首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
About 7000 rare, or orphan, diseases affect more than 350 million people worldwide. Although these conditions collectively pose significant health care problems, drug companies seldom develop drugs for orphan diseases due to extremely limited individual markets. Consequently, developing new treatments for often life-threatening orphan diseases is primarily contingent on financial incentives from governments, special research grants, and private philanthropy. Computer-aided drug repositioning is a cheaper and faster alternative to traditional drug discovery offering a promising venue for orphan drug research. Here, we present eRepo-ORP, a comprehensive resource constructed by a large-scale repositioning of existing drugs to orphan diseases with a collection of structural bioinformatics tools, including eThread, eFindSite, and eMatchSite. Specifically, a systematic exploration of 320,856 possible links between known drugs in DrugBank and orphan proteins obtained from Orphanet reveals as many as 18,145 candidates for repurposing. In order to illustrate how potential therapeutics for rare diseases can be identified with eRepo-ORP, we discuss the repositioning of a kinase inhibitor for Ras-associated autoimmune leukoproliferative disease. The eRepo-ORP data set is available through the Open Science Framework at https://osf.io/qdjup/.  相似文献   

2.

Background

Most neurodegenerative diseases are associated with mitochondrial dysfunction. In humans, mutations in mitochondrial genes result in a range of phenotypic outcomes which do not correlate well with the underlying genetic cause. Other neurodegenerative diseases are caused by mutations that affect the function and trafficking of lysosomes, endosomes and autophagosomes. Many of the complexities of these human diseases can be avoided by studying them in the simple eukaryotic model Dictyostelium discoideum.

Scope of review

This review describes research using Dictyostelium to study cytopathological pathways underlying a variety of neurodegenerative diseases including mitochondrial, lysosomal and vesicle trafficking disorders.

Major conclusions

Generalised mitochondrial respiratory deficiencies in Dictyostelium produce a consistent pattern of defective phenotypes that are caused by chronic activation of a cellular energy sensor AMPK (AMP-activated protein kinase) and not ATP deficiency per se. Surprisingly, when individual subunits of Complex I are knocked out, both AMPK-dependent and AMPK-independent, subunit-specific phenotypes are observed. Many nonmitochondrial proteins associated with neurological disorders have homologues in Dictyostelium and are associated with the function and trafficking of lysosomes and endosomes. Conversely, some genes associated with neurodegenerative disorders do not have homologues in Dictyostelium and this provides a unique avenue for studying these mutated proteins in the absence of endogeneous protein.

General significance

Using the Dictyostelium model we have gained insights into the sublethal cytopathological pathways whose dysregulation contributes to phenotypic outcomes in neurodegenerative disease. This work is beginning to distinguish correlation, cause and effect in the complex network of cross talk between the various organelles involved. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research  相似文献   

3.
Malaria still remains one of the deadliest infectious diseases, and has a tremendous morbidity and mortality impact in the developing world. The propensity of the parasites to develop drug resistance, and the relative reluctance of the pharmaceutical industry to invest massively in the developments of drugs that would offer only limited marketing prospects, are major issues in antimalarial drug discovery. Protein kinases (PKs) have become a major family of targets for drug discovery research in a number of disease contexts, which has generated considerable resources such as kinase-directed libraries and high throughput kinase inhibition assays. The phylogenetic distance between malaria parasites and their human host translates into important divergences in their respective kinomes, and most Plasmodium kinases display atypical properties (as compared to mammalian PKs) that can be exploited towards selective inhibition. Here, we discuss the taxon-specific kinases possessed by malaria parasites, and give an overview of target PKs that have been validated by reverse genetics, either in the human malaria parasite Plasmodium falciparum or in the rodent model Plasmodium berghei. We also briefly allude to the possibility of attacking Plasmodium through the inhibition of human PKs that are required for survival of this obligatory intracellular parasite, and which are targets for other human diseases.  相似文献   

4.
The design of efficient combination therapies is a difficult key challenge in the treatment of complex diseases such as cancers. The large heterogeneity of cancers and the large number of available drugs renders exhaustive in vivo or even in vitro investigation of possible treatments impractical. In recent years, sophisticated mechanistic, ordinary differential equation-based pathways models that can predict treatment responses at a molecular level have been developed. However, surprisingly little effort has been put into leveraging these models to find novel therapies. In this paper we use for the first time, to our knowledge, a large-scale state-of-the-art pan-cancer signaling pathway model to identify candidates for novel combination therapies to treat individual cancer cell lines from various tissues (e.g., minimizing proliferation while keeping dosage low to avoid adverse side effects) and populations of heterogeneous cancer cell lines (e.g., minimizing the maximum or average proliferation across the cell lines while keeping dosage low). We also show how our method can be used to optimize the drug combinations used in sequential treatment plans—that is, optimized sequences of potentially different drug combinations—providing additional benefits. In order to solve the treatment optimization problems, we combine the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm with a significantly more scalable sampling scheme for truncated Gaussian distributions, based on a Hamiltonian Monte-Carlo method. These optimization techniques are independent of the signaling pathway model, and can thus be adapted to find treatment candidates for other complex diseases than cancers as well, as long as a suitable predictive model is available.  相似文献   

5.
The metacestode (larval) stage of the tapeworm Echinococcus multilocularis causes alveolar echinococcosis (AE), a very severe and in many cases incurable disease. To date, benzimidazoles such as albendazole and mebendazole are the only approved chemotherapeutical treatment options. Benzimidazoles inhibit metacestode proliferation, but do not act parasiticidal. Thus, benzimidazoles have to be taken a lifelong, can cause adverse side effects such as hepatotoxicity, and are ineffective in some patients. We here describe a newly developed screening cascade for the evaluation of the in vitro efficacy of new compounds that includes assessment of parasiticidal activity. The Malaria Box from Medicines for Malaria Venture (MMV), comprised of 400 commercially available chemicals that show in vitro activity against Plasmodium falciparum, was repurposed. Primary screening was carried out at 10 μM by employing the previously described PGI assay, and resulted in the identification of 24 compounds that caused physical damage in metacestodes. Seven out of these 24 drugs were also active at 1 μM. Dose-response assays revealed that only 2 compounds, namely MMV665807 and MMV665794, exhibited an EC50 value below 5 μM. Assessments using human foreskin fibroblasts and Reuber rat hepatoma cells showed that the salicylanilide MMV665807 was less toxic for these two mammalian cell lines than for metacestodes. The parasiticidal activity of MMV665807 was then confirmed using isolated germinal layer cell cultures as well as metacestode vesicles by employing viability assays, and its effect on metacestodes was morphologically evaluated by electron microscopy. However, both oral and intraperitoneal application of MMV665807 to mice experimentally infected with E. multilocularis metacestodes did not result in any reduction of the parasite load.  相似文献   

6.
7.
Vaccination of fish for the prevention of specific bacterial diseases afffecting commercially reared fish species has had a significant impact on this industry. Almost all of the vaccines available at this time are bacterins or formalin-inactivated whole cell suspensions, some with adjuvants. The first vaccines to be successfully commercialized were those against Vibrio anguillarum, Vibrio ordalii, and Yersinia ruckeri in the late 1970s. Developed initially for the salmonid industry, these bacterins are now routinely used worldwide on many species of fish. Though in some areas salmon farming has flourished without the use of these vaccines, in most areas they have been essential to the economic viability of aquaculture operations. Vaccines against Vibrio salmonicida, a pathogen of salmonids, Aeromonas salmonicida, a pathogen of salmonids and carp, and Edwardsiella ictaluri, a pathogen of channel catfish have also been commercialized and are in widespread use. A number of other bacterins have been the subject of research and some of them may eventually be available. Though a bacterin against Vibrio parahaemolyticus, a pathogen affecting species of fish reared in warmwater has been successfully tested, as have bacterins against Aeromonas hydrophila and Edwardsiella tarda, the serologic heterogeneity of these groups of organisms make it unlikely that widely utilizable vaccines will be available in the near future. Those pathogens that appear to be serologically more homogeneous, including Flexibacter columnaris, Pasteurella piscicida and Streptococcus species affecting fish, will likely end up in commercially available bacterins in the not too distant future. The use of a new generation of adjuvants in conjunction with automated injection methods could result in vaccines that will protect against diseases that conventional methods may not be successful against, such as bacterial kidney disease (BKD) caused by Renibacterium salmoninarum.  相似文献   

8.
Hantaviruses, such as Hantaan virus (HTNV) and Seoul virus, are the causative agents of Hantavirus cardiopulmonary syndrome (HCPS) and hemorrhagic fever with renal syndrome (HFRS), and are important zoonotic pathogens. China has the highest incidence of HFRS, which is mainly caused by HTNV and Seoul virus. No approved antiviral drugs are available for these hantaviral diseases. Here, a chemiluminescence-based high-throughput-screening (HTS) assay was developed and used to screen HTNV pseudovirus (HTNVpv) inhibitors in a library of 1813 approved drugs and 556 small-molecule compounds from traditional Chinese medicine sources. We identified six compounds with in vitro anti-HTNVpv activities in the low-micromolar range (EC50 values of 0.1–2.2 μmol/L; selectivity index of 40–900). Among the six selected compounds, cepharanthine not only showed good anti-HTNVpv activity in vitro but also inhibited HTNVpv-fluc infection in Balb/c mice 5 h after infection by 94% (180 mg/kg/d, P < 0.01), 93% (90 mg/kg/d, P < 0.01), or 92% (45 mg/kg/d, P < 0.01), respectively, in a bioluminescent imaging mouse model. A time-of-addition analysis suggested that the antiviral mechanism of cepharanthine involves the membrane fusion and entry phases. Overall, we have established a HTS method for antiviral drugs screening, and shown that cepharanthine is a candidate for HCPS and HFRS therapy. These findings may offer a starting point for the treatment of patients infected with hantaviruses.  相似文献   

9.
Two major human diseases caused by filariid nematodes are onchocerciasis, or river blindness, and lymphatic filariasis, which can lead to elephantiasis. The drugs ivermectin, diethylcarbamazine (DEC), and albendazole are used in control programs for these diseases, but are mainly effective against the microfilarial stage and have minimal or no effect on adult worms. Adult Onchocerca volvulus and Brugia malayi worms (macrofilariae) can live for up to 15 years, reproducing and allowing the infection to persist in a population. Therefore, to support control or elimination of these two diseases, effective macrofilaricidal drugs are necessary, in addition to current drugs. In an effort to identify macrofilaricidal drugs, we screened an FDA-approved library with adult worms of Brugia spp. and Onchocerca ochengi, third-stage larvae (L3s) of Onchocerca volvulus, and the microfilariae of both O. ochengi and Loa loa. We found that auranofin, a gold-containing drug used for rheumatoid arthritis, was effective in vitro in killing both Brugia spp. and O. ochengi adult worms and in inhibiting the molting of L3s of O. volvulus with IC50 values in the low micromolar to nanomolar range. Auranofin had an approximately 43-fold higher IC50 against the microfilariae of L. loa compared with the IC50 for adult female O. ochengi, which may be beneficial if used in areas where Onchocerca and Brugia are co-endemic with L. loa, to prevent severe adverse reactions to the drug-induced death of L. loa microfilariae. Further testing indicated that auranofin is also effective in reducing Brugia adult worm burden in infected gerbils and that auranofin may be targeting the thioredoxin reductase in this nematode.  相似文献   

10.
The matrix metalloproteinases (MMPs) are a unique family of metalloenzymes, which, once activated, can destroy all the components of cartilage. MMPs are found in resorbing cartilage, bone, rheumatoid and osteoarthritic synovial fluid, and adjacent soft tissues. The active enzymes are all inhibited by tissue inhibitors of metalloproteinases (TIMPs). The relative amounts of active MMPs and TIMPs are important in determining whether cartilage is broken down in joint diseases. Conventional treatments for arthritis do little to affect the underlying joint destruction, but new drugs are now available that can specifically block active MMPs. These potent inhibitors prevent the destruction of cartilage both in vitro and in animal models of arthritis. Future trials in patients will test their effectiveness in the prevention of cartilage destruction.  相似文献   

11.
Non-human primates belonging to the Aotus genus have been shown to be excellent experimental models for evaluating drugs and vaccine candidates against malaria and other human diseases. The immune system of this animal model must be characterised to assess whether the results obtained here can be extrapolated to humans. Class I and II major histocompatibility complex (MHC) proteins are amongst the most important molecules involved in response to pathogens; in spite of this, the techniques available for genotyping these molecules are usually expensive and/or time-consuming. Previous studies have reported MHC-DRB class II gene typing by microsatellite in Old World primates and humans, showing that such technique provides a fast, reliable and effective alternative to the commonly used ones. Based on this information, a microsatellite present in MHC-DRB intron 2 and its evolutionary patterns were identified in two Aotus species (A. vociferans and A. nancymaae), as well as its potential for genotyping class II MHC-DRB in these primates.  相似文献   

12.
Trypanosomatid parasites are responsible for various human diseases, such as sleeping sickness, animal trypanosomiasis, or cutaneous and visceral leishmaniases. The few available drugs to fight related parasitic infections are often toxic and present poor efficiency and specificity, and thus, finding new molecular targets is imperative. Aminoacyl-tRNA synthetases (aaRSs) are essential components of the translational machinery as they catalyze the specific attachment of an amino acid onto cognate tRNA(s). In trypanosomatids, one gene encodes both cytosolic- and mitochondrial-targeted aaRSs, with only three exceptions. We identify here a unique specific feature of aaRSs from trypanosomatids, which is that most of them harbor distinct insertion and/or extension sequences. Among the 26 identified aaRSs in the trypanosome Leishmania tarentolae, 14 contain an additional domain or a terminal extension, confirmed in mature mRNAs by direct cDNA nanopore sequencing. Moreover, these RNA-Seq data led us to address the question of aaRS dual localization and to determine splice-site locations and the 5′-UTR lengths for each mature aaRS-encoding mRNA. Altogether, our results provided evidence for at least one specific mechanism responsible for mitochondrial addressing of some L. tarentolae aaRSs. We propose that these newly identified features of trypanosomatid aaRSs could be developed as relevant drug targets to combat the diseases caused by these parasites.  相似文献   

13.
Missense mutant proteins, such as those produced in individuals with genetic diseases, are often misfolded and subject to processing by intracellular quality control systems. Previously, we have shown using a yeast system that enzymatic function could be restored to I278T cystathionine β-synthase (CBS), a cause of homocystinuria, by treatments that affect the intracellular chaperone environment. Here, we extend these studies and show that it is possible to restore significant levels of enzyme activity to 17 of 18 (94%) disease causing missense mutations in human cystathionine β-synthase (CBS) expressed in Saccharomyces cerevisiae by exposure to ethanol, proteasome inhibitors, or deletion of the Hsp26 small heat shock protein. All three of these treatments induce Hsp70, which is necessary but not sufficient for rescue. In addition to CBS, these same treatments can rescue disease-causing mutations in human p53 and the methylene tetrahydrofolate reductase gene. These findings do not appear restricted to S. cerevisiae, as proteasome inhibitors can restore significant CBS enzymatic activity to CBS alleles expressed in fibroblasts derived from homocystinuric patients and in a mouse model for homocystinuria that expresses human I278T CBS. These findings suggest that proteasome inhibitors and other Hsp70 inducing agents may be useful in the treatment of a variety of genetic diseases caused by missense mutations.  相似文献   

14.
Climate and weather influence the occurrence, distribution, and incidence of infectious diseases, particularly those caused by vector-borne or zoonotic pathogens. Thus, models based on meteorological data have helped predict when and where human cases are most likely to occur. Such knowledge aids in targeting limited prevention and control resources and may ultimately reduce the burden of diseases. Paradoxically, localities where such models could yield the greatest benefits, such as tropical regions where morbidity and mortality caused by vector-borne diseases is greatest, often lack high-quality in situ local meteorological data. Satellite- and model-based gridded climate datasets can be used to approximate local meteorological conditions in data-sparse regions, however their accuracy varies. Here we investigate how the selection of a particular dataset can influence the outcomes of disease forecasting models. Our model system focuses on plague (Yersinia pestis infection) in the West Nile region of Uganda. The majority of recent human cases have been reported from East Africa and Madagascar, where meteorological observations are sparse and topography yields complex weather patterns. Using an ensemble of meteorological datasets and model-averaging techniques we find that the number of suspected cases in the West Nile region was negatively associated with dry season rainfall (December-February) and positively with rainfall prior to the plague season. We demonstrate that ensembles of available meteorological datasets can be used to quantify climatic uncertainty and minimize its impacts on infectious disease models. These methods are particularly valuable in regions with sparse observational networks and high morbidity and mortality from vector-borne diseases.  相似文献   

15.
Bacterial diseases of crabs: a review   总被引:1,自引:0,他引:1  
Bacterial diseases of crabs are manifested as bacteremias caused by organisms such as Vibrio, Aeromonas, and a Rhodobacteriales-like organism or tissue and organ tropic organisms such as chitinoclastic bacteria, Rickettsia intracellular organisms, Chlamydia-like organism, and Spiroplasma. This paper provides general information about bacterial diseases of both marine and freshwater crabs. Some bacteria pathogens such as Vibrio cholerae and Vibrio vulnificus occur commonly in blue crab haemolymph and should be paid much attention to because they may represent potential health hazards to human beings because they can cause serious diseases when the crab is consumed as raw sea food. With the development of aquaculture, new diseases associated with novel pathogens such as spiroplasmas and Rhodobacteriales-like organisms have appeared in commercially exploited crab species in recent years. Many potential approaches to control bacterial diseases of crab will be helpful and practicable in aquaculture.  相似文献   

16.
Morbidity and mortality caused by schistosomiasis are serious public health problems in developing countries. Because praziquantel is the only drug in therapeutic use, the risk of drug resistance is a concern. In the search for new schistosomicidal drugs, we performed a target-based chemogenomics screen of a dataset of 2,114 proteins to identify drugs that are approved for clinical use in humans that may be active against multiple life stages of Schistosoma mansoni. Each of these proteins was treated as a potential drug target, and its amino acid sequence was used to interrogate three databases: Therapeutic Target Database (TTD), DrugBank and STITCH. Predicted drug-target interactions were refined using a combination of approaches, including pairwise alignment, conservation state of functional regions and chemical space analysis. To validate our strategy, several drugs previously shown to be active against Schistosoma species were correctly predicted, such as clonazepam, auranofin, nifedipine, and artesunate. We were also able to identify 115 drugs that have not yet been experimentally tested against schistosomes and that require further assessment. Some examples are aprindine, gentamicin, clotrimazole, tetrabenazine, griseofulvin, and cinnarizine. In conclusion, we have developed a systematic and focused computer-aided approach to propose approved drugs that may warrant testing and/or serve as lead compounds for the design of new drugs against schistosomes.  相似文献   

17.
18.
We report on a diffusive analysis of the motion of flagellate protozoa species. These parasites are the etiological agents of neglected tropical diseases: leishmaniasis caused by Leishmania amazonensis and Leishmania braziliensis, African sleeping sickness caused by Trypanosoma brucei, and Chagas disease caused by Trypanosoma cruzi. By tracking the positions of these parasites and evaluating the variance related to the radial positions, we find that their motions are characterized by a short-time transient superdiffusive behavior. Also, the probability distributions of the radial positions are self-similar and can be approximated by a stretched Gaussian distribution. We further investigate the probability distributions of the radial velocities of individual trajectories. Among several candidates, we find that the generalized gamma distribution shows a good agreement with these distributions. The velocity time series have long-range correlations, displaying a strong persistent behavior (Hurst exponents close to one). The prevalence of “universal” patterns across all analyzed species indicates that similar mechanisms may be ruling the motion of these parasites, despite their differences in morphological traits. In addition, further analysis of these patterns could become a useful tool for investigating the activity of new candidate drugs against these and others neglected tropical diseases.  相似文献   

19.

Background

Diarrhoeal diseases are major contributors to the global burden of disease, particularly in children. However, comprehensive estimates of the incidence and mortality due to specific aetiologies of diarrhoeal diseases are not available. The objective of this study is to provide estimates of the global and regional incidence and mortality of diarrhoeal diseases caused by nine pathogens that are commonly transmitted through foods.

Methods and Findings

We abstracted data from systematic reviews and, depending on the overall mortality rates of the country, applied either a national incidence estimate approach or a modified Child Health Epidemiology Reference Group (CHERG) approach to estimate the aetiology-specific incidence and mortality of diarrhoeal diseases, by age and region. The nine diarrhoeal diseases assessed caused an estimated 1.8 billion (95% uncertainty interval [UI] 1.1–3.3 billion) cases and 599,000 (95% UI 472,000–802,000) deaths worldwide in 2010. The largest number of cases were caused by norovirus (677 million; 95% UI 468–1,153 million), enterotoxigenic Escherichia coli (ETEC) (233 million; 95% UI 154–380 million), Shigella spp. (188 million; 95% UI 94–379 million) and Giardia lamblia (179 million; 95% UI 125–263); the largest number of deaths were caused by norovirus (213,515; 95% UI 171,783–266,561), enteropathogenic E. coli (121,455; 95% UI 103,657–143,348), ETEC (73,041; 95% UI 55,474–96,984) and Shigella (64,993; 95% UI 48,966–92,357). There were marked regional differences in incidence and mortality for these nine diseases. Nearly 40% of cases and 43% of deaths caused by these nine diarrhoeal diseases occurred in children under five years of age.

Conclusions

Diarrhoeal diseases caused by these nine pathogens are responsible for a large disease burden, particularly in children. These aetiology-specific burden estimates can inform efforts to reduce diarrhoeal diseases caused by these nine pathogens commonly transmitted through foods.  相似文献   

20.
Protozoan-borne diseases are prominent amongst diseases caused by parasites. Given their alarming morbidity and mortality statistics, there is ever growing interest in new therapies against these diseases. Whilst synthetic drugs such as benznidazole and melarsoprol have had a profound influence on the clinical setup, there has been significant interest in the phytochemical platform to also deliver such drug candidates. The plant family Amaryllidaceae is recognizable for its isoquinoline alkaloids, which exhibit attractive molecular architectures and interesting biological properties. This survey focuses on the antiprotozoal activities of 73 of such substances described in 18 different species of the Amaryllidaceae. Of these, 2-O-acetyllycorine was identified as the most potent (IC50 0.15 μg/mL against Trypansoma brucei brucei). Also considered are structure-activity relationships which have served to modulate activities, as well as the plausible mechanisms that underpin these effects and afford insight to the Amaryllidaceae alkaloid antiprotozoal pharmacophore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号