首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Copper (Cu) has a critical role in the generation of oxidative stress during neurodegeneration and cancer. Reactive oxygen species generated through abnormal elevation or deficiency of Cu can lead to lipid, protein, and DNA damage. Oxidation of DNA can induce strand breaks and is associated with altered cell fate including transformation or death. DNA repair is mediated through the action of the multimeric DNA-PK repair complex. The components of this complex are the Ku autoantigens, XRCC5 and XRCC6 (Ku80 and Ku70, respectively). How this repair complex responds to perturbed Cu homeostasis and Cu-mediated oxidative stress has not been investigated. We previously reported that XRCC5 expression is altered in response to cellular Cu levels, with low Cu inhibiting XRCC5 expression and high Cu levels enhancing expression. In this study we further investigated the interaction between XRCC5 and Cu. We report that cytosolic XRCC5 is increased in response to Cu, but not zinc, iron, or nickel, and the level of cytosolic XRCC5 correlates with protection against oxidative damage to DNA. These observations were made in both HeLa cells and fibroblasts. Cytosolic XRCC5 interacted with the Cu chaperone and detoxification protein human Atox1 homologue (HAH), and down regulation of XRCC5 expression using siRNA led to enhanced HAH expression when cells were exposed to Cu. XRCC5 could also be purified from cytosolic extracts using a Cu-loaded column. These findings provide further evidence that cytosolic XRCC5 has a key role in protection against DNA oxidation from Cu, through either direct sequestration or signaling through other Cu-detoxification molecules. Our findings have important implications for the development of therapeutic treatments targeting Cu in neurodegeneration and/or cancer.  相似文献   

3.
Saccharomyces cerevisiae HOP1, which encodes a component of synaptonemal complex (SC), plays an important role in both gene conversion and crossing over between homologs, as well as enforces meiotic recombination checkpoint control over the progression of recombination intermediates. In hop1Delta mutants, meiosis-specific double-strand breaks (DSBs) are reduced to 10% of the wild-type level, and at aberrantly late times, these DSBs are processed into inter-sister recombination intermediates. However, the underlying mechanism by which Hop1 protein regulates these nuclear events remains obscure. Here we show that Hop1 protein interacts selectively with the Holliday junction, changes its global conformation and blocks the dissolution of the junction by a RecQ helicase. The Holliday junction-Hop1 protein complexes are significantly more stable at higher ionic strengths and molar excess of unlabeled competitor DNA than complexes containing other recombination intermediates. Structural analysis of the Holliday junction using 2-aminopurine fluorescence emission, DNase I footprinting and KMnO4 probing provide compelling evidence that Hop1 protein binding induces significant distortion at the center of the Holliday junction. We propose that Hop1 protein might coordinate the physical monitoring of meiotic recombination intermediates with the process of branch migration of Holliday junction.  相似文献   

4.
5.
JM4 is a four-transmembrane protein binding to the CCR5 receptor   总被引:1,自引:0,他引:1  
The CC chemokine receptor 5 (CCR5) is a major co-receptor for human immunodeficiency virus (HIV) and CCR5 mutants lacking the carboxy (C)-terminus interfere with HIV infection. Therefore, we analysed the C-terminus of CCR5 and here describe Jena-Muenchen 4 (JM4), a novel CCR5-interacting protein. JM4 is membrane-associated, co-precipitates with CCR5, and is ubiquitously expressed. It shares about 62% sequence similarity with JWA and glutamate transporter-associated protein 3-18 (GTRAP3-18), a regulator of an amino acid transporter. JWA, like JM4, is a four-transmembrane protein, which binds to the CCR5 receptor. Furthermore, JM4, JWA, and GTRAP3-18 co-localise and heterodimerise indicating a functional relationship. JM4 co-localises with calnexin in the endoplasmic reticulum and with the mannose 6-phosphate receptor in the Golgi. JM4 and GTRAP3-18 harbor a Rab-acceptor motif, indicating a function in vesicle formation at the Golgi complex. In conclusion, we describe a CCR5-interacting protein, which is suggested to function in trafficking and membrane localisation of the receptor, possibly also other receptors or amino acid transporters.  相似文献   

6.
Langerin mediates the carbohydrate-dependent uptake of pathogens by Langerhans cells in the first step of antigen presentation to the adaptive immune system. Langerin binds to an unusually diverse number of endogenous and pathogenic cell surface carbohydrates, including mannose-containing O-specific polysaccharides derived from bacterial lipopolysaccharides identified here by probing a microarray of bacterial polysaccharides. Crystal structures of the carbohydrate-recognition domain from human langerin bound to a series of oligomannose compounds, the blood group B antigen, and a fragment of β-glucan reveal binding to mannose, fucose, and glucose residues by Ca2+ coordination of vicinal hydroxyl groups with similar stereochemistry. Oligomannose compounds bind through a single mannose residue, with no other mannose residues contacting the protein directly. There is no evidence for a second Ca2+-independent binding site. Likewise, a β-glucan fragment, Glcβ1-3Glcβ1-3Glc, binds to langerin through the interaction of a single glucose residue with the Ca2+ site. The fucose moiety of the blood group B trisaccharide Galα1-3(Fucα1-2)Gal also binds to the Ca2+ site, and selective binding to this glycan compared to other fucose-containing oligosaccharides results from additional favorable interactions of the nonreducing terminal galactose, as well as of the fucose residue. Surprisingly, the equatorial 3-OH group and the axial 4-OH group of the galactose residue in 6SO4-Galβ1-4GlcNAc also coordinate Ca2+, a heretofore unobserved mode of galactose binding in a C-type carbohydrate-recognition domain bearing the Glu-Pro-Asn signature motif characteristic of mannose binding sites. Salt bridges between the sulfate group and two lysine residues appear to compensate for the nonoptimal binding of galactose at this site.  相似文献   

7.
Co-ordination of Rab GTPase function has emerged as a crucial mechanism in the control of intracellular trafficking processes in eukaryotic cells. Here, we show that GRAB/Rab3IL1 [guanine nucleotide exchange factor for Rab3A; RAB3A interacting protein (rabin3)-like 1], a protein that has previously be shown to act as a GEF (guanine nucleotide exchange factor) for Rab3a, Rab8a and Rab8b, is also a binding partner for Rab11a and Rab11b, but not the closely related Rab25 GTPase. We demonstrate that exogenous expression of Rab11a and Rab11b shift GRAB’s distribution from the cytoplasm onto membranes. We find that the Rab11a/Rab11b-binding region of GRAB lies within its carboxy-terminus, a region distinct from its GEF domain and Rab3a-binding region. Finally, we describe a GRAB deletion mutant (GRABΔ223–228) that is deficient in Rab11-binding ability. These data identify GRAB as a dual Rab-binding protein that could potentially link Rab3 and Rab11 and/or Rab8 and Rab11-mediated intracellular trafficking processes.  相似文献   

8.
A radioligand binding assay has been established to study leukotriene specific binding sites in the guinea pig and rabbit tissues. Using high specific activity [3H]-leukotriene D4 ([3H]-LTD4), in the presence or absence of unlabeled LTD4, the diastereoisomer of LTD4 (5R,6S-LTD4), leukotriene E4 (LTE4) and the end-organ antagonist, FPL 55712, we have identified specific binding sites for [3H]-LTD4 in the crude membrane fraction isolated from guinea pig lung. The time required for [3H]-LTD4 binding to reach equilibrium was approximately 20 to 25 min at 37°C in the presence of 10 mM Tris-HCl buffer (pH 7.5) containing 150 mM NaCl. The binding of [3H]-LTD4 to the specific sites was saturable, reversible and stereospecific. The maximal number of binding sites (Bmax), derived from Scatchard analysis, was approximately 320±200 fmol per mg of crude membrane protein. The dissociation constants, derived from kinetic and saturation analyses, were 9.7 nM and 5±4 nM, respectively. The specific binding sites could not be detected in the crude membrane fraction prepared from guinea pig ileum, brain and liver, or rabbit lung, trachea, ileum and uterus. In radioligand competition experiments, LTD4, FPL 55712 and 5R,6S-LTD4 competed with [3H]-LTD4. The metabolic inhibitors of arachidonic acid and SKF 88046, an antagonist of the indirectly-mediated actions of LTD4, did not significantly compete with [3H]-LTD4 at the specific binding sites. These correlations indicated that these specific binding sites may be the putative leukotriene receptors in the guinea-pig lung.  相似文献   

9.
RecA protein recognises two complementary DNA strands for homologous recombination. To gain insight into the molecular mechanism, the thermodynamic parameters of the DNA binding have been characterised by isothermal calorimetry. Specifically, conformational changes of protein and DNA were searched for by measuring variations in enthalpy change (DeltaH) with temperature (heat capacity change, DeltaC(p)). In the presence of the ATP analogue ATPgammaS, the DeltaH for the binding of the first DNA strand depends upon temperature (large DeltaC(p)) and the type of buffer, in a way that is consistent with the organisation of disordered parts and the protonation of RecA upon complex formation. In contrast, the binding of the second DNA strand occurs without any pronounced DeltaC(p), indicating the absence of further reorganisation of the RecA-DNA filament. In agreement with these findings, a significant change in the CD spectrum of RecA was observed only upon the binding of the first DNA strand. In the absence of nucleotide cofactor, the DeltaH of DNA binding is almost independent of temperature, indicating a requirement for ATP in the reorganisation of RecA. When the second DNA strand is complementary to the first, the DeltaH is larger than that for non-complementary DNA strand, but less than the DeltaH of the annealing of the complementary DNA without RecA. This small DeltaH could reflect a weak binding that may facilitate the dissociation of only partly complementary DNA and thus speed the search for complementary DNA. The DeltaH of binding DNA sequences displaying strong base-base stacking is small for both the first and second binding DNA strand, suggesting that the second is also stretched upon interaction with RecA. These results support the proposal that the RecA protein restructures DNA, preparing it for the recognition of a complementary second DNA strand, and that the recognition is due mainly to direct base-base contacts between DNA strands.  相似文献   

10.
Oxidative stress has been identified as an important contributor to neurodegeneration associated with acute CNS injuries and diseases such as spinal cord injury (SCI), traumatic brain injury (TBI), and ischemic stroke. In this review, we briefly detail the damaging effects of oxidative stress (lipid peroxidation, protein oxidation, etc.) with a particular emphasis on DNA damage. Evidence for DNA damage in acute CNS injuries is presented along with its downstream effects on neuronal viability. In particular, unchecked oxidative DNA damage initiates a series of signaling events (e.g. activation of p53 and PARP-1, cell cycle re-activation) which have been shown to promote neuronal loss following CNS injury. These findings suggest that preventing DNA damage might be an effective way to promote neuronal survival and enhance neurological recovery in these conditions. Finally, we identify the telomere and telomere-associated proteins (e.g. telomerase) as novel therapeutic targets in the treatment of neurodegeneration due to their ability to modulate the neuronal response to both oxidative stress and DNA damage.  相似文献   

11.
There is considerable evidence suggesting that compartmentalized functional pools of cholesterol in the liver contribute differently to the formation of bile acids as the precursor. The present paper deals with the incorporation of [1-14C]acetate and of [1,2-3H]cholesterol carried on lipoproteins (LDL and HDL) into biliary bile acids in perfused rat livers and bile-fistula rats. The results showed that endogenous cholesterol synthesized newly from [1-14C]acetate in the liver was incorporated into both cholic acid and chenodeoxycholic acid in a similar way, while exogenous lipoprotein-[1,2-3H]cholesterol delivered to hepatocytes from hepatic circulation was incorporated into chenodeoxycholic acid at a higher rate.  相似文献   

12.
13.
We investigated whether blocking of monocyte chemoattractant-1 (MCP-1) function would inhibit recruitment of tumor-associated macrophages (TAMs) and prevent tumor angiogenesis and tumor growth of human malignant melanoma. B16-F1 melanoma cells were implanted onto the back of C57BL/6 mice (Day 0). At Day 7, a dominant negative MCP-1 mutant (7ND) gene was transfected in the thigh muscle to make overexpressed 7ND protein secreted into systemic circulation. 7ND treatment inhibited TAM recruitment and partially reduced tumor angiogenesis and tumor growth. Also, 7ND treatment attenuated inductions of tumor necrosis factor-α (TNFα), interleukin-1α (IL-1α), and vascular endothelial growth factor (VEGF) in the stroma and tumor. Melanoma cells expressed not only MCP-1 but also its receptor CCR2. Accordingly, it was suggested that MCP-1 would enhance tumor angiogenesis and early tumor growth in the early stages by inducing TNFα, IL-1α, and VEGF through TAM recruitment and probably the direct autocrine/paracrine effects on melanoma cells.  相似文献   

14.
C-C chemokine receptor 5 (CCR5), a member of G-protein-coupled receptors, serves as a coreceptor for human immunodeficiency virus type 1 (HIV-1). In the present study, we examined the interactions between CCR5 and novel CCR5 inhibitors containing the spirodiketopiperazine scaffolds AK530 and AK317, both of which were lodged in the hydrophobic cavity located between the upper transmembrane domain and the second extracellular loop (ECL2) of CCR5. Although substantial differences existed between the two inhibitors—AK530 had 10-fold-greater CCR5-binding affinity (Kd = 1.4 nM) than AK317 (16.7 nM)—their antiviral potencies were virtually identical (IC50 = 2.1 nM and 1.5 nM, respectively). Molecular dynamics simulations for unbound CCR5 showed hydrogen bond interactions among transmembrane residues Y108, E283, and Y251, which were crucial for HIV-1-gp120/sCD4 complex binding and HIV-1 fusion. Indeed, AK530 and AK317, when bound to CCR5, disrupted these interhelix hydrogen bond interactions, a salient molecular mechanism enabling allosteric inhibition. Mutagenesis and structural analysis showed that ECL2 consists of a part of the hydrophobic cavity for both inhibitors, although AK317 is more tightly engaged with ECL2 than AK530, explaining their similar anti-HIV-1 potencies despite the difference in Kd values. We also found that amino acid residues in the β-hairpin structural motif of ECL2 are critical for HIV-1-elicited fusion and binding of the spirodiketopiperazine-based inhibitors to CCR5. The direct ECL2-engaging property of the inhibitors likely produces an ECL2 conformation, which HIV-1 gp120 cannot bind to, but also prohibits HIV-1 from utilizing the “inhibitor-bound” CCR5 for cellular entry—a mechanism of HIV-1's resistance to CCR5 inhibitors. The data should not only help delineate the dynamics of CCR5 following inhibitor binding but also aid in designing CCR5 inhibitors that are more potent against HIV-1 and prevent or delay the emergence of resistant HIV-1 variants.  相似文献   

15.
Inhibitor of growth 1 (ING1) is implicated in oncogenesis, DNA damage repair, and apoptosis. Mutations within the ING1 gene and altered expression levels of ING1 are found in multiple human cancers. Here, we show that both DNA repair and apoptotic activities of ING1 require the interaction of the C-terminal plant homeodomain (PHD) finger with histone H3 trimethylated at Lys4 (H3K4me3). The ING1 PHD finger recognizes methylated H3K4 but not other histone modifications as revealed by the peptide microarrays. The molecular mechanism of the histone recognition is elucidated based on a 2.1 Å-resolution crystal structure of the PHD-H3K4me3 complex. The K4me3 occupies a deep hydrophobic pocket formed by the conserved Y212 and W235 residues that make cation-π contacts with the trimethylammonium group. Both aromatic residues are essential in the H3K4me3 recognition, as substitution of these residues with Ala disrupts the interaction. Unlike the wild-type ING1, the W235A mutant, overexpressed in the stable clones of melanoma cells or in HT1080 cells, was unable to stimulate DNA repair after UV irradiation or promote DNA-damage-induced apoptosis, indicating that H3K4me3 binding is necessary for these biological functions of ING1. Furthermore, N216S, V218I, and G221V mutations, found in human malignances, impair the ability of ING1 to associate with H3K4me3 or to induce nucleotide repair and cell death, linking the tumorigenic activity of ING1 with epigenetic regulation. Together, our findings reveal the critical role of the H3K4me3 interaction in mediating cellular responses to genotoxic stresses and offer new insight into the molecular mechanism underlying the tumor suppressive activity of ING1.  相似文献   

16.
The requirement of membrane cholesterol in maintaining ligand binding activity of the hippocampal serotonin(1A) receptor has previously been demonstrated. In order to test the stringency of the requirement of cholesterol, we depleted cholesterol from native hippocampal membranes followed by replenishment with 7-dehydrocholesterol. The latter sterol is an immediate biosynthetic precursor of cholesterol differing only in a double bond at the 7th position in the sterol ring. Our results show, for the first time, that replenishment with 7-dehydrocholesterol does not restore ligand binding activity of the serotonin(1A) receptor, in spite of recovery of the overall membrane order. The requirement for restoration of ligand binding activity therefore is more stringent than the requirement for the recovery of overall membrane order. These novel results have potential implications in understanding the interaction of membrane lipids with this important neuronal receptor under pathogenic conditions such as the Smith-Lemli-Opitz syndrome.  相似文献   

17.
18.
BCman, a β-mannanase from the plant root beneficial bacterium Bacillus subtilis Z-2, has a potential to be used in the production of mannooligosaccharide, which shows defense induction activity on both melon and tobacco, and plays an important role in the biological control of plant disease. Here we report the biochemical properties and crystal structure of BCman-GH26 enzyme. Kinetic analysis reveals that BCman is an endo-β-mannanase, specific for mannan, and has no activity on mannooligosaccharides. The catalytic acid/base Glu167 and nucleophile Glu266 are positioned on the β4 and β7 strands, respectively. The 1.45-Å crystal structure reveals that BCman is a typical (β/α)8 folding type. One large difference from the saddle-shaped active center of other endo-β-mannanases is the presence of a shallow-dish-shaped active center and substrate-binding site that are both unique to BCman. These differences are mainly due to important changes in the length and position of loop 1 (Phe37-Met47), loop 2 (Ser103-Ala134), loop3 (Phe162-Asn185), loop 4 (Tyr215-Ile236), loop 5 (Pro269-Tyr278), and loop 6 (Trp298-Gly309), all of which surround the active site. Data from isothermal titration calorimetry and crystallography indicated only two substrate-binding subsites (+ 1 and − 1) within the active site of BCman. These two sites are involved in the enzyme's mannan degradation activity and in restricting the binding capacity for mannooligosaccharides. Binding and catalysis of BCman to mannan is mediated mainly by a surface containing a strip of solvent-exposed aromatic rings of Trp302, Trp298, Trp172, and Trp72. Additionally, BCman contains a disulfide bond (Cys66Cys86) and a special His1-His23-Glu336 metal-binding site. This secondary structure is a key factor in the enzyme's stability.  相似文献   

19.
20.
The serotonin1A receptor is an important member of the G-protein coupled receptor family, and is involved in the generation and modulation of a variety of cognitive, behavioral, and developmental functions. Solubilization of the hippocampal serotonin1A receptor by 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS) is accompanied by loss of membrane cholesterol which results in a reduction in specific agonist binding activity. Replenishment of cholesterol to solubilized membranes restores the cholesterol content of the membrane and significantly enhances specific agonist binding activity. In order to test the stringency of the requirement of cholesterol in this process, we solubilized native hippocampal membranes followed by replenishment with 7-dehydrocholesterol (7-DHC). 7-DHC is an immediate biosynthetic precursor of cholesterol differing only in a double bond at the 7th position in its sterol ring. Our results show, for the first time, that replenishment of solubilized hippocampal membranes with 7-DHC does not restore ligand binding activity of the serotonin1A receptor, in spite of recovery of the overall membrane order. This observation shows that the requirement for restoration of ligand binding activity is more stringent than the requirement for the recovery of overall membrane order. These novel results have potential implications in understanding the interaction of membrane sterols with this important neuronal receptor under pathogenic conditions such as the Smith-Lemli-Opitz syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号