首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kai Y  Nakayama K  Nakabo T 《Molecular ecology》2002,11(12):2591-2598
The genetic differences among three colour morphotypes of the black rockish, Sebastes inermis, were determined from mitochondrial DNA (mtDNA) and amplified fragment length polymorphisms (AFLP) analyses. In the AFLP analysis, each morphotype could be distinguished by the presence or absence matrix of five AFLP loci. These diagnostic loci indicated that the three morphotypes represented independent gene pools, indicating reproductive isolation. Furthermore, 14 significant frequency differences in AFLP fragments were observed between morphotypes A and B, 12 between morphotypes A and C and six between morphotypes B and C. These significant differences also supported the likelihood of reproductive isolation among the morphotypes. In the mtDNA analysis, variations in partial sequences of the control region failed to distinguish clearly between the three morphotypes, but restrictions of gene flow and genetic differentiation among the morphotypes were supported by significant FST estimates. The absence of diagnostic mtDNA differences in this study may have been due to introgressive hybridization among the morphotypes and/or incomplete lineage sorting, due to the recency of speciation.  相似文献   

2.
The systematic relationships of the freshwater shrimp family, Kakaducarididae, were examined using mitochondrial and nuclear DNA sequences. Combined nuclear (18S rDNA, 28S rDNA, Histone) and mitochondrial (16S rDNA) analyses placed the kakaducaridid genera, Kakaducaris and Leptopalaemon, as a strongly supported clade within the Palaemonidae, in a close relationship with the genus Macrobrachium. Monophyly of the Australian Kakaducarididae was strongly supported by the molecular data. Estimated net divergence times between Kakaducaris and Leptopalaemon using mitochondrial 16S rDNA equate to a late Miocene/Pliocene split. Within Leptopalaemon, each locality was distinct for mitochondrial COI haplotypes, suggesting long-term isolation or recent genetic bottlenecks, a lack of contemporary gene flow amongst sites and a small Ne. Mitochondrial groupings within Leptopalaemon were largely congruent with several previously recognised morphotypes. Estimated net divergence times between L. gagadjui and the new Leptopalaemon morphotypes equate to a split in the late Pliocene/early Pleistocene. The hypothesis that the Kakaducarididae is comprised of relict species in specialised ecological niches is not supported by the molecular data, which instead suggest a relatively recent origin for the group in northern Australia, sometime in the late Miocene or Pliocene.  相似文献   

3.

Background

Mixed breeding systems with extended clonal phases and weak sexual recruitment are widespread in nature but often thought to impede the formation of discrete evolutionary clusters. Thus, cyclic parthenogens, such as cladocerans and rotifers, could be predisposed to “species problems” and a lack of discrete species. However, species flocks have been proposed for one cladoceran group, Eubosmina, where putative species are sympatric, and there is a detailed paleolimnological record indicating a Holocene age. These factors make the Eubosmina system suitable for testing the hypotheses that extended clonal phases and weak sexual recruitment inhibit speciation. Although common garden experiments have revealed a genetic component to the morphotypic variation, the evolutionary significance of the morphotypes remains controversial.

Methodology/Principal Findings

In the present study, we tested the hypothesis of a single polymorphic species (i.e., mixing occurs but selection maintains genes for morphology) in four northern European lakes where the morphotypes coexist. Our evidence is based on nuclear DNA sequence, mitochondrial DNA sequence, and morphometric analysis of coexisting morphotypes. We found significant genetic differentiation, genealogical exclusivity, and morphometric differentiation for coexisting morphotypes.

Conclusions

We conclude that the studied morphotypes represent a group of young species undergoing speciation with apparent reproductive barriers despite coexistence in the freshwater pelagic zone.  相似文献   

4.
To evaluate whether the absence or modification of paternal mitochondrial DNA or methylation of the oocyte mitochondrial DNA could be the molecular basis for maternal inheritance of mitochondria in mammals, the mitochondrial genome has been analyzed in four meiotic and postmeiotic testicular cell types, and in oocytes from the mouse. All four testicular cell types including spermatozoa contain mitochondrial DNA. Between meiosis and the end of spermatogenesis the number of mitochondrial genomes per haploid genome decreases 8- to 10-fold with spermatozoa containing approximately one copy of the mitochondrial genome per mitochondrion. Restriction enzyme digestions with six different enzymes indicate no gross differences in DNA sequence in the testicular mitochondrial DNA from meiotic cells, early haploid cells, late haploid cells, and spermatozoa. By the criterion of differential digestion with the isoschizomers, MspI and HpaII, the mitochondrial DNA is not differentially methylated during spermatogenesis. No methylation differences were detected in mitochondrial DNA from sperm and oocytes following digestion with seven methylation-sensitive restriction enzymes.  相似文献   

5.
Abstract. Three morphotypes—purple, tan, and white—of an irregular echinoid of the genus Echinocrepis are commonly observed in the deep North Pacific Ocean. Mitochondrial (mt) 16S DNA and cytochrome c oxidase subunit I (COI) DNA sequences were amplified from gonadal tissue samples from specimens of each morphotype. These portions of the mitochondrial genome are commonly used in species barcoding, and their similarities were compared and placed in 95% connection limit parsimony networks. All three morphotypes have similar 16S mtDNA and COI mtDNA sequences, and are thus likely representatives of the same species, Echinocrepis rostrata. Specimens of the white morphotype were smaller than the specimens of the other two morphotypes, had less gonad tissue, and had a different body shape, suggesting that it represents the juvenile form of E. rostrata. Resolving the three morphotypes into one species simplifies the identification of E. rostrata from photographs and leads to a greater understanding of the life history and reproductive cycle of a species vital to deep-sea bioturbation and carbon sequestration.  相似文献   

6.
We studied two Corbicula morphotypes in a syntopic population in the Rhine River in order to reveal their taxonomic, reproductive and phylogenetic relationship, using morphometrics, DAF‐fingerprinting, mitochondrial COI and nuclear ITS1 sequence variation. Morphometric analysis showed that two statistically distinguishable morphotypes with few intermediates were present.Mitochondrial sequence analysis detected two divergent clades. DAF‐fingerprinting revealed three highly distinctive multilocus genotypes. Two of the multilocus genotypes were significantly associated with different morphotypes and mitochondrial lineages. The third genotype B, however, was found in both morphotypes, intermediates and mitochondrial lineages. Conclusive evidence for hybridization came from RFLP analysis of the nuclear ITS1 locus. We interpret the hybrids as F1 hybrids between different evolutionary lineages. Integration of Corbicula sequences from all over the world into Maximum Parsimony analysis suggested a simultaneous radiation resulting in several evolutionary lineages whose species status remained doubtful. An unequivocal taxonomic assignment of the two evolutionary lineages in the Rhine population was therefore not possible.  相似文献   

7.
The anterior half of the mitochondrial DNA control region (mtCR) sequence (ca. 400 base pairs) was compared between two color morphotypes (A, B) of Parapercis sexfasciata from Tosa Bay, southern Japan, using 16 and 21 specimens, respectively. Intramorphotypic mtCR divergences were only 0.0–0.5% and 1.0–2.5% for morphotypes A and B, respectively. In contrast, intermorphotypic mtCR divergence was much greater, 12.7–14.0%. Furthermore, phylogenetic analysis using a neighbor-joining algorithm, with P. multifasciata as an outgroup, showed that each morphotype was reciprocally monophyletic. These results and the distinct coloration and overlapping distribution indicate that the two color morphotypes of P. sexfasciata represent two distinct species. Mismatch distribution analysis suggested that both morphotypes had undergone population expansion; however, estimates of initial population sizes and mutational timescales suggested that morphotype B comprises historically larger and older populations than morphotype A.  相似文献   

8.
Since 1920 Simulium reptans (Linnaeus) (Diptera: Simuliidae) has been reported as exhibiting two different larval morphotypes, a typical S. reptans and an atypical S. reptans var. galeratum, which differ in the markings of the larval head capsule. Inconsistent variation in adults and no apparent variation in the pupae have led taxonomists to conclude that these types in Britain are a single species. We investigated populations in Britain where either the typical form or var. galeratum is found, and one population where the two exist sympatrically. A phylogenetic study based upon a region of the mitochondrial cytochrome c oxidase 1 gene (DNA barcoding) produced a tree that delineated the morphotypes into two distinct monophyletic clades. The average Kimura-2-parameter distances within each clade (i.e. within each morphotype) were very low (0.67% and 0.78%), with the distances between morphotypes being 9-10-fold greater (mean 7.06%). This is concordant with differences within and between species in other taxa; based upon the strict correlation between the molecular variation and the morphotypes, we propose the re-instatement of S. galeratum to species status.  相似文献   

9.
Phylogenetic relationships between species and morphotypes of Podarcis wall lizards from the Iberian Peninsula and north Africa were estimated using partial 12S rRNA and cytochrome b mitochondrial DNA sequences. All species except Podarcis hispanica form monophyletic units. P. hispanica is paraphyletic, although all identified morphotypes are monophyletic. These morphotypes represent highly divergent lineages showing 10-15% pairwise sequence divergence with the cytochrome b gene. The data suggest that P. hispanica is a species complex. We recommend using P. hispanica* until additional sampling delimits the number and ranges of species currently referred to P. hispanica. P. carbonelli, which has recently been raised to species status, is confirmed as a genetically distinct form. P. atrata is genetically distinct, but much more closely related to some populations of P. hispanica than previously thought.  相似文献   

10.
Understanding the origin of biodiversity requires knowledge on the evolutionary processes that drive divergence and speciation, as well as on the processes constraining it. Intraspecific polymorphisms can provide insight into the mechanisms that generate and maintain phenotypic, behavioural and life history diversification, and can help us understand not only the processes that lead to speciation but also the processes that prevent local fixation of morphs. The ‘desert cichlid’ Herichtys minckleyi is a highly polymorphic species endemic to a biodiversity hotspot in northern Mexico, the Cuatro Ciénegas valley. This species is polymorphic in body shape and trophic apparatus, and eco‐morphotypes coexist in small spring‐fed lagoons across the valley. We investigated the genetic structure of these polymorphisms and their phylogeographic history by analysing the entire control region of the mitochondrial DNA and 10 nuclear microsatellite markers in several populations from different sites and morphs. We found two very divergent mitochondrial lineages that most likely predate the closing of the valley and are not associated with morphotypes or sites. One of these lineages is also found in the sister species Herichthys cyanoguttatus. Data from neutral microsatellite markers suggest that most lagoons or drainages constitute their own genetic cluster with sympatric eco‐morphotypes forming panmictic populations. Alternative mechanisms such as phenotypic plasticity and a few loci controlled traits provide possible explanations for the sympatric coexistence of discrete nonoverlapping eco‐morphotypes with apparent lack of barriers to gene flow within multiple lagoons and drainages.  相似文献   

11.
Using a computational model, we simulated mitochondrial deoxynucleotide metabolism and mitochondrial DNA replication. Our results indicate that the output from the mitochondrial salvage enzymes alone is inadequate to support a mitochondrial DNA replication duration of as long as 10 hours. We find that an external source of deoxyribonucleoside diphosphates or triphosphates (dNTPs), in addition to those supplied by mitochondrial salvage, is essential for the replication of mitochondrial DNA to complete in the experimentally observed duration of approximately 1 to 2 hours. For meeting a relatively fast replication target of 2 hours, almost two-thirds of the dNTP requirements had to be externally supplied as either deoxyribonucleoside di- or triphosphates, at about equal rates for all four dNTPs. Added monophosphates did not suffice. However, for a replication target of 10 hours, mitochondrial salvage was able to provide for most, but not all, of the total substrate requirements. Still, additional dGTPs and dATPs had to be supplied. Our analysis of the enzyme kinetics also revealed that the majority of enzymes of this pathway prefer substrates that are not precursors (canonical deoxyribonucleosides and deoxyribonucleotides) for mitochondrial DNA replication, such as phosphorylated ribonucleotides, instead of the corresponding deoxyribonucleotides. The kinetic constants for reactions between mitochondrial salvage enzymes and deoxyribonucleotide substrates are physiologically unreasonable for achieving efficient catalysis with the expected in situ concentrations of deoxyribonucleotides.  相似文献   

12.
The positive role of PARP1 in regulation of various nuclear DNA transactions is well established. Although a mitochondrial localization of PARP1 has been suggested, its role in the maintenance of the mitochondrial DNA is currently unknown. Here we investigated the role of PARP1 in the repair of the mitochondrial DNA in the baseline and oxidative stress conditions. We used wild-type A549 cells or cells depleted of PARP1. Our data show that intra-mitochondrial PARP1 interacts with a key mitochondrial-specific DNA base excision repair (BER) enzymes, namely EXOG and DNA polymerase gamma (Polγ), which under oxidative stress become poly(ADP-ribose)lated (PARylated). Interaction between mitochondrial BER enzymes was significantly affected in the presence of PARP1. Moreover, the repair of the oxidative-induced damage to the mitochondrial DNA in PARP1-depleted cells was found to be more robust compared to control counterpart. In addition, mitochondrial biogenesis was enhanced in PARP1-depleted cells, including mitochondrial DNA copy number and mitochondrial membrane potential. This observation was further confirmed by analysis of lung tissue isolated from WT and PARP1 KO mice. In summary, we conclude that mitochondrial PARP1, in opposite to nuclear PARP1, exerts a negative effect on several mitochondrial-specific transactions including the repair of the mitochondrial DNA.  相似文献   

13.
The objective of this study was to characterize the genetic structure of two Balkan brown trout morphotypes, Salmo macedonicus and Salmo pelagonicus, and to test whether molecular traits support the species' status proposed by traditional morphological identification. The mitochondrial DNA 12S‐rDNA, cyt b and control region genes were sequenced in 15 specimens collected from three localities in the Former Yugoslav Republic of Macedonia. The results of these markers did not support the taxonomic category of species but confirmed the existence of two morphotypes, Salmo trutta macedonicus and Salmo trutta pelagonicus, in the Aegean–Adriatic lineages of the Salmo trutta species complex.  相似文献   

14.
Abstract The mitochondrial DNA was isolated from Aspergillus niger WU-2223L, a citric acid-production strain, and characterized by restriction-endonuclease mapping. Cloned fragments which covered the total range of the mitochondrial DNA were assembled and utilized to construct the restriction-endonuclease map for nine restriction enzymes. This map showed that the mitochondrial DNA was a circular molecule of 32.6 kb.  相似文献   

15.
Mitochondrial deoxynucleoside triphosphates are formed and regulated by a network of anabolic and catabolic enzymes present both in mitochondria and the cytosol. Genetic deficiencies for enzymes of the network cause mitochondrial DNA depletion and disease. We investigate by isotope flow experiments the interrelation between mitochondrial and cytosolic deoxynucleotide pools as well as the contributions of the individual enzymes of the network to their maintenance. To study specifically the synthesis of dGTP used for the synthesis of mitochondrial and nuclear DNA, we labeled hamster CHO cells or human fibroblasts with [(3)H]deoxyguanosine during growth and quiescence and after inhibition with aphidicolin or hydroxyurea. At time intervals we determined the labeling of deoxyguanosine nucleotides and DNA and the turnover of dGTP from its specific radioactivity in the separated mitochondrial and cytosolic pools. In both cycling and quiescent cells, the import of deoxynucleotides formed by cytosolic ribonucleotide reductase accounted for most of the synthesis of mitochondrial dGTP, with minor contributions by cytosolic deoxycytidine kinase and mitochondrial deoxyguanosine kinase. A dynamic isotopic equilibrium arose rapidly from the shuttling of deoxynucleotides between mitochondria and cytosol, incorporation of dGTP into DNA, and degradation of dGMP. Inhibition of DNA synthesis by aphidicolin marginally affected the equilibrium. Inhibition of DNA synthesis by blockage of ribonucleotide reduction with hydroxyurea instead disturbed the equilibrium and led to accumulation of labeled dGTP in the cytosol. The turnover of dGTP decreased, suggesting a close connection between ribonucleotide reduction and pool degradation.  相似文献   

16.
17.
The extent of intra- and inter-specific variation in mitochondrial DNA and nuclear ribosomal RNA gene restriction sites was determined for the four sibling species of the Anopheles quadrimaculatus complex. Individual mosquitoes were identified by allozyme analysis according to previously published keys, and the total genomic DNA of these same individuals was then cleaved with restriction enzymes. Restriction maps of mitochondrial DNA, including the positions of variable sites, were constructed for each species. No evidence for interspecific hybridization was found in the populations surveyed. There was little variation in restriction patterns within any given species, but differences occurred among the four. Three restriction enzymes (AvaI, HindIII, and PvuII) yielded species-specific DNA restriction patterns for the mitochondrial DNA, while AvaI and HindIII produced diagnostic patterns for the ribosomal DNA. Thus, restriction patterns were very useful for detecting cryptic species but less appropriate than isozymes for studying genetic structure of populations within species.  相似文献   

18.
Mitochondrial DNA (mtDNA) was purified from the Arctic charr, Salvelinus alpinus , the brook charr, Salvelinus fontinalis , and the lake charr, Salvelinus namaycush , and digested with restriction enzymes Ava II, Hinf I, Eco R V, Pst I and Xba I. Two Arctic charr samples were from natural populations and they represented two different morphotypes of Arctic charr. All other studied populations were hatchery maintained. Eight additional restriction enzymes and double digestions were employed to study morphotypes of Arctic charr. We distinguished two morphotypes with restriction enzyme Nci I. Sequence divergence among mtDNA types was 2.9–3.8% between S. alpinus and S. fontinalis , 3.4–4.6% between S. alpinus and S. namaycush , and 4.7–5.3% between S. fontinalis and S. namaycush . lntraspecific variation was lowest in Arctic charr, the average of nucleon diversity for three populations being 0.179, while for brook charr and for lake charr nucleon diversity was 0.334 and 0.550, respectively. According to the number of mtDNA types, it is obvious that introduction to Finland and hatchery propagation have not greatly affected the mtDNA variation of brook charr or lake charr.  相似文献   

19.
Different species of bat can be morphologically very similar. In order to estimate the amount of cryptic diversity among European bats we screened the intra- and interspecific genetic variation in 26 European vespertilionid bat species. We sequenced the DNA of subunit 1 of the mitochondrial protein NADH dehydrogenase (ND1) from several individuals of a species, which were sampled in a variety of geographical regions. A phylogeny based on the mitochondrial (mt) DNA data is in good agreement with the current classification in the family. Highly divergent mitochondrial lineages were found in two taxa, which differed in at least 11% of their ND1 sequence. The two mtDNA lineages in Plecotus austriacus correlated with the two subspecies Plecotus austriacus austriacus and Plecotus austriacus kolombatovici. The two mtDNA lineages in Myotis mystacinus were partitioned among two morphotypes. The evidence for two new bat species within Europe is discussed. Convergent adaptive evolution might have contributed to the morphological similarity among distantly related species if they occupy similar ecological niches. Closely related species may differ in their ecology but not necessarily in their morphology. On the other hand, two morphologically clearly different species (Eptesicus serotinus and Eptesicus nilssonii) were found to be genetically very similar. Neither morphological nor mitochondrial DNA sequence analysis alone can be guaranteed to identify species.  相似文献   

20.
Sonic disrupted mitoplasts from 3-methylcholanthrene (MCA) treated rats can catalyze the formation of benzo(a)pyrene (BaP) adducts with calf thymus DNA in the presence of an NADPH generating system. The mitoplasts used in this study contained less than 1% microsomal marker enzymes: rotenone insensitive NADPH cytochrome c reductase and glucose-6-phosphatase. The rates of BaP metabolism and DNA adduct formation per nanomole cytochrome P-450 were different for MCA induced mitochondrial and microsomal enzymes. The major B(a)P DNA adducts formed in incubations with lysed mitoplasts were derived from reaction of 9-OH-B(a)P-4,5 oxide with deoxyguanosine. The results suggest a potential role of mitochondrial monooxygenase activity in the covalent binding of B(a)P to mitochondrial DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号