder on its high temperature side, the binding of tacrine to DMPA liposomes results in a concentration-dependent reduction both in the combined enthalpy delta H of the above overlapping endotherms and the main transition temperature T(m). Interestingly, these changes in the thermal phase behavior of DMPA as a function of the content of the drug in vesicles were strongly nonlinear. More specifically, upon increasing [tacrine], T(m) exhibited stepwise decrements. Simultaneously, sharp minima in delta H were observed at drug:lipid stoichiometries of approximately 2:100 and 25:100, whereas a sharp maximum in delta H was evident at 18:100. The above results are in keeping with tacrine causing phase separation processes in the bilayer and may also relate to microscopic drug-induced ordering processes within the membrane.  相似文献   

5.
The monolayer technique has been used to study the transfer of [14C]phosphatidylinositol from the monolayer to phosphatidylcholine vesicles. An equivalent transfer rate was found for egg phosphatidylcholine, dioleoylphosphatidylcholine, dielaidoylphosphatidylcholine and dipalmitoylphosphatidylcholine. A reduced transfer rate was found for a shorter-chain derivative, dimyristoylphosphatidylcholine, and for species with two polyunsaturated fatty acid chains such as dilinoleoylphosphatidylcholine, diheptadecadienoylphosphatidylcholine, dilinolenoylphosphatidylcholine and diether and dialkyl derivatives. No activity was found for 1,3-dipalmitoylphosphatidylcholine. The presence of up to 5 mol% phosphatidylinositol in egg phosphatidylcholine vesicles had no effect on the transfer rate. Introduction of more than 5 mol% phosphatidylinositol or phosphatidic acid into the phosphatidylcholine vesicles gradually decreased the rate of phosphatidylinositol transfer from the monolayer. 20 mol% acidic phospholipid was nearly completely inhibitory. Transfer experiments between separate monolayers of phosphatidylcholine and phosphatidylinositol showed that the protein-bound phosphatidylcholine is readily exchanged for phosphatidylinositol, but the protein-bound phosphatidylinositol exchange for phosphatidylcholine occurs at a 20-times lower rate. The release of phosphatidylinositol is dependent on the lipid composition and the concentration of charged lipid in the acceptor membrane, but also on the ratio between donor and acceptor membranes. The main transfer protein from bovine brain which transfer phosphatidylinositol and phosphatidylcholine transfers also phosphatidylglycerol, but not phosphatidylserine or phosphatidic acid. The absence of significant changes in the surface pressure indicate that the phosphatidylinositol and phosphatidylcholine transfer is not accompanied by net mass transfer.  相似文献   

6.
The transfer of cholesterol between liposomal membranes was examined. On incubation of liposomes compsoed of egg yolk phosphatidylcholine, phosphatidic acid and cholesterol (molar percentage, 65.8 : 1.3 : 32.9 or 65.5 : 6.3 : 31.2), almost complete equilibration of the cholesterol pools was achieved within 6 to 8 h at 37 degrees C. The rate of transfer of cholesterol from the liposomes, in which cholesterol was introduced by 'the exchange reaction', was not significantly different from that from liposomes prepared in the presence of cholesterol, in which the cholesterol was distributed homogenously. These findings indicate that half life for 'flip-flop' of cholesterol molecules in egg yolk phosphatidylcholine liposomes is less than 6 h at 37 degrees C. The transfer of cholesterol between liposomes was strongly dependent on temperature and was affected by the fatty acid composition of the phospholipid, suggesting that the 'fluidity' of the membranes strongly influences the transfer rate. A preferential distribution of cholesterol molecules was observed in heterogeneous liposomes with different classes of phospholipids. The 'affinity order' of cholesterol for phospholipid deduced from the present experiments is as follows: beef brain sphingomyelin greater than dipalmitoylglycerophosphocholine = dimyristoylglycerophosphocholine greater than egg yolk phosphatidylcholine.  相似文献   

7.
C Frank  H Keilhack  F Opitz  O Zsch?rnig  F D B?hmer 《Biochemistry》1999,38(37):11993-12002
Activation of the SH2 domain-possessing protein-tyrosine phosphatase SHP-1 by acidic phospholipids as phosphatidic acid (PA) has been described earlier and suggested to participate in regulation of SHP-1 activity toward cellular substrates. The mechanism of this activation is poorly understood. Direct binding of phosphatidic acid to recombinant SHP-1 could be demonstrated by measuring the extent of [(14)C]PA binding in a chromatographic assay, by measuring the extent of binding of SHP-1 to PA-coated ELISA plates or silica beads (TRANSIL), and by spectroscopic assays employing fluorescently labeled PA liposomes. In addition to PA, phosphatidylinositol 3,4, 5-trisphosphate (PIP3), dipalmitoylphosphatidylglycerol, phosphatidylinositol 4,5-bisphosphate, and phosphatidylserine (PS) were found to bind to SHP-1, albeit to a lesser extent. A high-affinity binding site for PA and PIP3 was mapped to the 41 C-terminal amino acids of SHP-1. This site was absent from the related protein-tyrosine phosphatase SHP-2 and conferred activation of SHP-1 by PA toward two different substrates at low lipid concentrations. A SHP-1 mutant missing this binding site could, however, still be activated toward phosphorylated myelin basic protein as a substrate at high PA concentrations. This activation is likely to be mediated by a second, low-affinity binding site for PA in the N-terminal part of SHP-1 within the SH2 domains. High-affinity phospholipid binding to the C-terminus of SHP-1 may present a specific mechanism of regulating activity and/or cellular localization.  相似文献   

8.
Using large (5-10 microns) vesicles formed in the presence of phospholipids fluorescently labeled on the acyl chain and visualized using a fluorescence microscope, charge-coupled-device camera, and digital image processor, we examined the effects of membrane proteins on phospholipid domain formation. In vesicles composed of phosphatidic acid and phosphatidylcholine, incubation with cytochrome c induced the reorganization of phospholipids into large phosphatidic acid-enriched domains with the exclusion of phosphatidylcholine. Cytochrome c binding was demonstrated to be highest in the phosphatidic acid-enriched domain of the vesicle using the absorbance of the heme moiety for visualization. Both binding of cytochrome c and phospholipid reorganization were blocked by pretreatment of the vesicles with 0.1 M NaCl. The pore forming peptide gramicidin was examined for the effects of an integral protein on domain formation. Initially, gramicidin distributed randomly within the vesicle and showed no phospholipid specificity. Phosphatidic acid domain formation in the presence of 2.0 mM CaCl2 or 100 microM cytochrome c was not affected by the presence of 5 mol % gramicidin within the vesicles. In both cases, gramicidin was preferentially excluded from the phosphatidic acid-enriched domain and became associated with phosphatidylcholine-enriched areas of the vesicle. Thus, cytochrome c caused a major reorganization of both the phospholipids and the proteins in the bilayer.  相似文献   

9.
M D Bazzi  G L Nelsestuen 《Biochemistry》1991,30(32):7961-7969
Protein kinase C and two other proteins with molecular masses of 64 and 32 kDa, purified from bovine brain, constitute a type of protein that binds a large number of calcium ions in a phospholipid-dependent manner. This study suggested that these proteins also induced extensive clustering of acidic phospholipids in the membranes. Clustering of acidic phospholipids was detected by the self-quenching of a fluorescence probe that was attached to acidic phospholipids (phosphatidic acid or phosphatidylglycerol). Addition of these proteins to phospholipid vesicles containing 15% fluorescently labeled phosphatidic acid dispersed in neutral phosphatidylcholine resulted in extensive, rapid, and calcium-dependent quenching of the fluorescence signal. Fluorescence-quenching requirements coincided with protein-membrane binding characteristics. As expected, the addition of these proteins to phospholipid vesicles containing fluorescent phospholipids dispersed with large excess of acidic phospholipids produced only small fluorescence changes. In addition, association of these proteins with vesicles composed of 100% fluorescent phospholipids resulted in no fluorescence quenching. Protein binding to vesicles containing 5-50% fluorescent phospholipid showed different levels of fluorescence quenching that closely resemble the behavior expected for extensive segregation of the acidic phospholipids in the outer layer of the vesicles. Thus, the fluorescence quenching appeared to result from self-quenching of the fluorophores that become clustered upon protein-membrane binding. These results were consistent with protein-membrane binding that was maintained by calcium bridges between the proteins and acidic phospholipids in the membrane. Since each protein bound eight or more calcium ions in the presence of phospholipid, they may each induce clustering of a related number of acidic phospholipids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The regulation of ion channels by phosphatidic acid (a proposed active metabolite in the phosphatidylinositol effect) was investigated using1H-NMR spectroscopy and small unilamellar phospholipid vesicles. Transport across egg-yolk phosphatidylcholine (egg PC) and dipalmitoyl phosphatidylcholine (DPPC) vesicular membranes in the presence of the channel-forming ionophores alamethicin, melittin, and nystatin was monitored using the lanthanide probe ion Pr3+. In the absence of the ionophores, phosphatidic acid (PA) alone was found to have no ionophore properties, but in the presence of the ionophores the incorporation of 3 mol % phosphatidic acid in the bilayer markedly increased the rate of transport using melittin and nystatin, but decreased the rate using alamethicin, independent of the type of phosphatidylcholine used. The presence of PA in the bilayer also stimulated the production of lyric type channels, the extent of which were both ionophore- and lipid-dependent. These results are discussed in terms of possible molecular interactions between the PA, the individual ionophores, and type of lipid used.  相似文献   

11.
We have studied the binding of CTP: phosphocholine cytidylyltransferase from HeLa cell cytosol to large unilamellar vesicles of egg phosphatidylcholine (PC) or HeLa cell phospholipids that contain various amounts of oleic acid. A fatty acid/phospholipid molar ratio exceeding 10% was required for CTP: phosphocholine cytidylyltransferase binding to liposomes. At a fatty acid/phospholipid molar ratio of 1; 85% of the cytosolic CTP: phosphocholine cytidylyltransferase was bound. The enzyme also bound to liposomes with at least 20 mol% palmitic acid, monoolein, diolein or oleoylacetylglycerol. Oleoyl-CoA did not promote enzyme binding to liposomes. Binding to oleate-PC vesicles was blocked by Triton X-100 but not by 1 M KCl, and was reversed by incubation of the vesicles with bovine serum albumin. Cytidylyltransferase bound to egg PC vesicles that contained 33 mol% oleic acid equally well at 4 degrees C and 37 degrees C. The enzyme also bound to dimyristoyl- and dipalmitoylphosphatidylcholine vesicles containing oleic acid at temperatures below the phase transition for these liposomes. Binding of the cytidylyltransferase to egg PC vesicles containing oleic acid, monoolein, oleoylacetylglycerol or diolein resulted in enzyme activation, as did binding to dipalmitoylPC-oleic acid vesicles. However, binding to egg PC-palmitic acid vesicles did not fully activate the transferase. Various mechanisms for cytidylyltransferase interaction with membranes are discussed.  相似文献   

12.
Although movement of fatty acids between bilayers can occur spontaneously, it has been postulated that intracellular movement is facilitated by a class of proteins named fatty acid binding proteins (FABP). In this study we have incorporated long chain fatty acids into multilamellar liposomes made of phosphatidylcholine, incubated them with rat liver microsomes containing an active acyl-CoA synthetase, and measured formation of acyl-CoA in the absence or presence of FABP purified from rat liver. FABP increased about 2-fold the accumulation of acyl-CoA when liposomes were the fatty acid donor. Using fatty acid incorporated into liposomes made either of egg yolk lecithin or of dipalmitoylphosphatidylcholine, it was found that the temperature dependence of acyl-CoA accumulation in the presence of FABP correlated with both the physical state of phospholipid molecules in the liposomes and the binding of fatty acid to FABP, suggesting that fatty acid must first desorb from the liposomes before FABP can have an effect. An FABP-fatty acid complex incubated with microsomes, in the absence of liposomes, resulted in greater acyl-CoA formation than when liposomes were present, suggesting that desorption of fatty acid from the membrane is rate-limiting in the accumulation of acyl-CoA by this system. Finally, an equilibrium dialysis cell separating liposomes from microsomes on opposite sides of a Nuclepore filter was used to show that liver FABP was required for the movement and activation of fatty acid between the compartments. These studies show that liver FABP interacts with fatty acid that desorbs from phospholipid bilayers, and promotes movement to a membrane-bound enzyme, suggesting that FABP may act intracellularly by increasing net desorption of fatty acid from cell membranes.  相似文献   

13.
The adipocyte fatty acid-binding protein (AFABP) is believed to transfer unesterified fatty acids (FA) to phospholipid membranes via a collisional mechanism that involves ionic interactions between lysine residues on the protein surface and phospholipid headgroups. This hypothesis is derived largely from kinetic analysis of FA transfer from AFABP to membranes. In this study, we examined directly the binding of AFABP to large unilamellar vesicles (LUV) of differing phospholipid compositions. AFABP bound LUV containing either cardiolipin or phosphatidic acid, and the amount of protein bound depended upon the mol % anionic phospholipid. The K(a) for CL or PA in LUV containing 25 mol % of these anionic phospholipids was approximately 2 x 10(3) M(-1). No detectable binding occurred when AFABP was mixed with zwitterionic membranes, nor when acetylated AFABP in which surface lysines had been chemically neutralized was mixed with anionic membranes. The binding of AFABP to acidic membranes depended upon the ionic strength of the incubation buffer: >/=200 mM NaCl reduced protein-lipid complex formation in parallel with a decrease in the rate of FA transfer from AFABP to negatively charged membranes. It was further found that AFABP, but not acetylated AFABP, prevented cytochrome c, a well characterized peripheral membrane protein, from binding to membranes. These results directly demonstrate that AFABP binds to anionic phospholipid membranes and suggest that, although generally described as a cytosolic protein, AFABP may behave as a peripheral membrane protein to help target fatty acids to and/or from intracellular sites of utilization.  相似文献   

14.
Electrophoretic light scattering (ELS) and depolarization of fluorescence have been used to determine the effect of membrane fluidity on the binding of Ca2+ to liposomes. ELS was used to measure the electrophoretic mobilities of the liposomes. Fluorescence depolarization was used to determine membrane fluidity. Zero to 30 mol% phosphatidylserine (PS) was incorporated into liposomes containing, as bulk phospholipids, one of the following: dimyristoyl-phosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), egg phosphatidylcholine (PC), or hydrogenated egg phosphatidylcholine (H egg PC). The binding of Ca2+ to the liposomes appears to be influenced by membrane fluidity. Liposomes containing bulk phospholipids whose phase transition temperature is higher than the experimental temperature exhibit enhanced binding of CA2+.  相似文献   

15.
As an alternative to a fluorescent probe approach, the intrinsic fluorescence of reduced forms of prenylquinones has been exploited, which offers a convenient means of determining directly motional properties of these molecules. The steady-state fluorescence anisotropy measurements of plastoquinols (PQH(2)) and alpha-tocopherol (alpha-Toc) incorporated into phospholipid liposomes have been performed. The effect of prenyllipid concentration, PQH(2) side chain length and the composition of the membranes has been studied. For the data interpretation, the fundamental anisotropy of alpha-Toc, PQH(2), ubiquinol-10 and alpha-tocopherolquinol, as well as the angles between the absorption and emission transition moments have been also determined. It was concluded that alpha-Toc shows very low mobility in the lipid bilayer, whereas PQH(2)-9 displays significant motional freedom in dipalmitoylphosphatidylcholine vesicles and even higher in egg yolk lecithin membranes.  相似文献   

16.
Retinol and retinoic acid have been incorporated into the artificial membrane systems, planar bimolecular lipid membranes and liposomes, and their effects on several membrane parameters have been measured. 1. Retinol and retinoic acid increased the permeability of egg lecithin liposomes to K+, I? and glucose when incorporated into the membranes at levels as low as 0.5 membrane mol%. Retinoic acid influenced permeability more than did retinol for each of the solutes tested. 2. Retinol and retinoic acid both decreased the electrical resistance of egg lecithin-planar bimolecular lipid membranes from 0.5 to 8 membrane mol%. Retinoic acid effected a larger change than did retinol. 3. Retinol and retinoic acid increased the permeability of dimyristoylphosphatidylcholine and dipalmitoylphosphatidylcholine liposomes to water at 1.0 and 3.0 membrane mol%. A larger effect on water permeability was measured for retinoic acid than for retinol. 4. Retinol and retinoic acid at 1.0 and 3.0 membrane mol% were shown to lower the phase-transition temperature of liposomes composed of dimyristoylphosphatidylcholine or dipalmitoylphosphatidylcholine. Phase-transition temperatures were monitored by abrupt changes in water permeability and liposome size associated with the transition. Retinoic acid lowered the phase-transition temperature of dimyristoylphosphatidylcholine liposomes more than did retinol, while both retinoids had almost the same effect on dipalmitoylphosphatidylcholine liposomes.  相似文献   

17.
R E Burrier  P Brecher 《Biochemistry》1984,23(22):5366-5371
Sonicated dispersions of egg yolk phosphatidylcholine and triolein as vesicles and microemulsions have been used as substrates for the assay of a purified acid lipase. Previous studies have also shown that triolein localized in the surface phase of emulsions is the preferred substrate. In this study, we examined enzyme activity following several surface modifications using both vesicles and microemulsions. When the acidic phospholipids phosphatidylserine and phosphatidic acid were incorporated into both vesicles and microemulsions at up to 10 mol % of the total phospholipid, a dose-dependent reduction in the apparent Km was observed. Using the vesicles as substrate, a dose-dependent decrease in Vmax was also observed. Agarose gel electrophoresis was used to verify suspected changes in net particle charge. Analogous inclusion of phosphatidylethanolamine, sphingomyelin, or cholesterol did not affect kinetic parameters. Addition of oleic acid to sonication mixtures produced vesicles with a decreased apparent Km and Vmax, but triolein hydrolysis in microemulsions was not significantly altered. Triolein-containing vesicles prepared by using dimyristoyl- or dipalmitoylphosphatidylcholine were hydrolyzed maximally at the gel liquid-crystalline transition temperatures of the appropriate phospholipid. Differential scanning calorimetry was used to verify the temperatures of transition in these vesicles. The results indicate that acid lipase activity is influenced by the charge or physical state of the surface phase of model substrates and suggest that degradation of core components of naturally occurring substrates such as lipoprotein may be influenced by chemical changes on the surface of these particles.  相似文献   

18.
Import and assembly of mitochondrial proteins depend on a complex interplay of proteinaceous translocation machineries. The role of lipids in this process has been studied only marginally and so far no direct role for a specific lipid in mitochondrial protein biogenesis has been shown. Here we analyzed a potential role of phosphatidic acid (PA) in biogenesis of mitochondrial proteins in Saccharomyces cerevisiae. In vivo remodeling of the mitochondrial lipid composition by lithocholic acid treatment or by ablation of the lipid transport protein Ups1, both leading to an increase of mitochondrial PA levels, specifically stimulated the biogenesis of the outer membrane protein Ugo1, a component of the mitochondrial fusion machinery. We reconstituted the import and assembly pathway of Ugo1 in protein-free liposomes, mimicking the outer membrane phospholipid composition, and found a direct dependency of Ugo1 biogenesis on PA. Thus, PA represents the first lipid that is directly involved in the biogenesis pathway of a mitochondrial membrane protein.  相似文献   

19.
Binding of DNA to dimyristoylphosphatidylcholine (DMPC) liposomes containing different sphingosine derivatives was investigated. DNA labelled with adriamycin was used as a fluorescence quencher and its membrane association was observed by resonance energy transfer from liposomes incorporating a pyrene-derivatized lipid bisPDPC as a donor and containing 19 mol% of sphingosine, dihydro-, phyto- or dimethylsphingosine. As revealed by differential scanning calorimetry, the thermal phase behaviour of multilamellar liposomes containing these sphingolipids was also significantly altered by DNA. Attachment of DNA to liposomes containing sphingosylphosphorylcholine was much weaker, and no binding of DNA to membranes containing N-acetylsphingosine, N-stearoylsphingosine or sphingomyelin was observed. The membrane binding of DNA was dependent on pH and could be reversed by the inclusion of phosphatidic acid (eggPA) into the liposomes. Analogously, the association of cytochrome c with eggPA could be reversed by the DNA-binding sphingosines. These findings lend support to our previous proposal that the DNA-sphingosine interaction is electrostatic and requires the presence of a positive charge in the latter. Accordingly, sphingosines carrying a protonated amino group attach DNA to membranes, while blocking of the amino group by N-acylation abolishes this interaction.  相似文献   

20.
When used as nanosized carriers, liposomes enable targeted delivery and decrease systemic toxicity of antitumor agents significantly. However, slow unloading of liposomes inside cells diminishes the treatment efficiency. The problem could be overcome by the adoption of lipophilic prodrugs tailored for incorporation into lipid bilayer of liposomes. We prepared liposomes of egg yolk phosphatidylcholine and yeast phosphatidylinositol bearing a diglyceride conjugate of an antitumor antibiotic doxorubicin (a lipophilic prodrug, DOX-DG) in the membrane to study how these formulations interact with tumor cells. We also prepared liposomes of rigid bilayer-forming lipids, such as a mixture of dipalmitoylphosphatidylcholine and cholesterol, bearing DOX in the inner water volume, both pegylated (with polyethylene glycol (PEG) chains exposed to water phase) and non-pegylated. Efficiency of binding of free and liposomal doxorubicin with tumor cells was evaluated in vitro using spectrofluorimetry of cell extracts and flow cytometry. Intracellular traffic of the formulations was investigated by confocal microscopy; co-localization of DOX fluorescence with organelle trackers was estimated. All liposomal formulations of DOX were shown to distribute to organelles retarding its transport to nucleus. Intracellular distribution of liposomal DOX depended on liposome structure and pegylation. We conclude that the most probable mechanism of the lipophilic prodrug penetration into a cell is liposome-mediated endosomal pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号