首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cysteine proteinases play a major role in invasion and intracellular survival of a number of pathogenic parasites. We cloned a single copy gene, tgcp1, from Toxoplasma gondii and refolded recombinant enzyme to yield active proteinase. Substrate specificity of the enzyme and homology modeling identified the proteinase as a cathepsin B. Specific cysteine proteinase inhibitors interrupted invasion by tachyzoites. The T. gondii cathepsin B localized to rhoptries, secretory organelles required for parasite invasion into cells. Processing of the pro-rhoptry protein 2 to mature rhoptry proteins was delayed by incubation of extracellular parasites with a cathepsin B inhibitor prior to pulse-chase immunoprecipitation. Delivery of cathepsin B to mature rhoptries was impaired in organisms with disruptions in rhoptry formation by expression of a dominant negative micro1-adaptin. Similar disruption of rhoptry formation was observed when infected fibroblasts were treated with a specific inhibitor of cathepsin B, generating small and poorly developed rhoptries. This first evidence for localization of a cysteine proteinase to the unusual rhoptry secretory organelle of an apicomplexan parasite suggests that the rhoptries may be a prototype of a lysosome-related organelle and provides a critical link between cysteine proteinases and parasite invasion for this class of organism.  相似文献   

2.
The pro region of Toxoplasma ROP1 is a rhoptry-targeting signal   总被引:6,自引:0,他引:6  
The rhoptries of Toxoplasma gondii are regulated secretory organelles involved in the invasion of host cells. Rhoptry proteins are synthesised as pre-pro-proteins that are processed first to pro-proteins upon entrance into the secretory pathway, then processed again to their mature forms late in the secretory pathway. The pro-mature processing site of the rhoptry protein ROP1 has been determined, paving the way for understanding the role of the pro region in rhoptry protein function. We demonstrate here that the ROP1 pro region is sufficient for targeting a reporter protein (amino acids 34-471 of the Trypanosoma brucei VSG117 protein) to the rhoptries. These results, together with our previous work showing that rhoptry targeting is unaffected by deletion of the pro region, indicate that the ROP1 protein contains at least two signals that can function in rhoptry targeting.  相似文献   

3.
Toxoplasma gondii utilizes specialized secretory organelles called rhoptries to invade and hijack its host cell. Many rhoptry proteins are proteolytically processed at a highly conserved SΦXE site to remove organellar targeting sequences that may also affect protein activity. We have studied the trafficking and biogenesis of a secreted rhoptry metalloprotease with homology to insulysin that we named toxolysin-1 (TLN1). Through genetic ablation and molecular dissection of TLN1, we have identified the smallest rhoptry targeting domain yet reported and expanded the consensus sequence of the rhoptry pro-domain cleavage site. In addition to removal of its pro-domain, TLN1 undergoes a C-terminal cleavage event that occurs at a processing site not previously seen in Toxoplasma rhoptry proteins. While pro-domain cleavage occurs in the nascent rhoptries, processing of the C-terminal region precedes commitment to rhoptry targeting, suggesting that it is mediated by a different maturase, and we have identified residues critical for proteolysis. We have additionally shown that both pieces of TLN1 associate in a detergent-resistant complex, formation of which is necessary for trafficking of the C-terminal portion to the rhoptries. Together, these studies reveal novel processing and trafficking events that are present in the protein constituents of this unusual secretory organelle.  相似文献   

4.
The rhoptries of Plasmodium species participate in merozoite invasion and modification of the host erythrocyte. However, only a few rhoptry proteins have been identified using conventional gene identification protocols. To investigate the protein organization of this organelle and to identify new rhoptry proteins, merozoite rhoptries from three different Plasmodium rodent species were enriched by sucrose density gradient fractionation, and subjected to proteome analysis using multidimensional protein identification technology (MudPIT); 148 proteins were identified. To distinguish abundant cellular contaminants from bona fide organellar proteins, a differential analysis comparing the proteins in the rhoptry-enriched fractions to proteins identified from whole cell lysates of P. berghei mixed asexual blood stages was undertaken. In addition, the proteins detected were analyzed for the presence of transmembrane domains, secretory signal peptide, cell adhesion motifs, and/or rhoptry-specific tyrosine-sorting motifs. Combining the differential analysis and bioinformatic approaches, a set of 36 proteins was defined as being potentially located to the Plasmodium rhoptries. Among these potential rhoptry proteins were homologues of known rhoptry proteins, proteases, and enzymes involved in lipid metabolism. Molecular characterization and understanding of the supramolecular organization of these novel potential rhoptry proteins may assist in the identification of new intervention targets for the asexual blood stages of malaria.  相似文献   

5.
TgSUB2 is a Toxoplasma gondii rhoptry organelle processing proteinase   总被引:2,自引:0,他引:2  
All parasites in the phylum Apicomplexa, including Toxoplasma gondii and Plasmodium falciparum, contain rhoptries, specialized secretory organelles whose contents are thought to be essential for successful invasion of host cells. Serine proteinase inhibitors have been reported to block host cell invasion by both T. gondii and P. falciparum. We describe the cloning and characterization of TgSUB2, a subtilisin-like serine proteinase, from T. gondii. Like its closest homologue P. falciparum PfSUB-2, TgSUB2 is predicted to be a type I transmembrane protein. Disruption of TgSUB2 was unsuccessful implying that TgSUB2 is an essential gene. TgSUB2 undergoes autocatalytic processing as it traffics through the secretory pathway. TgSUB2 localizes to rhoptries and associates with rhoptry protein ROP1, a potential substrate. A sequence within TgSUB2 with homology to the ROP1 cleavage site (after Glu) was identified and mutated by site-directed mutagenesis. This mutation abolished TgSUB2 autoprocessing suggesting that TgSUB2 is a rhoptry protein maturase with similar specificity to the ROP1 maturase. Processing of secretory organelle contents appears to be ubiquitous among the Apicomplexa. As subtilases are present in genomes of all the Apicomplexa sequenced to date, subtilases may represent a novel chemotherapeutic target.  相似文献   

6.
Apicomplexan parasites possess an apical complex that is composed of two secretory organelles recognized as micronemes and rhoptries. Rhoptry contents are secreted into the parasitophorous vacuole during the host cell invasion process. Several rhoptry proteins have been identified in Toxoplasma gondii and seem to be involved in host-pathogen interactions and some of them are considered to be important virulence factors. Only one rhoptry protein, NcROP2, has been identified and extensively characterized in the closely related parasite Neospora caninum, and this has showed immunoprotective properties. Thus, with the aim of increasing knowledge of the rhoptry protein repertoire in N. caninum, a subcellular fractionation of tachyzoites was performed to obtain fractions enriched for this secretory organelle. 2-D SDS-PAGE followed by MS and LC/MS-MS were applied for fraction analysis and 8 potential novel rhoptry components (NcROP1, 5, 8, 30 and NcRON2, 3, 4, 8) and several kinases, proteases and phosphatases proteins were identified with a high homology to those previously found in T. gondii. Their existence in N. caninum tachyzoites suggests their involvement in similar events or pathways that occur in T. gondii. These novel proteins may be considered as targets that could be useful in the future development of immunoprophylactic measures.  相似文献   

7.
Rhoptries: an arsenal of secreted virulence factors   总被引:4,自引:0,他引:4  
Apicomplexan parasites use actin-based motility coupled with regulated protein secretion from apical organelles to actively invade host cells. Crucial in this process are rhoptries, club-shaped secretory organelles that discharge their contents during parasite invasion into host cells. A proteomic analysis of the rhoptries in Toxoplasma gondii demonstrated that this organelle contains a number of novel rhoptry proteins (ROPs) including serine-threonine kinases and protein phosphatases. A subset of rhoptry proteins called RONs have been shown to target the moving junction, which plays a key role in invasion and parasitophorous vacuole formation. Other ROP proteins have various destinations in the host cell including the host cell nucleus and the parasitophorous vacuole, probably reflecting their distinct targets and roles. Forward genetic analysis recently revealed that secretory ROP kinases dramatically influence host gene expression and are the major parasite virulence factors. Thus, ROP proteins are functionally analogous (though not homologous) to effectors released by type III and IV secretion systems, which are factors that play an important role in bacterial virulence. Deciphering the role of ROP effectors may allow specific disruption of these factors, thus offering new options for preventing disease.  相似文献   

8.
Apicomplexan parasites have an assortment of unique apical secretory organelles (rhoptries and micronemes), which have crucial functions in host infection. Here, we show that a Toxoplasma gondii sortilin-like receptor (TgSORTLR) is required for the subcellular localization and formation of apical secretory organelles. TgSORTLR is a transmembrane protein that resides within Golgi-endosomal related compartments. The lumenal domain specifically interacts with rhoptry and microneme proteins, while the cytoplasmic tail of TgSORTLR recruits cytosolic sorting machinery involved in anterograde and retrograde protein transport. Ectopic expression of the N-terminal TgSORTLR lumenal domain results in dominant negative effects with the mislocalization of both endogenous TgSORTLR as well as rhoptry and microneme proteins. Conditional ablation of TgSORTLR disrupts rhoptry and microneme biogenesis, inhibits parasite motility, and blocks both invasion into and egress from host cells. Thus, the sortilin-like receptor is essential for protein trafficking and the biogenesis of key secretory organelles in Toxoplasma.  相似文献   

9.
The protozoan parasite Toxoplasma gondii is equipped with a sophisticated secretory apparatus, including three distinct exocytic organelles, named micronemes, rhoptries, and dense granules. We have dissected the requirements for targeting the microneme protein MIC3, a key component of T. gondii infection. We have shown that MIC3 is processed in a post-Golgi compartment and that the MIC3 propeptide and epidermal growth factor (EGF) modules contain microneme-targeting information. The minimal requirement for microneme delivery is defined by the propeptide plus any one of the three EGF domains. We have demonstrated that the cleavage of the propeptide, the dimerization of MIC3, and the chitin binding-like sequence, which are crucial for host cell binding and virulence, are dispensable for proper targeting. Finally, we have shown that part of MIC3 is withheld in the secretory pathway in a cell cycle-dependent manner.  相似文献   

10.
Rhoptries are specialized secretory organelles characteristic of single cell organisms belonging to the clade Apicomplexa. These organelles play a key role in the invasion process of host cells by accumulating and subsequently secreting an unknown number of proteins mediating host cell entry. Despite their essential role, little is known about their biogenesis, components and targeting determinants. Here, we report on a conserved apicomplexan protein termed Armadillo Repeats-Only (ARO) protein that we localized to the cytosolic face of Plasmodium falciparum and Toxoplasma gondii rhoptries. We show that the first 20 N-terminal amino acids are sufficient for rhoptry membrane targeting. This protein relies on both - myristoylation and palmitoylation motifs - for membrane attachment. Although these lipid modifications are essential, they are not sufficient to direct ARO to the rhoptry membranes. Mutational analysis revealed additional residues within the first 20 amino acids of ARO that play an important role for rhoptry membrane attachment: the positively charged residues R9 and K14. Interestingly, the exchange of R9 with a negative charge entirely abolishes membrane attachment, whereas the exchange of K14 (and to a lesser extent K16) alters only its membrane specificity. Additionally, 17 proteins predicted to be myristoylated and palmitoylated in the first 20 N-terminal amino acids were identified in the genome of the malaria parasite. While most of the corresponding GFP fusion proteins were trafficked to the parasite plasma membrane, two were sorted to the apical organelles. Interestingly, these proteins have a similar motif identified for ARO.  相似文献   

11.
Invasive forms of apicomplexan parasites contain secretory organelles called rhoptries that are essential for entry into host cells. We present a detailed characterization of an unusual rhoptry protein of the human malaria parasite Plasmodium falciparum, the rhoptry-associated membrane antigen (RAMA) that appears to have roles in both rhoptry biogenesis and host cell invasion. RAMA is synthesized as a 170-kDa protein in early trophozoites, several hours before rhoptry formation and is transiently localized within the endoplasmic reticulum and Golgi within lipid-rich microdomains. Regions of the Golgi membrane containing RAMA bud to form vesicles that later mature into rhoptries in a process that is inhibitable by brefeldin A. Other rhoptry proteins such as RhopH3 and RAP1 are found in close apposition with RAMA suggesting direct protein-protein interactions. We suggest that RAMA is involved in trafficking of these proteins into rhoptries. In rhoptries, RAMA is proteolytically processed to give a 60-kDa form that is anchored in the inner face of the rhoptry membrane by means of the glycosylphosphatidylinositol anchor. The p60 RAMA form is discharged from the rhoptries of free merozoites and binds to the red blood cell membrane by its most C-terminal region. In early ring stages RAMA is found in association with the parasitophorous vacuole.  相似文献   

12.
《The Journal of cell biology》1990,111(6):2327-2340
Cytolytic lymphocytes contain specialized lytic granules whose secretion during cell-mediated cytolysis results in target cell death. Using serial section EM of RNK-16, a natural killer cell line, we show that there are structurally distinct types of granules. Each type is composed of varying proportions of a dense core domain and a multivesicular cortical domain. The dense core domains contain secretory proteins thought to play a role in cytolysis, including cytolysin and chondroitin sulfate proteoglycan. In contrast, the multivesicular domains contain lysosomal proteins, including acid phosphatase, alpha-glucosidase, cathepsin D, and LGP-120. In addition to their protein content, the lytic granules have other properties in common with lysosomes. The multivesicular regions of the granules have an acidic pH, comparable to that of endosomes and lysosomes. The granules take up exogenous cationized ferritin with lysosome-like kinetics, and this uptake is blocked by weak bases and low temperature. The multivesicular domains of the granules are rich in the 270-kD mannose-6-phosphate receptor, a marker which is absent from mature lysosomes but present in earlier endocytic compartments. Thus, the natural killer granules represent an unusual dual-function organelle, where a regulated secretory compartment, the dense core, is contained within a pre-lysosomal compartment, the multivesicular domain.  相似文献   

13.
Micronemes, rhoptries and dense granules are secretory organelles of Toxoplasma gondii crucial for host cell invasion and formation of the parasitophorous vacuole (PV). We examined whether their relative volumes change during the intracellular cycle. Stereological analysis of random ultrathin sections taken at 5min of interaction, 7 and 24h post-infection demonstrated that the relative volume of each type of organelle decreases just after the respective peak of secretion. Micronemes are radially arranged below the polar ring, while rhoptries converge to but only a few reach the inside of the conoid. In contrast to the apical and polarized organelles, dense granules were found scattered throughout the cytoplasm, with no preferential location in the parasite cell body. Extensive observation of random sections indicated that each organelle probably secretes in a different region. Micronemes secrete just below the posterior ring and probably require that the conoid is extruded. The rhoptries passing through the conoid secrete at a porosome-like point at the most apical region. Dense granules secrete laterally, probably at fenestrations in the inner membrane complex. Immunocytochemistry showed that there are no subpopulations of rhoptries or dense granules, as a single organelle can contain more than one kind of its specific proteins. The vacuolar-like profiles observed at the apical portion of parasites just after invasion were confirmed to be empty rhoptries, as they were positively labeled for rhoptry proteins. These findings contribute for a better understanding of the essential behavior of secretory organelles.  相似文献   

14.
Tracking down the elusive early endosome   总被引:7,自引:0,他引:7  
Despite significant progress in understanding protein trafficking and compartmentation in plants, the identification and protein compartmentalization for organelles that belong to both the secretory and endocytic pathways have been difficult because protein trafficking has generally been studied separately in these two pathways. However, recent data indicate that the trans-Golgi network serves as an early endosome merging the secretory and endocytic pathways in plant cells. Here, we discuss the proteins identified as markers for post-Golgi compartments in these two pathways and propose that the trans-Golgi network is a pivotal organelle with multiple sorting domains for post-Golgi protein trafficking in plant cells.  相似文献   

15.
Invasion and egress are two key steps in the lytic cycle of Apicomplexa that are governed by the sequential discharge of proteins from two apical secretory organelles called micronemes and rhoptries. In Toxoplasma gondii, the biogenesis of these specialized organelles depends on the post Golgi trafficking machinery, forming an endosomal‐like compartment (ELC) resembling endomembrane systems found in eukaryotes. In this study, we have characterized four phylogenetically related Transporter Facilitator Proteins (TFPs) conserved among the apicomplexans. TFP1 localises to the micronemes and ELC, TFP2 and TFP3 to the rhoptries and TFP4 to the Golgi. TFP1 crucially contributes to parasite fitness and survival while the other members of this family are dispensable. Conditional depletion of TFP1 impairs microneme biogenesis and leads to a complete block in exocytosis, which hampers gliding motility, attachment, invasion and egress. Morphological investigations revealed that TFP1 participates in the condensation of the microneme content, suggesting the transport of a relevant molecule for maintaining the intraluminal microenvironment necessary for organelle maturation and exocytosis. In absence of TFP2, rhoptries adopt a considerable elongated shape, but the abundance, processing or secretion of the rhoptry content are not affected. These findings establish the relevance of TFPs in organelle maturation of T. gondii.  相似文献   

16.
17.
Rab genes encode a subgroup of small GTP-binding proteins within the ras super-family that regulate targeting and fusion of transport vesicles within the secretory and endocytic pathways. These genes are of particular interest in the protozoan phylum Apicomplexa, since a family of Rab GTPases has been described for Plasmodium and most putative secretory pathway proteins in Apicomplexa have conventional predicted signal peptides. Moreover, peptide motifs have now been identified within a large number of secreted Plasmodium proteins that direct their targeting to the red blood cell cytosol, the apicoplast, the food vacuole and Maurer's clefs; in contrast, motifs that direct proteins to secretory organelles (rhoptries, micronemes and microspheres) have yet to be defined. The nature of the vesicle in which these proteins are transported to their destinations remains unknown and morphological structures equivalent to the endoplasmic reticulum and trans-Golgi stacks typical of other eukaryotes cannot be visualised in Apicomplexa. Since Rab GTPases regulate vesicular traffic in all eukaryotes, and this traffic in intracellular parasites could regulate import of nutrient and drugs and export of antigens, host cell modulatory proteins and lactate we compare and contrast here the Rab families of Apicomplexa.  相似文献   

18.
Molecules travel through the yeast endocytic pathway from the cell surface to the lysosome-like vacuole by passing through two sequential intermediates. Immunofluorescent detection of an endocytosed pheromone receptor was used to morphologically identify these intermediates, the early and late endosomes. The early endosome is a peripheral organelle that is heterogeneous in appearance, whereas the late endosome is a large perivacuolar compartment that corresponds to the prevacuolar compartment previously shown to be an endocytic intermediate. We demonstrate that inhibiting transport through the early secretory pathway in sec mutants quickly impedes transport from the early endosome. Treatment of sensitive cells with brefeldin A also blocks transport from this compartment. We provide evidence that Sec18p/N-ethylmaleimide-sensitive fusion protein, a protein required for membrane fusion, is directly required in vivo for forward transport early in the endocytic pathway. Inhibiting protein synthesis does not affect transport from the early endosome but causes endocytosed proteins to accumulate in the late endosome. As newly synthesized proteins and the late steps of secretion are not required for early to late endosome transport, but endoplasmic reticulum through Golgi traffic is, we propose that efficient forward transport in the early endocytic pathway requires delivery of lipid from secretory organelles to endosomes.  相似文献   

19.
Rhoptries are specialized secretory organelles that are uniquely present within protozoan parasites of the phylum Apicomplexa. These obligate intracellular parasites comprise some of the most important parasites of humans and animals, including the causative agents of malaria (Plasmodium spp.) and chicken coccidiosis (Eimeria spp.). The contents of the rhoptries are released into the nascent parasitophorous vacuole during invasion into the host cell, and the resulting proteins often represent the literal interface between host and pathogen. We have developed a method for highly efficient purification of rhoptries from one of the best studied Apicomplexa, Toxoplasma gondii, and we carried out a detailed proteomic analysis using mass spectrometry that has identified 38 novel proteins. To confirm their rhoptry origin, antibodies were raised to synthetic peptides and/or recombinant protein. Eleven of 12 of these yielded antibody that showed strong rhoptry staining by immunofluorescence within the rhoptry necks and/or their bulbous base. Hemagglutinin epitope tagging confirmed one additional novel protein as from the rhoptry bulb. Previously identified rhoptry proteins from Toxoplasma and Plasmodium were unique to one or the other organism, but our elucidation of the Toxoplasma rhoptry proteome revealed homologues that are common to both. This study also identified the first Toxoplasma genes encoding rhoptry neck proteins, which we named RONs, demonstrated that toxofilin and Rab11 are rhoptry proteins, and identified novel kinases, phosphatases, and proteases that are likely to play a key role in the ability of the parasite to invade and co-opt the host cell for its own survival and growth.  相似文献   

20.
Intracellular protein transport and sorting by vesicles in the secretory and endocytic pathways requires the formation of a protein coat on the membrane. The heterotetrameric adaptor protein complex 1 (AP-1) promotes the formation of clathrin-coated vesicles at the trans-Golgi network. AP-1 interacts with various sorting signals in the cytoplasmic tails of cargo molecules, thus indicating a function in protein sorting. We generated mutants of the gamma-adaptin subunit of AP-1 in mice to investigate its role in post-Golgi vesicle transport and sorting processes. gamma-Adaptin-deficient embryos develop until day 3.5 post coitus and die during the prenidation period, revealing that AP-1 is essential for viability. In heterozygous mice the amount of AP-1 complexes is reduced to half of controls. Free beta1- or micro1 chains were not detectable, indicating that they are unstable unless they are part of AP-1 complexes. Heterozygous mice weigh less then their wild-type littermates and show impaired T cell development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号