首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The exon junction complex (EJC) is a macromolecular complex deposited at splice junctions on mRNAs as a consequence of splicing. At the core of the EJC are four proteins: eIF4AIII, a member of the DExH/D-box family of NTP-dependent RNA binding proteins, Y14, Magoh, and MLN51. These proteins form a stable heterotetramer that remains bound to the mRNA throughout many different cellular environments. We have determined the three-dimensional (3D) structure of this EJC core using negative-stain random-conical tilt electron microscopy. This structure represents the first structure of a DExH/D-box protein in complex with its binding partners. The EJC core is a four-lobed complex with a central channel and dimensions consistent with its known RNA footprint of about ten nucleotides. Using known X-ray crystallographic structures and a model of three of the four components, we propose a model for complex assembly on RNA and explain how Y14:Magoh may influence eIF4AIII's RNA binding.  相似文献   

2.
The exon junction complex (EJC) is deposited on mRNAs by the process of pre-mRNA splicing and is a key effector of downstream mRNA metabolism. We previously demonstrated that human eIF4AIII, which is essential for nonsense-mediated mRNA decay (NMD), constitutes at least part of the RNA-binding platform anchoring other EJC components to the spliced mRNA. To determine the regions of eIF4AIII that are functionally important for EJC formation, for binding to other EJC components, and for NMD, we now report results of an extensive mutational analysis of human eIF4AIII. Using GFP-, GST- or Flag-fusions of eIF4AIII versions containing site-specific mutations or truncations, we analyzed subcellular localizations, protein-protein interactions, and EJC formation in vivo and in vitro. We also tested whether mutant proteins could rescue NMD inhibition resulting from RNAi depletion of endogenous eIF4AIII. Motifs Ia and VI, which are conserved among the eIF4A family of RNA helicases (DEAD-box proteins), are crucial for EJC formation and NMD, as is one eIF4AIII-specific region. An additional eIF4AIII-specific motif forms part of the binding site for MLN51, another EJC core component. Mutations in the canonical Walker A and B motifs that eliminate RNA-dependent ATP hydrolysis by eIF4AIII in vitro are of no detectable consequence for EJC formation and NMD activation. Implications of these findings are discussed in the context of other recent results and a new structural model for human eIF4AIII based on the known crystal structure of Saccharomyces cerevisiae eIF4AI.  相似文献   

3.
The multiprotein exon junction complex (EJC) is assembled on mRNAs as a consequence of splicing. EJC core components maintain a stable grip on mRNAs even as the overall EJC protein composition evolves while mRNAs travel to the cytoplasm. Here we show that recombinant EJC subunits MLN51, MAGOH and Y14, together with the DEAD-box protein eIF4AIII bound to ATP, are necessary and sufficient to form a highly stable complex on single-stranded RNA. Cross-linking and RNase protection studies indicate that this recombinant complex recapitulates the EJC core. The stable association of the recombinant EJC core with RNA is maintained by inhibition of eIF4AIII ATPase activity by MAGOH-Y14. We elucidate the modalities of EJC binding to RNA and provide the first example of how cellular machineries may use RNA helicases to clamp several proteins onto RNA in stable and sequence-independent manners.  相似文献   

4.
The exon junction complex (EJC) is deposited onto spliced mRNAs and is involved in many aspects of mRNA function. We have recently reconstituted and solved the crystal structure of the EJC core made of MAGOH, Y14, the most conserved portion of MLN51, and the DEAD-box ATPase eIF4AIII bound to RNA in the presence of an ATP analog. The heterodimer MAGOH/Y14 inhibits ATP turnover by eIF4AIII, thereby trapping the EJC core onto RNA, but the exact mechanism behind this remains unclear. Here, we present the crystal structure of the EJC core bound to ADP-AIF3, the first structure of a DEAD-box helicase in the transition-mimicking state during ATP hydrolysis. It reveals a dissociative transition state geometry and suggests that the locking of the EJC onto the RNA by MAGOH/Y14 is not caused by preventing ATP hydrolysis. We further show that ATP can be hydrolyzed inside the EJC, demonstrating that MAGOH/Y14 acts by locking the conformation of the EJC, so that the release of inorganic phosphate, ADP, and RNA is prevented. Unifying features of ATP hydrolysis are revealed by comparison of our structure with the EJC–ADPNP structure and other helicases. The reconstitution of a transition state mimicking complex is not limited to the EJC and eIF4AIII as we were also able to reconstitute the complex Dbp5–RNA–ADP–AlF3, suggesting that the use of ADP–AlF3 may be a valuable tool for examining DEAD-box ATPases in general.  相似文献   

5.
6.
7.
Translation of spliced mRNAs is enhanced by exon junction complex (EJC), which is deposited on mRNAs as a result of splicing. Although this phenomenon itself is well known, the underlying molecular mechanism remains poorly understood. Here we show, using siRNAs against Y14 and eIF4AIII and spliced or intronless constructs that contain different types of internal ribosome entry sites (IRESes), that Y14 and eIF4AIII increase translation of spliced mRNAs before and after formation of the 80S ribosome complex, respectively. These results suggest that EJC modulates translation of spliced mRNA at multiple steps.  相似文献   

8.
Giorgi C  Yeo GW  Stone ME  Katz DB  Burge C  Turrigiano G  Moore MJ 《Cell》2007,130(1):179-191
Proper neuronal function and several forms of synaptic plasticity are highly dependent on precise control of mRNA translation, particularly in dendrites. We find that eIF4AIII, a core exon junction complex (EJC) component loaded onto mRNAs by pre-mRNA splicing, is associated with neuronal mRNA granules and dendritic mRNAs. eIF4AIII knockdown markedly increases both synaptic strength and GLUR1 AMPA receptor abundance at synapses. eIF4AIII depletion also increases ARC, a protein required for maintenance of long-term potentiation; arc mRNA, one of the most abundant in dendrites, is a natural target for nonsense-mediated decay (NMD). Numerous new NMD candidates, some with potential to affect synaptic activity, were also identified computationally. Two models are presented for how translation-dependent decay pathways such as NMD might advantageously function as critical brakes for protein synthesis in cells such as neurons that are highly dependent on spatially and temporally restricted protein expression.  相似文献   

9.
The multiprotein exon junction complex (EJC) is deposited on mRNAs upstream of exon-exon junctions as a consequence of pre-mRNA splicing. In mammalian cells, this complex serves as a key modulator of spliced mRNA metabolism. To date, neither the complete composition nor the exact assembly pathway of the EJC has been entirely elucidated. Using in vitro splicing and a two-step chromatography procedure, we have purified the EJC and analyzed its components by mass spectrometry. In addition to finding most of the known EJC factors, we identified two novel EJC components, Acinus and SAP18. Heterokaryon analysis revealed that SAP18 is a shuttling protein whereas Acinus is restricted to the nucleus. In MS2 tethering assays Acinus stimulated gene expression at the RNA level, while MLN51, another EJC factor, stimulated mRNA translational efficiency. Using tandem affinity purification (TAP) of proteins overexpressed in HeLa cells, we demonstrated that Acinus binds directly to another EJC component, RNPS1, while stable association of SAP18 to form the trimeric apoptosis and splicing associated protein (ASAP) complex requires both Acinus and RNPS1. Using the same methodology, we further identified what appears to be the minimal stable EJC core, a heterotetrameric complex consisting of eIF4AIII, Magoh, Y14, and MLN51.  相似文献   

10.

Background

The exon junction complex (EJC) is a dynamic multi-protein complex deposited onto nuclear spliced mRNAs upstream of exon-exon junctions. The four core proteins, eIF4A3, Magoh, Y14 and MLN51, are stably bound to mRNAs during their lifecycle, serving as a binding platform for other nuclear and cytoplasmic proteins. Recent evidence has shown that the EJC is involved in the splicing regulation of some specific events in both Drosophila and mammalian cells.

Results

Here, we show that knockdown of EJC core proteins causes widespread alternative splicing changes in mammalian cells. These splicing changes are specific to EJC core proteins, as knockdown of eIF4A3, Y14 and MLN51 shows similar splicing changes, and are different from knockdown of other splicing factors. The splicing changes can be rescued by a siRNA-resistant form of eIF4A3, indicating an involvement of EJC core proteins in regulating alternative splicing. Finally, we find that the splicing changes are linked with RNA polymerase II elongation rates.

Conclusion

Taken together, this study reveals that the coupling between EJC proteins and splicing is broader than previously suspected, and that a possible link exists between mRNP assembly and splice site recognition.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0551-7) contains supplementary material, which is available to authorized users.  相似文献   

11.
12.
DExH/D box proteins are molecular motors that utilize the energy derived from NTP hydrolysis to perform work — from helicases that remodel RNA to RNPases that alter RNA–protein complexes. Members of this class of proteins are uniquely placed along the RNA information highway to regulate the flow of genetic information. They have been implicated in a number of nodal points encompassing nuclear, cytoplasmic, and organellar RNA-based processes. The identification and characterization of three unique natural products that selectively inhibit the activity of eukaryotic initiation factor (eIF)4A (DDX2) has provided proof-of-principle that the activity of DExH/D box family members can be selectively targeted. Extending these achievements to other DExH/D box proteins is an important future challenge for drugging this family of proteins. This article is part of a Special Issue entitled: The Biology of RNA helicases — Modulation for life.  相似文献   

13.
DExH/D box proteins are required for the major transactions of RNA, including mRNA synthesis, pre-mRNA splicing, ribosome biogenesis, translation and RNA decay. In the popular imagination, DExH/D box proteins have become synonymous with 'RNA helicases', which are enzymes that unwind duplex RNAs in concert with the hydrolysis of nucleoside triphosphates (NTPs). But all DExH/D box proteins may not be RNA helicases and the energy of NTP hydrolysis by DExH/D box proteins may be harnessed for other purposes. Cellular RNAs are associated with proteins, often in large ribonucleoprotein (RNP) complexes. This review focuses on recent progress suggesting a role for DExH/D box proteins as 'RNPases' that use chemical energy to remodel the interactions of RNA and proteins.  相似文献   

14.
The exon-junction complex (EJC) deposited on a newly spliced mRNA plays an important role in subsequent mRNA metabolic events. Here we show that an EJC core heterodimer, Y14/Magoh, specifically associates with mRNA-degradation factors, including the mRNA-decapping complex and exoribonucleases, whereas another core factor, eIF4AIII/MLN51, does not. We also demonstrate that Y14 interacts directly with the decapping factor Dcp2 and the 5′ cap structure of mRNAs via different but overlapping domains and that Y14 inhibits the mRNA-decapping activity of Dcp2 in vitro. Accordingly, overexpression of Y14 prolongs the half-life of a reporter mRNA. Therefore Y14 may function independently of the EJC in preventing mRNA decapping and decay. Furthermore, we observe that depletion of Y14 disrupts the formation of processing bodies, whereas overexpression of a phosphomimetic Y14 considerably increases the number of processing bodies, perhaps by sequestering the mRNA-degradation factors. In conclusion, this report provides unprecedented evidence for a role of Y14 in regulating mRNA degradation and processing body formation and reinforces the influence of phosphorylation of Y14 on its activity in postsplicing mRNA metabolism.  相似文献   

15.
Structural insights into the exon junction complex   总被引:2,自引:0,他引:2  
In higher eukaryotes, the exon junction complex is loaded onto spliced mRNAs at a precise position upstream of exon junctions, where it remains during nuclear export and cytoplasmic localisation until it is removed during the first translation round. The exon junction core complex consists of four proteins that form a dynamic binding platform for a variety of peripheral factors involved in mRNA metabolism. In the complex, mRNA binding is mediated by the DEAD-box protein eIF4AIII, and inhibition of its ATPase activity forms the mechanistic basis for the long-term stability of the complex. Recent crystal structures of the exon junction complex and eIF4AIII have provided the structural framework for investigating the function of the eIF4AIII ATPase and for localisation of surface patches involved in binding peripheral factors. Additionally, by comparison with the structure of a second DEAD-box protein also bound to RNA and ATP, general principles for the ATPase and unwinding/mRNP remodelling activities for this important group of enzymes can be proposed on the basis of atomic structures.  相似文献   

16.
Dbp5 is the only member of the DExH/D box family of RNA helicases that is directly implicated in the export of messenger RNAs from the nucleus of yeast and vertebrate cells. Dbp5 localizes in the cytoplasm and at the cytoplasmic face of the nuclear pore complex (NPC). In an attempt to identify proteins present in a highly enriched NPC fraction, two other helicases were detected: RNA helicase A (RHA) and UAP56. This suggested a role for these proteins in nuclear transport. Contrary to expectation, we show that the Drosophila homolog of Dbp5 is not essential for mRNA export in cultured Schneider cells. In contrast, depletion of HEL, the Drosophila homolog of UAP56, inhibits growth and results in a robust accumulation of polyadenylated RNAs within the nucleus. Consequently, incorporation of [35S]methionine into newly synthesized proteins is inhibited. This inhibition affects the expression of both heat-shock and non-heat-shock mRNAs, as well as intron-containing and intronless mRNAs. In HeLa nuclear extracts, UAP56 preferentially, but not exclusively, associates with spliced mRNAs carrying the exon junction complex (EJC). We conclude that HEL is essential for the export of bulk mRNA in Drosophila. The association of human UAP56 with spliced mRNAs suggests that this protein might provide a functional link between splicing and export.  相似文献   

17.
The exon junction complex (EJC) is critical for mammalian nonsense-mediated mRNA decay and translational regulation, but the mechanism of its stable deposition on mRNA is unknown. To examine requirements for EJC deposition, we created splicing substrates containing either DNA nucleotides or RNA secondary structure in the 5′ exon. Using RNase H protection, toeprinting, and coimmunoprecipitation assays, we found that EJC location shifts upstream when a stretch of DNA or RNA secondary structure appears at the canonical deposition site. These upstream shifts occur prior to exon ligation and are often accompanied by decreases in deposition efficiency. Although the EJC core protein eIF4AIII contacts four ribose 2′OH groups in crystal structures, we demonstrate that three 2′OH groups are sufficient for deposition. Thus, the site of EJC deposition is more flexible than previously appreciated and efficient deposition appears spatially limited.  相似文献   

18.
Eukaryotic initiation factor 4A (eIF4A) is an RNA-dependent ATPase and ATP-dependent RNA helicase that is thought to melt the 5' proximal secondary structure of eukaryotic mRNAs to facilitate attachment of the 40S ribosomal subunit. eIF4A functions in a complex termed eIF4F with two other initiation factors (eIF4E and eIF4G). Two isoforms of eIF4A, eIF4AI and eIF4AII, which are encoded by two different genes, are functionally indistinguishable. A third member of the eIF4A family, eIF4AIII, whose human homolog exhibits 65% amino acid identity to human eIF4AI, has also been cloned from Xenopus and tobacco, but its function in translation has not been characterized. In this study, human eIF4AIII was characterized biochemically. While eIF4AIII, like eIF4AI, exhibits RNA-dependent ATPase activity and ATP-dependent RNA helicase activity, it fails to substitute for eIF4AI in an in vitro-reconstituted 40S ribosome binding assay. Instead, eIF4AIII inhibits translation in a reticulocyte lysate system. In addition, whereas eIF4AI binds independently to the middle and carboxy-terminal fragments of eIF4G, eIF4AIII binds to the middle fragment only. These functional differences between eIF4AI and eIF4AIII suggest that eIF4AIII might play an inhibitory role in translation under physiological conditions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号