首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pharmacological characterization of the Nb2 cell peripheral-type benzodiazepine receptor (PBR) was determined using selected 1,4-benzodiazepines, PK 11195, and protoporphyrin IX (PPIX) to compete for specific [3H] Ro5-4864 binding. These data suggest that PPIX possesses an affinity for the Nb2 cell PBR (Ki = 142 nM). We have previously reported that the peripheral benzodiazepine ligands, Ro5-4864 and PK 11195, modulate prolactin-stimulated mitogenesis in the Nb2 cell(1). In contrast, PPIX, a putative endogenous ligand for the PBR had no effect on prolactin-stimulated mitogenesis in the Nb2 cell over the concentration range from 10(-15) M to 10(-6) M. Taken together these data show that PPIX has an affinity for the Nb2 cell PBR but does not modulate prolactin-stimulated mitogenesis at concentrations which should bind to the Nb2 cell PBR.  相似文献   

2.
The peripheral benzodiazepine receptor (PBR) is pharmacologically distinct from the central benzodiazepine receptor (CBR) and has been identified in a wide range of peripheral tissues as well as in the central nervous system. Although numerous studies have been performed of it, the physiological roles and functions of the PBR are still unclear. In the present study, in exploring new types of ligands for PBR, we found that a new series of compounds having a tetracyclic ring system, which were designed from FGIN-1-27, exhibited high affinities for PBR. We prepared and evaluated them for PBR affinities. The results of binding tests showed that 12e and 12f were the most potent PBR ligands among them (12e: IC(50)=0.44nM, 12f: IC(50)=0.37nM). In this paper, we present the design, synthesis, and structure-activity relationships (SARs) of novel tetracyclic compounds.  相似文献   

3.
Structure-activity studies on the oxytocin antagonist 1 (L-371,257; Ki = 9.3 nM) have led to the identification of a related series of compounds containing an ortho-trifluoroethoxyphenylacetyl core which are orally bioavailable and have significantly improved potency in vitro and in vivo, e.g., compound 8 (L-374,943; Ki = 1.4 nM).  相似文献   

4.
Benzamides (3a-f) derived from 4-amino-5-chloro-2-methoxybenzoic acid and either cis or trans 1,2-diaminocyclopropane were synthesised and were evaluated in binding assays employing, bovine striatal D2 receptors, recombinant human hD2 and hD3 receptors expressed in CHO cells and rat, cortical 5-HT3 and striatal 5-HT4 receptors. The cis and trans isomers of the derivatives were isolated and characterised. The results demonstrated the superiority of the cis conformers over the trans conformers in dopamine receptor binding assays (Ki hD2 = 13.4 and 6.9 nM and Ki hD3 = 17.7 and 4.5 nM for the cis-3b and cis-3f compounds, respectively; Ki hD2 = 816 and >l000 nM and Ki hD3 = 469 and >1000 nM for the corresponding trans-3b and trans-3f compounds respectively). The cis compounds are folded: the benzamide group and the basic nitrogen atom were in a syn relationship. Compound 3f can be superimposed with a conformation of the tropane derivative, BRL 25594, having the benzyl group in an axial position to give a suitable fit, indicating that both compounds may have a common binding site in the dopamine receptor.  相似文献   

5.
In order to develop radioligands of human NK-3 receptor (hNK-3r) for imaging studies by positron emission tomography (PET) or single photon emission computed tomography (SPECT), a new series of fluoro- and iodo-quinoline carboxamides were synthesized and evaluated in a target receptor binding assay. Compared to the unsubstituted parent compound SB 223 412 (Ki=27 nM +/- 9), affinity was not altered for the analogues 1c and 2c bearing a fluorine in position 8 (Ki approximately 24-27 nM), and was only slightly reduced for compounds 1b, 2b, 1e and 2e fluorinated or iodinated at the position 7 (Ki approximately 49-67 nM). A drastic reduction in binding (Ki > 115 nM) was observed for all other halogenated compounds 1a, 2a, 1d, 2d, 1f and 2f.  相似文献   

6.
New benzimidazole-4-carboxamides 1-16 and -carboxylates 17-26 were synthesized and evaluated for binding affinity at serotonergic 5-HT4 and 5-HT3 receptors in the CNS. Most of the synthesized compounds exhibited moderate-to-very high affinity (in many cases subnanomolar) for the 5-HT4 binding site and no significant affinity for the 5-HT3 receptor. SAR observations and structural analyses (molecular modeling, INSIGHT II) indicated that the presence of a voluminous substituent in the basic nitrogen atom of the amino moiety and a distance of ca. 8.0 A from this nitrogen to the aromatic ring are of great importance for high affinity and selectivity for 5-HT4 receptors. These results confirm our recently proposed model for recognition by the 5-HT4 binding site. Amides 12-15 and esters 24 and 25 bound at central 5-HT4 sites with very high affinity (Ki = 0.11-2.9 nM) and excellent selectivity over serotonin 5-HT3, 5-HT2A, and 5-HT1A receptors (Ki > 1000-10,000 nM). Analogues 12 (Ki(5-HT4) = 0.32 nM), 13 (Ki(5-HT4) = 0.11 nM), 14 (Ki(5-HT4) = 0.29 nM) and 15 (Ki(5-HT4) = 0.54 nM) were pharmacologically characterized as selective 5-HT4 antagonists in the isolated guinea pig ileum (pA2 = 7.6, 7.9, 8.2 and 7.9, respectively), with a potency comparable to the 5-HT4 receptor antagonist RS 39604 (pA2 = 8.2). The benzimidazole-4-carboxylic acid derivatives described in this paper represent a novel class of potent and selective 5-HT4 receptor antagonists. In particular, compounds 12-15 could be interesting pharmacological tools for the understanding of the role of 5-HT4 receptors.  相似文献   

7.
Amino-substituted pyrido[2,3-d]pyrimidinediones have previously been found to bind to adenosine A1 and A2A receptors in micromolar concentrations. The present study was aimed at studying the structure-activity relationships of this class of compounds in more detail. Most of the investigated compounds were provided with polar substituents, such as ethoxycarbonyl groups and basic amino functions, in order to improve their water-solubility. The compounds were synthesized starting from 6-amino-1,3-dimethyluracil via different reaction sequences involving (cyano)acetylation, Vilsmeier formylation, or reaction with diethyl ethoxymethylenemalonate (EMME). The most potent and selective compound of the present series was 6-carbethoxy-1,2,3,4-tetrahydro-1,3-dimethyl-5-(2-naphthylmethyl)aminopyrido[2,3-d]pyrimidine-2,4-dione (11c) with a Ki value of 5 nM at rat and 25 nM at human A1 receptors. The compound was more than 60-fold selective versus A3 and more than 300-fold selective versus A2A receptors. It showed an over 300-fold improvement with respect to the lead compound. In GTPgammaS binding studies at membranes of Chinese hamster ovary cells recombinantly expressing the human adenosine A1 receptor, 11c behaved as an antagonist with inverse agonistic activity. A regioisomer of 11c, 6-carbethoxy-1,2,3,4-tetrahydro-1,3-dimethyl-7-(2- naphthylmethyl)aminopyrido[2,3-d]pyrimidine-2,4-dione (7a) in which the 2-naphthylmethylamino substituent at position 5 of 11c was moved to the 7-position, was a relatively potent (Ki=226 nM) and selective (>20-fold) A3 ligand. In the series of compounds lacking an electron-withdrawing ethoxycarbonyl or cyano substituent in the 6-position, compounds with high affinity for adenosine A2A receptors were identified, such as 1,2,3,4-tetrahydro-1,3-dimethyl-5-(1-naphthyl)aminopyrido[2,3-d]pyrimidine-2,4-dione 16b (Ki human A2A=81.3 nM, Ki human A1=153 nM, and Ki human A3>10,000 nM).  相似文献   

8.
[3H]Flunitrazepam binds to intact and homogenized mouse astrocytes and neurons in primary cultures. In intact cells, the binding is to a single, high-affinity, saturable population of benzodiazepine binding sites with a KD of 7 nM and Bmax of 6,033 fmol/mg protein in astrocytic cells and a KD of 5 nM and Bmax of 924 fmol/mg protein in neurons. After homogenization, the Bmax values decrease drastically in both cell types, but most in astrocytes. The temperature and time dependency are different for the two cell types, with a faster association and dissociation in astrocytes than in neurons and a greater temperature sensitivity in the astrocytes. Moreover, flunitrazepam binding sites on neuronal and astrocytic cells have different pharmacological profiles. In intact astrocytic cells, Ro 5-4864 (Ki = 4 nM) is the most potent displacing compound, followed by diazepam (Ki = 6 nM) and clonazepam (Ki = 600 nM). In intact neurons, the relative order of potency of these three compounds is different: diazepam (Ki = 7 nM) is the most potent, followed by clonazepam (Ki = 26 nM) and Ro 5-4864, which has little effect. After homogenization the potency of diazepam decreases. We conclude that both neuronal and astrocytic cells possess high-affinity [3H]flunitrazepam binding sites. The pharmacological profile and kinetic characteristics differ between the two cell types and are further altered by homogenization.  相似文献   

9.
A novel series of kappa (kappa) opioid receptor agonists were synthesized by incorporating the key structural features of known kappa opioid agonists while replacing the aryl acetamide portion with substituted amino acid conjugates. Compounds 3j (Ki = 6.7 nM), 3k (Ki = 3.6 nM), 3l (Ki = 4.6 nM), 3m (Ki = 0.83 nM) and 3o (Ki = 2 nM) possessed potent affinities for the kappa opioid receptor in vitro with reasonable selectivity over other opioid receptors.  相似文献   

10.
Since the peripheral benzodiazepine receptor (PBR) has been primarily found as a high-affinity binding site for diazepam in rat kidney, numerous studies of it have been performed. However, the physiological role and functions of PBR have not been fully elucidated. Currently, we presented the pharmacological profile of two high and selective PBR ligands, N-(2,5-dimethoxybenzyl)-N-(4-fluoro-2-phenoxyphenyl)acetamide (7-096, DAA1106) (PBR: IC(50)=0.28 nM) and N-(4-chloro-2-phenoxyphenyl)-N-(2-isopropoxybenzyl)acetamide (7-099, DAA1097) (PBR: IC(50)=0.92 nM). The compounds are aryloxyanilide derivatives, and identified with known PBR ligands such as benzodiazepine (1, Ro5-4864), isoquinoline (2, PK11195), imidazopyridine (3, Alpidem), and indole (5, FGIN-1-27) derivatives. The aryloxyanilide derivatives, which have been derived by opening the diazepine ring of 1, are a novel class as PBR ligands and have exhibited high and selective affinity for peripheral benzodiazepine receptors (PBRs). These novel derivatives would be useful for exploring the functions of PBR. In this paper, the design, synthesis and structure-affinity relationships of aryloxyanilide derivatives are described.  相似文献   

11.
Structure-activity studies around the 4-position of 2-anilinopyrimidine corticotropin releasing factor (CRF) antagonists suggest that there is a large lipophilic cavity in the rat CRF receptor, which can accommodate a wide variety of substituents at this position in contrast to the steric constraints observed for other positions on the 2-anilinopyrimidine core. The chemical syntheses and biological activities of 2-anilinopyrimidine CRF antagonists with carbon-linked substituents at the 4-position are reported. Significant improvements in rat pharmacokinetic parameters were achieved relative to those for the lead structure. While the lead compound 1 (rCRF Ki = 44 nM) afforded no detectable rat plasma levels after intraperitoneal (i.p.) or oral (p.o.) dosing, compounds 3-3 (rCRF Ki = 16 nM) and 3-4 (rCRF Ki 59 nM) gave high rat plasma levels at 30 mg/kg (i.p., p.o.) (Cmax = 1389 nM and 8581 nM (i.p.) respectively; Cmax = 113 nM and 988 nM (p.o.), respectively). Furthermore 3-3 and 3-4 had superior bioavailabilities at these doses (59 and 46% (i.p.), respectively; 2 and 10%, (p.o.), respectively).  相似文献   

12.
A number of compounds that appear to be analogues of the aci form of the normal carbanion intermediate are good inhibitors of yeast enolase. These include (3-hydroxy-2-nitropropyl)phosphonate (I), the ionized (pK = 8.1) nitronate form of which in the presence of 5 mM Mg2+ has a Ki of 6 nM, (nitroethyl)phosphonate (III) (pK = 8.5; Ki of the nitronate in the presence of 5 mM Mg2+ = 1 microM), phosphonoacetohydroxamate (IV) (pK = 10.2; Ki with saturating Mg2+ for the ionized form = 15 pM), and (phosphonoethyl)nitrolate (VII) (Ki at 1 mM Mg2+ = 14 nM). The oxime of phosphonopyruvate (VI) has a pH-independent Ki of 75 microM. I, IV, VI, and VII are slow binding inhibitors. All of these compounds are trigonal at the position analogous to C-2 of 2-phosphonoglycerate and contain a phosphono group, but a negatively charged metal ligand at the position isosteric with the hydroxyl attached to C-3 of 2-phosphoglycerate (as in IV) appears to contribute more to binding than a nitro group isosteric with the carboxyl of 2-phosphoglycerate (I and III). These data support the carbanion mechanism for enolase and suggest that the 3-hydroxyl of 2-phosphoglycerate is directly coordinated to Mg2+ prior to being eliminated to give phosphoenolpyruvate.  相似文献   

13.
We investigated the binding characteristics of a (+)-enantiomer of radioiodinated 2-[4-(4-iodophenyl)piperidino]cyclohexanol [(+)-[125I]pIV], radioiodinated at the para-position of the 4-phenylpiperidine moiety, to sigma receptors (sigma-1, sigma-2) and to vesicular acetylcholine transporters (VAChT) in membranes of the rat brain and liver. In competitive inhibition studies, (+)-pIV (Ki=1.30 nM) had more than 10 times higher affinity to the sigma-1 (sigma-1) receptor than (+)-pentazocine (Ki=19.9 nM) or haloperidol (Ki=13.5 nM) known as sigma ligands. Also, the binding affinity of (+)-pIV for the sigma-1 receptor (Ki=1.30 nM), was about 16 times higher than the sigma-2 (sigma-2) receptor (Ki=20.4 nM). (+)-pIV (Ki=1260 nM) had a much lower affinity for VAChT than (-)-vesamicol (Ki=13.0 nM) or (-)-pIV (Ki=412 nM). (+)-[125I]pIV had low affinity for the dopamine, serotonin, adrenaline, and acetylcholine receptors. Furthermore, in a saturation binding study, (+)-[125I]pIV exhibited a K) of 6.96 nM with a Bmax of 799 fmol/mg of protein. These results showed that (+)-pIV binds to the sigma-1 receptor with greater affinity than sigma receptor ligands such as (+)-pentazocine or haloperidol, and that radioiodinated (+)-pIV is suitable as radiotracer for sigma-1 receptor studies in vitro.  相似文献   

14.
The properties of 5-ene-3β-hydroxysteroid oxidoreductase (3β-HSD) from human placental homogenates were studied invitro. The apparent Michaelis constants for 3β-HSD with the substrates pregnenolone (Δ5P) and dehydroepiandrosterone (DHA) were 170 nM and 40 nM respectively. The optimal pH for both these substrates was between 10 and 12. With NAD as the substrate, the Km for pregnenolone was 20 μM and for DHA, 17 μM. The activity of 3β-HSD was inhibited by various steroids. Competitive inhibitors (pregnenolone substrate) included: ethynylestradiol (inhibition constant Ki=7.3 nM), DHA (Ki=46 nM), estradiol-17β (Ki=46 nM), cholesterol (Ki=0.68 μM) and 16α-hydroxydehydroepiandrosterone (16αOHDHA) (Ki=2.2 μM). When the substrate was DHA, competitive inhibition occurred with the following steroids: ethynylestradiol (Ki=6.4 nM), estradiol-17β (Ki=69 nM), pregnenolone (Ki=91 μM), cholesterol (Ki=1.3 μM) and 16αOHDHA (Ki=1.9 μM). 4-Ene-3-ketosteroids such as androstenedione, progesterone (Δ4P), norethindrone and chlormadinone acetate acted as noncompetitive inhibitors towards both substrates.  相似文献   

15.
We synthesized methylvesamicol analogs 13-16 and investigated the binding characteristics of 2-[4-phenylpiperidino]cyclohexanol (vesamicol) and methylvesamicol analogs 13-16, with a methyl group introduced into the 4-phenylpiperidine moiety, to sigma receptors (sigma-1, sigma-2) and to vesicular acetylcholine transporters (VAChT) in membranes of the rat brain and liver. In competitive inhibition studies, (-)-o-methylvesamicol [(-)-OMV] (13) (Ki=6.7 nM), as well as (-)-vesamicol (Ki=4.4 nM), had a high affinity for VAChT. (+)-p-Methylvesamicol [(+)-PMV] (16) (Ki=3.0 nM), as well as SA4503 (Ki=4.4 nM), reported as a sigma-1 mapping agent for positron emission tomography (PET), had a high affinity for the sigma-1 receptor. The binding affinity of (+)-PMV (16) for the sigma-1 receptor (Ki=3.0 nM) was about 13 times higher than that for the sigma-2 (sigma-2) receptor (Ki=40.7 nM). (+)-PMV (16) (Ki=199 nM) had a much lower affinity for VAChT than SA4503 (Ki=50.2 nM) and haloperidol (Ki=41.4 nM). These results showed that the binding characteristics of (-)-OMV (13) to VAChT were similar to those of (-)-vesamicol and that (+)-PMV (16) bound to the sigma-1 receptor with high affinity. In conclusion, (-)-OMV (13) and (+)-PMV (16), which had a suitable structure, with a methyl group for labeling with 11C, may become not only a new VAChT ligand and a new type of sigma receptor ligand, respectively, but may also become a new target compound of VAChT and the sigma-1 receptor radioligand for PET, respectively.  相似文献   

16.
The activity of three angiotensin I converting enzyme (ACE) inhibitors with unique related structures was assessed in vitro and in vivo. The three compounds were (S)(-)-1,2,3,4-tetrahydro-2-(3-mercapto-1-oxopropyl)-3-isoquinoline carboxylic acid (EU-4865), 1,2,3,4-tetrahydro-2-(3-mercapto-1-oxopropyl)-1- isoquinolinecarboxylic acid (EU-4881), and (S)(-)-1,2,3,4-tetrahydro-1-(3-mercapto-1-oxopropyl)-2- quinolinecarboxylic acid (EU-5031). In vitro EU-4881 was a competitive inhibitor that lacked potency (IC50 = 1980 nM) against purified ACE. The other two compounds were equipotent (IC50 = 41 nM) against purified ACE but differed in their inhibition kinetics. EU-4865 (Ki = 38 nM) was a noncompetitive inhibitor, and EU-5031 (Ki = 6.9 nM) was a competitive inhibitor. Against caveolae membrane-bound ACE EU-4881 also lacked potency (IC50 = 2852 nM). In vivo in the conscious acute aortic coarctate (AAC) rat it also lacked potency, having an ED30 (oral dose decreasing blood pressure 30 mmHg) greater than 100 mg/kg. The activity of EU-4865 and EU-5031 in the caveolae membrane-bound ACE and AAC rat reflected their different Ki values rather than their similar IC50 values. In vitro, EU-4865 and EU-5031 had IC50 values of 19 and 6.7 nM, respectively, and in vivo, they had ED30 values of 52 and 1.1 mg/kg, respectively. These results suggest that ACE has a binding requirement for a carboxy-terminus, hydrophobic amino acid that is important for in vivo activity.  相似文献   

17.
The in vitro and in vivo regulation of [3H]Ro 5-4864 binding to peripheral benzodiazepine receptors (PBR) by ion transport/exchange inhibitors was studied in the kidney. The potencies of 9-anthroic acid, furosemide, bumetanide, hydrochlorothiazide and SITS as inhibitors of [3H]Ro 5-4864 binding to renal membranes were consistent with their actions as anion transport inhibitors (Ki approximately equal to 30 - 130 microM). In contrast, spironolactone, amiloride, acetazolamide, and ouabain were less potent (Ki = 100-1000 microM). Administration of furosemide to rats for five days resulted in a profound diuresis (approximately equal to 350% increase in urine volume) accompanied by a significant increase in PBR density (43%) that was apparent by the fifth day of treatment. Administration of hydrochlorothiazide or Ro 5-4864 for five days also caused diuresis and increased renal PBR density. Both the diuresis and increased density of PBR produced by Ro 5-4864 were blocked by coadministration of PK 11195, which alone had no effect on either PBR density or urine volume. The equilibrium binding constants of [3H]Ro 5-4864 to cardiac membranes were unaffected by administration of any of these drugs. These findings suggest that renal PBR may be selectively modulated in vivo and in vitro by administration of ion transport/exchange inhibitors.  相似文献   

18.
K-252 compounds (K-252a and b isolated from Nocardiopsis sp. (1) and their synthetic derivatives) were found to inhibit cyclic nucleotide-dependent protein kinases and protein kinase C to various extents. The inhibitions were of the competitive type with respect to ATP. K-252a was a non-selective inhibitor for these three protein kinases with Ki values 18-25 nM. K-252b showed a comparable potency for protein kinase C (Ki, 20nM), whereas inhibitory potencies for cyclic nucleotide-dependent protein kinases were reduced. KT5720 and KT5822 selectively inhibited cAMP-dependent (Ki, 60nM) and cGMP-dependent (Ki, 2.4nM) protein kinases, respectively.  相似文献   

19.
Phosphonamidates as transition-state analogue inhibitors of thermolysin   总被引:3,自引:0,他引:3  
P A Bartlett  C K Marlowe 《Biochemistry》1983,22(20):4618-4624
Six phosphorus-containing peptide analogues of the form Cbz-NHCH2PO2--L-Leu-Y (Y = D-Ala, NH2, Gly, L-Phe, L-Ala, L-Leu) have been prepared and evaluated as inhibitors of thermolysin. The Ki values for these compounds range from 1.7 microM to 9.1 nM and correlate well with the Km/kcat values for the corresponding peptide substrates [Morihara, K., & Tsuzuki, H. (1970) Eur. J. Biochem. 15, 374-380] but not with the Km values alone. The correlation noted between inhibitor Ki and substrate Km/kcat is the most extensive one of this type, providing strong evidence that the phosphonamidates are transition-state analogues and not simply multisubstrate ground-state analogues. Cbz-NH2CH2PO2--L-Leu-L-Leu (Ki = 9.1 nM) is the most potent inhibitor yet reported for thermolysin.  相似文献   

20.
Glutaminol adenylate 5 is a competitive inhibitor of glutaminyl-tRNA synthetase with respect to glutamine (Ki = 280 nM) and to ATP (Ki = 860 nM). The corresponding methyl phosphate ester 4 is a weaker inhibitor (Ki approximately 10 microM) with respect to glutamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号