首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
To identify molecular players implicated in cytokinesis and division plane determination, the Arabidopsis thaliana genome was explored for potential cytokinesis genes. More than 100 open reading frames were selected based on similarity to yeast and animal cytokinesis genes, cytoskeleton and polarity genes, and Nicotiana tabacum genes showing cell cycle-controlled expression. The subcellular localization of these proteins was determined by means of GFP tagging in tobacco Bright Yellow-2 cells and Arabidopsis plants. Detailed confocal microscopy identified 15 proteins targeted to distinct regions of the phragmoplast and the cell plate. EB1- and MAP65-like proteins were associated with the plus-end, the minus-end, or along the entire length of microtubules. The actin-binding protein myosin, the kinase Aurora, and a novel cell cycle protein designated T22, accumulated preferentially at the midline. EB1 and Aurora, in addition to other regulatory proteins (homologs of Mob1, Sid1, and Sid2), were targeted to the nucleus, suggesting that this organelle operates as a coordinating hub for cytokinesis.  相似文献   

2.
Tobacco microtubule associated protein (MAP65) (NtMAP65s) constitute a family of microtubule-associated proteins with apparent molecular weight around 65 kDa that collectively induce microtubule bundling and promote microtubule assembly in vitro. They are associated with most of the tobacco microtubule arrays in situ. Recently, three NtMAP65s belonging to the NtMAP65-1 subfamily have been cloned. Here we investigated in vitro the biochemical properties of one member of this family, the tobacco NtMAP65-1b. We demonstrated that recombinant NtMAP65-1b is a microtubule-binding and a microtubule-bundling protein. NtMAP65-1b has no effect on microtubule polymerization rate and binds microtubules with an estimated equilibrium constant of dissociation (K(d)) of 0.57 micro m. Binding of NtMAP65-1b to microtubules occurs through the carboxy-terminus of tubulin, as NtMAP65-1b was no longer able to bind subtilisin-digested tubulin. In vitro, NtMAP65-1b stabilizes microtubules against depolymerization induced by cold, but not against katanin-induced destabilization. The biological implications of these results are discussed.  相似文献   

3.
AtMAP65-1 bundles cortical microtubules and we examined how this property is regulated during division in time-lapse studies of Arabidopsis suspension cells expressing GFP-AtMAP65-1. Spindle fluorescence is diffuse during metaphase, restored to the central spindle at anaphase and then compacted at the midline during late anaphase/early telophase. However, mutagenesis of the microtubule-associated protein (MAP) consensus Cdk site to a non-phosphorylatable form allows premature decoration of microtubules traversing the central region of the metaphase spindle without affecting the timing of the subsequent compaction. This suggests that mutagenesis does not affect compaction but does affect a phosphorylation/dephosphorylation switch that normally targets AtMAP65-1 to the central spindle at the metaphase/anaphase transition. GFP-AtMAP65-1 continues to label the midline of the early phragmoplast, suggesting a structural continuity with the central spindle - both structures being composed of anti-parallel microtubules. However, once the cytokinetic apparatus expands into a ring the MAP becomes depleted at the midline. Despite this, cytokinesis is not arrested and membrane and callose are deposited at the cell plate. It is concluded that AtMAP65-1 plays a role in the central spindle at anaphase to early cytokinesis but is not essential at the midline of the phragmoplast at later stages.  相似文献   

4.
Prokaryotic plasmids encode partitioning (par) loci involved in segregation of DNA to daughter cells at cell division. A functional fusion protein consisting of Walker-type ParA ATPase and green fluorescent protein (Gfp) oscillates back and forth within nucleoid regions with a wave period of about 20 minutes. A model is discussed which is based on cooperative non-specific binding of ParA to the nucleoid, and local ParB initiated generation of ParA oligomer degradation products, which act autocatalytically on the degradation reaction. The model yields self-initiated spontaneous pattern formation, based on Turing's mechanism, and these patterns are destroyed by the degradation products, only to initiate a new pattern at the opposite nucleoid region. A recurrent wave thus emerges. This may be a particular example of a more general class of pattern forming mechanisms, based on protein oligomerization upon a template (membranes, DNA a.o.) with resulting enhanced NTPase function in the oligomer state, which may bring the oligomer into an unstable internal state. An effector initializes destabilization of the oligomer to yield degradation products, which act as seeds for further degradation in an autocatalytic process. We discuss this mechanism in relation to recent models for MinDE oscillations in E.coli and to microtubule degradation in mitosis. The study points to an ancestral role for the presented pattern types in generating bipolarity in prokaryotes and eukaryotes.  相似文献   

5.
Cytokinesis, the partitioning of the cytoplasm following nuclear division, requires extensive coordination between cell cycle cues, membrane trafficking and microtubule dynamics. Plant cytokinesis occurs within a transient membrane compartment known as the cell plate, to which vesicles are delivered by a plant‐specific microtubule array, the phragmoplast. While membrane proteins required for cytokinesis are known, how these are coordinated with microtubule dynamics and regulated by cell cycle cues remains unclear. Here, we document physical and genetic interactions between Transport Protein Particle II (TRAPPII) tethering factors and microtubule‐associated proteins of the PLEIADE/AtMAP65 family. These interactions do not specifically affect the recruitment of either TRAPPII or MAP65 proteins to the cell plate or midzone. Rather, and based on single versus double mutant phenotypes, it appears that they are required to coordinate cytokinesis with the nuclear division cycle. As MAP65 family members are known to be targets of cell cycle‐regulated kinases, our results provide a conceptual framework for how membrane and microtubule dynamics may be coordinated with each other and with the nuclear cycle during plant cytokinesis.  相似文献   

6.
In the cytoskeleton method for isolating microtubule-associated proteins MAP65, DcKRP120-1 and DcKRP120-2, carrot cells are first converted to protoplasts but this method cannot be used to isolate mitotic MAPs as mitotic synchrony is eroded during lengthy cellulase treatment. Anti-microtubule cycle blocks would also be unsuitable. We report here a method for overcoming these problems. Cellulase degradation of tobacco BY-2 cells for only several minutes allows extraction of detergent-soluble proteins, leaving synchronized "caged cytoskeletons" for depolymerization and enabling affinity purification of MAPs on neurotubules. This rapid and simple method should be of general utility: it can be bulked up, avoids anti-microtubule blocks, and is applicable to other cell suspensions. The effectiveness of the caged cytoskeleton method is demonstrated by comparing known MAPs (the 65 kDa structural MAPs and the kinesin-related protein, TKRP125) in synchronized cells taken at the mitotic peak with those in unsynchronized cells.  相似文献   

7.
8.
The two-hybrid system for the identification of protein-protein interactions was used to screen for proteins that interact in vivo with theSaccharomyces cerevisiae Pkc1 protein, a homolog of mammalian protein kinase C. Four positive clones were isolated that encoded portions of the protein kinase Mkk1, which acts downstream of Pkc1p in thePKC1-mediated signalling pathway. Subsequently, Pkc1p and the otherPKC1 pathway components encoding members of a MAP kinase cascade, Bck1p (a MEKK), Mkk1p, Mkk2p (two functionally homologous MEKs), and Mpk1p (a MAP kinase), were tested pairwise for interaction in the two-hybrid assay. Pkc1p interacted specifically with small N-terminal deletions of Mkk1p, and no interaction between Pkc1p and any of the other known pathway components could be detected. Interaction between Pkc1p and Mkk1p, however, was found to be independent of Mkk1p kinase activity. Bck1p was also found to interact with Mkk1p and Mkk2p, and the interaction required only the predicted C-terminal catalytic domain of Mkk1p. Furthermore, we detected protein-protein interactions between two Bck1p molecules via their N-terminal regions. Finally, Mkk2p and Mpk1p also interacted in the two-hybrid assay. These results suggest that the members of thePKC1-mediated MAP kinase cascade form a complex in vivo and that Pkc1p is capable of directly interacting with at least one component of this pathway.  相似文献   

9.
10.
Calmodulin (CaM) is a universal regulator for a huge number of proteins in all eukaryotic cells. Best known is its function as a calcium-dependent modulator of the activity of enzymes, such as protein kinases and phosphatases, as well as other signaling proteins including membrane receptors, channels and structural proteins. However, less well known is the fact that CaM can also function as a Ca2 +-dependent adaptor protein, either by bridging between different domains of the same protein or by linking two identical or different target proteins together. These activities are possible due to the fact that CaM contains two independently-folded Ca2 + binding lobes that are able to interact differentially and to some degree separately with targets proteins. In addition, CaM can interact with and regulates several proteins that function exclusively as adaptors. This review provides an overview over our present knowledge concerning the structural and functional aspects of the role of CaM as an adaptor protein and as a regulator of known adaptor/scaffold proteins.  相似文献   

11.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号