首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Captopril (CpSH), an angiotensin converting enzyme (ACE) inhibitor, is reported to provide protection against free-radical mediated damage. The purpose of this study was to investigate, by means of pulse radiolysis technique, the behaviour of CpSH towards radiation-induced radicals in the absence and in the presence of copper(II) ions, which can play a relevant role in the metal catalysed generation of reactive oxygen species. The results indicate that the -SH group is crucial in determining the radical scavenging action of CpSH and the nature of the resulting CpSH transient products in the absence or in the presence of oxygen.

In the presence of Cu(II), the -SH group is still involved in the biological action of the molecule participating both in the one-electron reduction of Cu(II) with formation of CpSSCp, and in Cu(I) chelation. This conclusion is supported by the Raman spectroscopic data which allow to identify the CpSH sites involved in the copper complex at different pH.

These results suggest that CpSH may potentially inhibit oxidative damage both through free radical scavenging and metal chelation. Considering the low CpSH concentration in vivo, the metal chelation mechanism, more than the direct radical scavenging, could play the major role in moderating the toxicological effects of free radicals.  相似文献   

2.
With a view to the possible use of copper(II)-·OH inactivating ligand (OIL) complexes as regulators of inflammation, the reactivity of the copper(II)-ascorbate system with hydrogen peroxide has been investigated in the presence of three key substances: histidine (the main copper(II) low molecular mass ligand in extracellular fluid), salicylic acid (the well-known non-steroidal antiinflammatory drug, previously shown to be potentiated by copper(II) in animal models of inflammation), and anthranilic acid (an inactive substance by itself, known to be activated by copper(II) in the same models) at physiological pH (7.4) and inflammatory pH (5.5).

Such substances may affect the amount of TBARS detected in solution following copper-mediated Fenton-like reactions through three distinct mechanisms: (i) by decreasing the Cu(II)/Cu(I) redox potential, i.e. at the expense of ·OH radical production, (ii) by scavenging ·OH radicals in the body of the solution, and/or (iii) by acting as a true OIL, i.e. at the expense of ·OH detection. Redox potential measurements of initial solutions have been performed in parallel to TBARS determinations to help discriminate between different ligand influences. Computer-aided speciation has been used to understand the role of copper(II) distribution on the ligand effects characterised.

Contrary to previous interpretations, histidine has been found to mainly affect ·OH production by lowering the redox potential of the Cu(II)/Cu(I) couple. Salicylate, which has no effect on ·OH production, has been confirmed to mainly scavenge ·OH radicals in the body of the solution. Anthranilate, which both increases ·OH production and decreases ·OH detection, behaves as a potential OIL.

These results tend to confirm our previous hypothesis that copper potentiation of antiinflammatory substances is indirect, i.e. independent of any interaction between metal and drug, whereas copper activation of substances that are inactive by themselves results from specific metal-substance interactions taking place at inflammatory sites.  相似文献   

3.
Electron paramagnetic resonance spectroscopy (EPR) was used to study free radicals and transition metal complexes in liver tissue taken from patients with liver disease. Samples were frozen to 77K directly following biopsy to prevent deterioration. Our major aim was to compare signals from patients suffering from alcohol abuse with those from patients having liver damage not induced by alcohol. Samples were obtained from 19 chronic alcohol abusers and 7 non-alcoholic liver disease patients. Of the 19 alcoholic patients, 18 had an increased fat content, 6 had Mallory's hyaline, 12 had an acute inflammatory response, 9 had increased stainable iron and 4 had evidence of fibrosis. A signal derived from free radicals with a spectroscopic splitting factor of g = 2.0045 was found in all samples. This signal in the alcoholic patients had a mean amplitude of 2.96 cm (± 1.42 SD), and in patients with non-alcoholic liver disease 2.12cm (±0.82) (p = 0.10NS), measured under identical instrument settings.

The molar proportion of diene conjugated linoleic acid (DCLA), a free radical marker, in the sera of alcoholic patients was 2.68% (±1.93), but did not correlate with the free radical signals obtained by EPR spectroscopy. Also, there was no correlation between the free radical derived EPR signal and fat content, Mallory's hyaline, inflammatory infiltrate, iron or fibrosis in the liver biopsy specimens. Similarly the concentrations of aspartate transaminase, albumin, and gamma-glutamyl transferase in serum samples showed no correlations with free radical concentrations.

The absence of any significant increase in the stable free radical signal in the presence of alcohol induced liver disease and the lack of correlation between the signal and either histological or serological evidence of liver damage, suggests that alcohol derived free radicals may not be involved in the pathogenesis of alcoholic liver disease.

Unusually large sextet features characteristic of MN(II) complexes were observed for all liver samples. Such signals are very rare in human tissue, showing that there is a strong accumulation of Mn (II) in the liver. However, no systematic trends were observed. In some samples signals characteristic of iron-sulphur cluster units were detected, but again no correlations could be discovered.  相似文献   

4.
Although thiourea has been used widely to study the role of hydroxyl radicals in metal-mediated biological damage, it is not a specific hydroxyl radical scavenger and may also exert antioxidant effects unrelated to hydroxyl radical scavenging. Thus, we investigated the effects of thiourea on copper-induced oxidative damage to bovine serum albumin (1 mg/ml) in three different copper-containing systems: Cu(II)/ascorbate, Cu(II)/H2O2, and Cu(II)/H2O2/ascorbate [Cu(II), 0.1 mM; ascorbate, 1 mM; H2O2, 1 mM]. Oxidative damage to albumin was measured as protein carbonyl formation. Thiourea (0.1–10 mM) provided marked and dose-dependent protection against protein oxidation in all three copper-containing systems. In contrast, only minor protection was observed with dimethyl sulfoxide and mannitol, even at concentrations as high as 100 mM. Strong protection was also observed with dimethylthiourea, but not with urea or dimethylurea. Thiourea also significantly inhibited copper-catalyzed oxidation of ascorbate, and competed effectively with histidine and 1,10-phenanthroline for binding of cuprous, but not cupric, copper, as demonstrated by both UV-visible and low temperature electron spin resonance measurements. We conclude that the protection by thiourea against copper-mediated protein oxidation is not through scavenging of hydroxyl radicals, but rather through the chelation of cuprous copper and the formation of a redox-inactive thiourea-copper complex.  相似文献   

5.
The effect of copper on the radiation damage induced in T7 bacteriophage has been investigated. The phages were gamma-irradiated and the effects of copper(II) ions in the presence of various additives and radical scavengers were examined in an attempt to better understand the effect of transition metal ions on the role of free radicals, particularly superoxide, in biological damage. The present work extends a study previously done on isolated enzyme to a whole biological entity. Copper(II) ions even at very low concentrations enhanced the lethal effect of radiation. This sensitization was observed in both the presence and the absence of oxygen. The effect of copper could be reverted by chelating agents such as EDTA or 1,10-phenanthroline. Hydrogen peroxide enhanced the sensitizing effect of copper, though little if any protection was provided by catalase or SOD. High molecular weight scavengers of free radicals in the presence of both copper(II) and hydrogen peroxide had no protective effect. (This is in contrast to metal-free systems where, although such scavengers are incapable of penetrating the phages, they protect them against inactivation.) These scavengers, without added H2O2, afforded only slight protection to the irradiated phages in the presence of Cu. Low molecular weight scavengers of free radicals reduced but did not eliminate the sensitizing effect of copper. The sensitizing effect of copper was also observed with other T-odd phages, but not with the T-even series. Copper(II) ions under similar experimental conditions did not sensitize T4 or T2 phages but rather had a protective effect. The results are interpreted in terms of a site-specific Fenton mechanism according to which the binding of the metal ion to the phages is a prerequisite for the occurrence of the biological damage. The results also indicate that most of the copper effect is endogenous. This is in accord with the failure of copper to sensitize the T-even phages, which differ by the rigidity and permeability of their outer coat structures.  相似文献   

6.
The essential sulphydryl group of bovine liver rhodanese (thiosulphate: cyanide sulphurtrasferase, E.C. 2.8.1.1.) is modified by sulphite produced during the enzymatic reaction or added to the fully active enzyme. The enzyme treated with labelled reagent incorporates 1 equivalent of SO23- and loses one -SH group with the formation of a S-sulphonate group at the active site. Mercaptoethanol is effective in both restoring enzyme activity and removing bound sulphite from protein. The inactivation process is dependent on the presence of oxygen and is antagonized by chelation of metal ions, that catalyze sulphite autoxidation, or by scavenging free radicals with mannitol or benzoate. Since the presence of superoxide dismutase and/or catalase protects the enzyme only to a small extent, the inactivation process should be attributed to sulphite radicals rather than intermediates of oxygen reduction.  相似文献   

7.
The hydrogen peroxide dependent oxidation of the epinephrinecopper complex to adrenochrome is mediated by free copper ions. The oxidation is enhanced by chloride ions and by the presence of serum albumin. The reaction is not inhibited by SOD or by hydroxyl radical scavengers.

The 2:1 epinephrine or dopamine:Cu(II) complexes are able to bind to DNA and to catalyze its oxidative destruction in the presence of hydrogen peroxide. The DNA-epinephrine-Cu(II) terenary complex has characteristic spectral properties. It has the capacity to catalyze the reduction of oxygen or H2O2 and it preserves the capacity over a wide range of comp1ex:DNA ratios. The rate of DNA cleavage is proportional to the rate of epinephrine oxidation and the rate determining step of the reaction Seems to be the reduction of free Cu(II) ions. The ability to form redox active stable DNA ternary complexes, suggests that under specific physiological conditions, when “free” copper ions are available. catecholamina may induce oxidative degradation of DNA and other biological macromolecules.  相似文献   

8.
The involvement of transition metal ions in paraquat toxicity was studied in bacterial model system. We show that the addition of micromolar, or lower, concentrations of copper dramatically enhanced the rate of bacterial inactivation. In contrast, the addition of chelating agents totally eliminated the killing of E. coli. No inactivation was observed under anaerobic exposure to paraquat, both in the absence and presence of copper. However, in the presence of copper, the anaerobic addition of hydrogen peroxide resulted in complete restoration of inactivation as under aerobiosis.

Paraquat either produces superoxide ions or directly reduces bound copper ions in a catalytic mode. The reduced cuprous complexes react with hydrogen peroxide to locally form hydroxyl radicals (OH) which are probably responsible for the deleterious effects.

This study indicates the involvement of a site-specific metal-mediated Haber-Weiss mechanism in paraquat toxicity. It is in agreement with earlier observations that copper unusually enhance biological damage induced by either superoxide or ascorbate.  相似文献   

9.
Incubation of calf thymus DNA in the presence of rifamycin SV induces a decrease in the absorbance of DNA at 260 nm. The effect, was found to be proportional to the antibiotic concentration and enhanced by copper(II) ions. In the presence of rifamycin SV and copper(II), a significant increase in thiobarbituric acid-reactive (TBA-reactive) material is also observed. This effect is inhibited to different degrees by the following antioxidants: catalase 77%; thiourea 72%; glutathione (GSH) 62%; ethanol 52%; and DMSO 34%, suggesting that both hydrogen peroxide (H2O2) and hydroxyl radicals (OH·) are involved in DNA damage. Rifamycin SV-copper(II) mixtures were also found to induce the production of peroxidation material from deoxyribose and, in this case, glutathione and ethanol were the most effective antioxidant substrates with inhibition rates of 91% and 88% respectively.

Electrophoretic studies show that calf thymus DNA becomes damaged after 20 min. incubation in the presence of both agents together and that the damaged fragments run with migration rates similar to those obtained by the metal chelating agent 1,10-phenanthroline. Normal DNA electrophoretic pattern was found to be preserved by catalase, and GSH at physiological concentrations and by thiourea. No protection is observed in the presence of ethanol or DMSO. The results obtained indicate the involvement of different reactive species in the degradation process of DNA due to rifamycin SV-copper(II) complex and emphasize the role of reduced glutathione as an oxygen free radical scavenger.  相似文献   

10.
Addition of histidyl-peptides containing the glycyl-glycyl-L-histidyl sequence stimulated the catalysis of Ni(II) hydrogen peroxide reduction. Maximum bleaching of murexide or nitrosodimethylaniline was obtained with glycyl-glycyl-L-histidine. A decrease in the bleaching rates was observed upon addition of SOD or hydroxyl radical scavengers, showing that the hydrogen peroxide/Ni(II)/glycyl-glycyl-L-histidine system generated superoxide anions as well as hydroxyl radicals. In contrast, addition of glycyl-glycyl-L-histidine inhibited the Cu(II) hydrogen peroxide reduction.

When peptides or proteins were exposed to oxygen radicals produced by Ni(II)/glycyl-glycyl-L-histidine catalysis of hydrogen peroxide reduction, the observed effects were similar to those produced by oxygen radicals generated by water radiolysis or by Fe(II) or Cu(II) mediated Fenton-reactions: hydroxylation of phenylalanine, interchange of disulfides, destruction of tryptophans and dityrosine formation.  相似文献   

11.
Prior to comparative studies on the reactivity of various copper complexes with respect to OH radicals, the influence of free Cu2+ ions on the superoxide-independent generation of OH radicals through Fenton assays and water gamma radiolysis has been tested in the present work.

Cu2+ ions have been shown to behave in a distinct manner towards each of these two production systems. As was logically expected from the noninvolvement of copper in OH- radical production through gamma radioiysis, no influence of Cu2+ ions has been observed on the amount of radicals detected in that case. In contrast, Cu2+ ions do influence OH- radical generation through iron-driven Fenton reactions, but differently depending on copper concentration.

When present in high concentrations, Cu2+ ions significantly contribute to OH- radical production, which confirms previous observations on the reactivity of these in the presence of hydrogen peroxide. At lower levels corresponding to copper/iron ratios below unity on the contrary, Cu2+ ions behave as inhibitors of the OH- production in a pH-dependent manner over the 1-6 range investigated: the lower the pH, the greater the inhibition.

The possible origin of this previously unreported inhibitory effect is discussed.  相似文献   

12.
Quercetin, one of the most common dietary flavonols, was investigated in the presence of Cu(II) ions in methanolic solution in order to obtain some explanation on the mechanism interaction and its action against free radical-mediated damage. The spectroscopic studies (UV–VIS, IR, ESI–MS) were used to assess the extent to which it undergo complex formation through chelation or modification through oxidation. The reaction of quercetin with Cu(II) resulted in the formation of 1:1 metal–ligand complex (λmax = 436 nm) through the carbonyl oxygen and 3-OH group in C ring. Then quercetin is oxidized to the benzoquinone type products. The addition of EDTA destroyed the complex but did not regenerate the whole original spectrum of quercetin. From the other hand, the presence of EDTA inhibits formation of copper–quercetin complex and quercetin oxidation. The antioxidant activity of the Q + Cu solutions was evaluated by using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH∙) radical scavenging method and from an electrochemical point of view. The complex is much more effective as free radical scaveninger than the free flavonoid.  相似文献   

13.
Previous studies indicate that ascorbic acid, when combined with copper or iron cleaves several viral DNA. ln this study, we generated the ascorbate radical anion electrochemically in a simple chemical environment without the participation of a metal ion. This solution possesses viral DNA scission activity. Ohe absence of catalytic metal ions [Fe (III) and Cu(II)] in the incubation medium was evidenced by metal chelating agents such as desferrioxamine and EDTA. Ohe radical quenching at high EDTA concentration was attributed to ionic strength of EDTA rather than metal chelation. Ohe effects of antioxidants, radical scavangers, catalase, superoxide dismutase and some proteins on DNA cleavage have been tested. Cleavage may not arise directly from ascorbate free radical but the reaction of the radical form of ascorbate with oxygen may produce the actual reactive species. Aerobic oxidation of ascorbate itself strictly requires transition metal catalysts, however electrochemically produced ascorbyl radical avoided the kinetic barrier that prevented direct oxidation of ascorbic acid with oxygen and eliminated the need for the transition metal ion catalysts.  相似文献   

14.
By employing electron spin resonance spectroscopy, we examined the free radicals scavenging effects of hepatic metallothionein (MT) isoforms I and II (MTs-I and II) on four types of free radicals. Solutions of 0.15mM of MT-I and 0.3mM of MT-II were found to scavenge the 1,1-diphenyl-2-picrylhydrazyl radicals (1.30 × 1015 spins/ml) completely. In addition, both isoforms exhibited total scavenging action against the hydroxyl radicals (1.75 × 1015 spins/ml) generated in a Fenton reaction. Similarly, 0.3mM of MT-I scavenged almost 90% of the superoxide (2.22 × 1015 spins/ml) generated by the hypoxanthine and xanthine oxidase system, while a 0.3mM MT-II solution could only scavenge 40% of it. By using 2,2,6,6-tetramethyl-4-piperidone as a “spin-trap” for the reactive oxygen species (containing singlet oxygen, superoxide and hydroxyl radicals) generated by photosensitized oxidation of riboflavin and measuring the relative signal intensities of the resulting stable nitroxide adduct, 2,2,6,6-tetramethyl-4-piperidine-1-oxyl, we observed that MT-II (0.3 mM) could scavenge 92%, while MT-I at 0.15 mM μl/ml concentrations could completely scavenge all the reactive species (2.15 × 1015 spins/ml) generated.

The results of these studies suggest that although both isoforms of MT are able to scavenge free radicals, the MT-I appears to be a superior scavenger of superoxide and 1,1 diphenyl-2-picrylhydrazyl radicals.  相似文献   

15.
Antioxidant properties of bucillamine: possible mode of action   总被引:2,自引:0,他引:2  
The antioxidant properties of Bucillamine (BUC), a di-thiol compound used for treatment of rheumatoid arthritis (RA) and its possible mode of action, were investigated. BUC exhibits potent antioxidant activity similar to those of trolox and ascorbic acid. It reduces the stable free radical diphenyl-2-picrylhydrazyl (DPPH) with IC(50) of 18.5+/-0.1 micromol, its relative antioxidant activity by the ferric reducing ability (FRAP) is 2.07+/-0.01 mM and by the trolox equivalent antioxidant capacity (TEAC), 1.46+/-0.05 mM. However, its superoxide and apparent hydroxyl radical scavenging activities are low (IC(50) at millimolar concentrations). We found that BUC is a strong iron (II) and copper (II) chelator. This finding is very important since these metal ions are significantly higher in RA patients and may be involved in oxidative stress-induced damage. Our study suggests that BUC is a potent antioxidant which exerts its beneficial therapeutic activities in RA patients by metal chelation rather than by scavenging free radical species.  相似文献   

16.
Silybin has been complexed in 1:1 ratio with phosphatidyl choline to give IdB 1016 in order to increase its bioavailability. The antioxidant and free radical scavenger action of this new form of silybin has beenn evaluated.

One hour after the intragastric administration to rats of IdB 1016 (1.5g/kg b.wt.) the concentration of silybin in the liver microsomes was estimated to be around 2.5°g/mg protein corresponding to a final concentration in the microsomal suspension used of about 10°M. At these levels IdB decreased by about 40% the lipid peroxidation induced in microsomes by NADPH, CC14 and cumene hydroperoxide, probably by acting on lipid derived radicals. Spin trapping experiments showed, in fact, that the complexed form of silybin was able to scavenge lipid dienyl radicals generated in the microsomal membranes. In addition, IdB 1016 was also found to interact with free radical intermediates produced during the metabolic activation of carbon tetrachloride and methylhydrazine.

These effects indicate IdB 1016 as a potentially protective agent against free radical-mediated toxic damage.  相似文献   

17.
Oxidation of low density lipoprotein (LDL) by glucose-derived radicals may play a role in the aetiology of atherosclerosis in diabetes. Salicylate was shown to scavenge certain radicals. In the present study, aspirin, salicylate and its metabolites 2,5- and 2, 3-dihydroxybenzoic acid (DHBA) were tested for their ability to impair LDL oxidation by glucose. Only the DHBA derivatives, when present during LDL modification, inhibited LDL oxidation and the increase in endothelial tissue factor synthesis induced by glucose oxidised LDL. The LDL glycation reaction was not affected by DHBA. The antioxidative action of DHBA may be attributed to free radical scavenging and/or chelation of transition metal ions catalysing glucose autoxidation.  相似文献   

18.
Reaction between benzoguanamine (2,4-diamino-6-phenyl-1,3,5-triazine) and 2-mesitylenesulfonyl chloride leads to formation of a sulfonamide able to form two mononuclear Cu(II) complexes with a CuL(2) stoichiometry. The local environment of the metal cation is a distorted octahedron, with two ligands and two solvent molecules; both complexes crystallize in the monoclinic structure, space group P2(1), with Z=2. In the presence of ascorbate/H(2)O(2,) the two complexes significantly cleavage double-strand pUC18 DNA plasmid. Both complexes exhibit more nuclease efficiency that the copper phenantroline complex. From scavenging reactive oxygen studies we conclude that the hydroxyl radical and a singlet oxygen-like entity, such a peroxide copper complex, are the radical species involved in the DNA damage.  相似文献   

19.
A spin-trapping EPR technique has been employed to explore the generation of hydroxyl radicals from reactions between a series of first row transition metal ions and aqueous hydrogen peroxide at pH 10, and with a range of chelating agents (EDTA, DTPMP and the readily biodegradable ligands S,S-EDDS and IDS). In the absence of these chelating agents only Cu(II) generates a significant level of hydroxyl radicals; in their presence with Cu(II) EDTA and IDS give similar behaviour whereas EDDS and DTPMP inhibit hydroxyl radical generation. For Fe(II), EDTA, DTPMP and IDS significantly enhance OH production under these conditions whereas EDDS does not. Results from model cellulose damage experiments broadly confirm the findings for copper, though experiments with Fe(II) lead to somewhat contrasting results. Our findings are discussed in terms of binding constants and implications for alkaline peroxygen bleaching systems.  相似文献   

20.
Various o- and p-quinones were assessed as oxidants of peptidyl lysine in elastin and collagen substrates in the presence and absence of divalent copper as paradigms of protein-lysine 6-oxidase (lysyl oxidase) which contains both quinone and copper cofactors. Pyrroloquinoline quinone was among the most active in the absence and the most active of the o- and p-quinones tested in the presence of copper. The optimal rate of elastin oxidation occurred at a 2:1 PQQ/Cu(II) ratio while Cu(II) itself oxidized elastin relatively slightly. Elastin oxidation by 2:1 PQQ/Cu(II) required aerobic conditions consistent with oxygen-dependent turnover of this catalytic pair. Dimethylsulfoxide and catalase individually or in combination inhibited elastin oxidation by PQQ/Cu(II) by approx. 50%, suggesting that oxygen free radical species participate in the reaction. Amino-acid analysis of elastin and collagen substrates oxidized by 2:1 PQQ/Cu and then reduced with borohydride revealed that alpha-aminoadipic-delta-semialdehyde and lesser amounts of covalent cross-linkages were generated by this oxidant. In contrast, lysine oxidase produced aldehydes and significantly greater quantities of cross-linkage products, consistent with the known specificity of the enzyme. These data, thus, indicate the potential for free quinones, such as PQQ, particularly when stimulated by appropriate metal ions, to act as adventitious oxidants of lysine side-chains in proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号