首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Extracellular laccases produced by three different wood-rotting fungi, Cerrena unicolor, Heterobasidion annosum and Trametes versicolor, were immobilized via covalent bonds formation on DEAE-Granocel 500, CM-Granocel 500, and acrylic carriers. Out of the tested carriers, only the DEAE-Granocel 500, which was activated by divinyl sulphone appeared to be a suitable matrix for the expression of enzymic activity. Only one laccase of all the tested enzymes produced by C. unicolor showed the best binding to the carrier and a satisfactory enzymic activity. The immobilized laccase exhibited the highest enzymic activity at pH 5.2 and it was more resistant to thermal denaturation than the native enzyme. At 90 °C, it retained 75% activity compared to the free enzyme. It was also more stable during storage at 4 °C: after 4 months the immobilized laccase retained 98% of initial activity. Immobilized C. unicolor laccase was active in 10–60% concentration of methanol, acetone, isopropanol or acetonitrile. The best enzymic activity was observed in 20% solution of acetonitrile in buffer.  相似文献   

2.
The nature and mechanism of the freeze denaturation of fish myosin was clarified by measuring changes in solubility, ATPase activity, and filament reconstituting capacity over 8 weeks of storage at ?20 °C. Carp myosin was stored in three states: (i) solution in 0.6 M KCl, (ii) dumbbell-shaped filament suspension, and (iii) spindle-shaped filament suspension in 0.05 M KCl. Each group was stored either in the absence or presence of 0.2 M sodium glutamate. Filament reconstituting capacity was estimated by examining electron micrographs of shapes obtained by definitive filament reconstituting procedures for either dumbbells or spindles. Without sodium glutamate added, a decrease in solubility, ATPase activity, and filament forming capacity indicated denaturation taking place. A rise and a rapid decrease of ATPase activity were noted at the early stage of storage. When sodium glutamate was present during the storage, the above changes were replaced by an outstanding increase followed by leveling off near or above the original value. These indicated the prevention of denaturation by sodium glutamate. Myosin appeared less resistant to freeze denaturation in a dissolved state than in a filament state.  相似文献   

3.
The purpose of the present work was to study the effects of simulated sunlight conditions on enzyme inactivation and structural damage in dehydrated glassy systems. Freeze-dried samples containing different enzymes (lactase, invertase, lysozyme and amyloglucosidase) were exposed to light using a medium-pressure metal halide HPA 400 W lamp. After 1 h of light exposure, the samples showed a significant reduction (more than 50%) in the denaturation peak area as analyzed by DSC, and this could be attributed to protein denaturation. For most of the pure enzymes, the loss of enzymic activity after 1 h of light exposure was around 50%. In the case of enzymes included in anhydrous model systems (trehalose, raffinose, maltodextrin, and dextran), the remaining activity also decreased dramatically during the light treatment. We showed that the light exposure in dehydrated systems generated both the loss of enzymic activity and structural changes such as denaturation (observed by DSC) and protein fragmentation and aggregation (observed by electrophoresis). Overall, we can conclude that a short exposure to the light produces dramatic changes in the enzymic activity in dehydrated systems with or without protective matrices.  相似文献   

4.
Conformational changes at the active site of pantetheine hydrolase (EC3.5.1.-) during guanidine hydrochloride (GndHCl) denaturation were investigated by UV and circular dichroism spectroscopy and by electron spin resonance spectroscopy, following the spectral behaviour of the nitroxide radicals (N- (1- oxyl - 2,2,5,5, -tetramethyl-3-pyrrolidinyl) iodacetamide) covalently linked to the two active site cysteine residues. At low denaturant concentrations (0.2 M) no conformational changes may be observed, whereas the catalytic activity, is strongly affected. The results indicate that the active site of pantetheine hydrolase is labile and unfolds under conditions in which no global tertiary struscture modifications can be observed.  相似文献   

5.
Modified asparaginase, in which 4 tryptophan residues were modified with 2-hydroxy-5-nitrobenzyl bromide, had little enzymic activity and retained immunoreactivity [(1976) FEBS Lett. 65, 11-15]. Addition of IgG or its Fab towards asparaginase to the modified asparaginase gave rise to marked enhancement of the enzymic activity. Native asparaginase (4 subunits) lost the enzymic activity due to dissociation into subunits by dilution of the enzyme solution. However, in the presence of Fab, asparaginase did not lose enzymic activity on dilution, probably due to no dissociation into subunits occurring.  相似文献   

6.
A novel glycation procedure, in vacuo glycation, was used to attach glucose covalently to the lysine residues of trypsin and chymotrypsin. Glycated trypsin and glycated chymotrypsin have greatly increased thermostability compared to the native enzymes. For example, glycated bovine trypsin, incubated at 50 degrees C and pH 8.0 for 3 h, retained more than 50% of its original activity whereas the native enzyme was inactivated under the same conditions. Similarly, after incubation at 50 degrees C and pH 8.0, glycated bovine chymotrypsin retained 45% of its original activity and the native enzyme was inactivated. Glycated porcine trypsin is exceptionally thermostable and could be used to digest native ribonuclease at 70 degrees C without the need for prior denaturation. The apparent increase in the thermal stability of the glycated proteins observed in activity measurements is also reflected by an increase in the T(m) values determined with differential scanning calorimetry (DSC) and circular dichroism (CD). The glycation does not alter the activity or specificity of these enzymes.  相似文献   

7.
Freeze denaturation of enzymes and its prevention with additives   总被引:3,自引:0,他引:3  
Freeze inactivation of LDH, MDH, ADH, G-6-PDH, and PK and its prevention with additives such as sodium glutamate and albumin were studied. LDH, MDH, ADH, G-6-PDH, and PK, each lost their activity during frozen storage at -20 degrees C. The speed of the inactivation differed in each. The stability of the enzymes increased with the increase of the enzyme concentration. Sodium glutamate and albumin prevented the freeze inactivation. While the activity of the LDH solution frozen without additives was almost lost during a day of frozen storage, those frozen with either glutamate (0.2 M) or albumin (0.1%) added decreased less quickly. The residual activity after 1 day was 50% the initial prefreeze value for the former and 10% for the latter, respectively. Combined use of glutamate and albumin prevented the inactivation the best and maintained the initial activity almost completely over 6 weeks. The enzymes tested lost some part of their activity when their solutions were diluted by the media. This inactivation was prevented to a significant extent by the addition of sodium glutamate and/or albumin to the diluting media.  相似文献   

8.
In this article, we describe the use of pH- responsive hydrogels as matrices for the immobilization of two enzymes, glucose oxidase (GOx) and glutamate oxidase (GlutOx). Spherical hydrogel beads were prepared by inverse suspension polymerization and the enzymes were immobilized by either physical entrapment or covalent immobilization within or on the hydrogel surface. Packed-bed bioreactors were prepared containing the bioactive hydrogels and these incorporated into flow injection (FI) systems for the quantitation of glucose and monosodium glutamate (MSG) respectively. The FI amperometric detector comprised a microfabricated interdigitated array within a thin-layer flow cell. For the FI manifold incorporating immobilized GOx, glucose response curves were found to be linear over the concentration range 1.8-280 mg dL(-1) (0.1-15.5 mM) with a detection limit of 1.4 mg dL(-1) (0.08 mM). Up to 20 samples can be manually analyzed per hour, with the hydrogel-GOx bioreactor exhibiting good within-day (0.19%) precision. The optimized FI manifold for MSG quantitation yielded a linear response range of up to 135 mg dL(-1) (8 mM) with a detection limit of 3.38 mg dL(-1) (0.2 mM) and a throughput of 30 samples h(-1). Analysis of commercially produced soup samples gave a within-day precision of 3.6%. Bioreactors containing these two physically entrapped enzymes retained > 60% of their initial activities after a storage period of up to 1 year.  相似文献   

9.
为比较斑点叉尾鲖(Ictalurus punctatus)对不同形式赖氨酸的利用效果, 设置了鱼粉含量5%、豆粕含量15%的正对照饲料, 及鱼粉含量2.5%、豆粕含量0的负对照饲料, 在负对照饲料基础上, 分别添加晶体赖氨酸盐酸盐、晶体赖氨酸硫酸盐以及微囊赖氨酸盐酸盐, 使其赖氨酸含量达到与正对照饲料一致的水平, 共配制5组等氮等能饲料, 饲养平均体重为(54.40.1) g的斑点叉尾鲖60d, 考察不同形式赖氨酸对斑点叉尾鲖生长、血清生化指标和蛋白质消化酶活性的影响。结果表明, 与负对照组相比, 添加晶体赖氨酸盐酸盐和晶体赖氨酸硫酸盐对斑点叉尾鲖的生长性能影响不显著(P0.05), 而添加微囊赖氨酸盐酸盐提高斑点叉尾鲖增重率20.7% (P0.05), 降低饲料系数16.0% (P0.05), 在增重率与饲料系数方面达到与正对照组基本一致的水平(P0.05)。与负对照组相比, 在饲料中添加晶体赖氨酸盐酸盐、晶体赖氨酸硫酸盐以及微囊赖氨酸盐酸盐对血清谷丙转氨酶、谷草转氨酶、碱性磷酸酶及肠蛋白酶活性的影响均不显著(P0.05), 但显著提高了胃蛋白酶活性(P0.05)。此外, 添加微囊赖氨酸盐酸盐还显著提高了肝胰脏蛋白酶活性(P0.05)。上述结果表明, 在低赖氨酸实用饲料中补充晶体赖氨酸盐酸盐或赖氨酸硫酸盐对斑点叉尾鲖的生长性能改善作用不显著(P0.05), 而补充微囊赖氨酸盐酸盐则能显著提高斑点叉尾鲖增重率, 降低饲料系数。  相似文献   

10.
Aspartate aminotransferase (L-aspartate : 2-oxoglutarate aminotransferase, EC 2.6.1.1) has been covalently bound to chemically activated collagen films. This enzyme had never previously been coupled to any other solid support. The coupling method, including acyl azide formation on the carrier, allowed coupling of many other enzymes. A systematic study of coupling conditions has been performed; influence of time of coupling and of concentration of coupling solution on the enzymatic activity retained on the film. Coupling solutions could be used for several successive couplings. To determine the yield of binding, N-[14C] ethylmaleimide-labelled enzyme was prepared fully active and bound to collagen films. After lyophilisation the film retained most of its activity when stored in buffer and the half-life of the enzymatic film was about ten months. pH Dependence and activation energy were about the same for soluble and coupled enzyme. Coupling protects against thermal denaturation and increases the stability of the enzyme; the enzymatic film could be used repeatedly. Kinetics were somewhat modified in the coupled enzyme as compared to the enzyme in solution. Glutamate appeared more available while oxaloacetate seemed to be limiting. These modifications might be due to the proteic support itself. The enzymatic films also revealed themselves as a good tool for industrial or clinical purposes as well as for studying the mechanism of enzyme action.  相似文献   

11.
Glycation-induced high-density lipoprotein (HDL) modification by aldehydes can result in loss of its antiinflammatory/antioxidative properties, contributing to diabetes-associated cardiovascular diseases. Isoferulic acid, a major active ingredient of Cimicifuga heracleifolia, shows antiinflammatory, antiviral, antioxidant, and antidiabetic properties. Thus, this study investigated the antiglycation effect of isoferulic acid against compositional modifications of HDL and loss of biological activity of HDL-paraoxonase induced on incubation with different aldehydes. Protective effect of isoferulic acid was assessed by subjecting purified HDL from human plasma to glycation with methylglyoxal, glyoxal, or glycolaldehyde and varying concentrations of isoferulic acid. The effect of isoferulic acid was analyzed by determining amino group number, tryptophan and advanced glycation end-product fluorescence, thermal denaturation studies, carboxymethyl lysine content, and activity of HDL-paraoxonase. Concentration-dependent inhibitory action of isoferulic acid was observed against extensive structural perturbations, decrease in amino group number, increase in carboxymethyl lysine content, and decrease in the activity of HDL-paraoxonase caused by aldehyde-associated glycation in the HDL molecule. Isoferulic acid, when taken in concentration equal to that of aldehydes, was most protective, as 82-88% of paraoxonase activity was retained for all studied aldehydes. Isoferulic acid shows antiglycation action against aldehyde-associated glycation in HDL, which indicates its therapeutic potential for diabetic patients, especially those with micro-/macrovascular complications.  相似文献   

12.
Acetylation, glycosylation, and methylation, which modify lysine residues of horse liver alcohol dehydrogenase, have been investigated. Acetylation reacted with approximately two-third of the total lysines to induce the greatest structural changes of the enzyme. Glycosylation modified only one lysine residue selectively with indiscernible structural changes. The glycosylation effect was very specific with respect to diastereoisomers for aldopentoses, aldohexoses, and ketohexoses. Methylation produced the largest enhancement in the oxidative activity, which is related to the stability of the modified enzyme to prolonged modification and thermal denaturation. Kinetic studies revealed that a change in the maximal velocity was primarily responsible for the observed activity differences in the modifications.  相似文献   

13.
The carboxypeptidase inhibitor from Russet Burbank potatoes was subjected to a variety of chemical modifications and their effects on inhibitory activity toward carboxypeptidases A and B were determined. The importance of the alpha carboxylate of glycine-39 to the enzyme-inhibitor interaction was demonstrated by the observation that a derivative in which all four carboxyls were modified was inactive whereas a derivative in which only the beta carboxylates of aspartic acid residues 5, 16, and 17 were masked retained full inhibitory activity. In addition to these three aspartic acid residues, lysine residues 10 and 13, histidine residues 3 and 15, and arginine-32 were modified and residues 1-5 removed with little effect on inhibitory activity. Tryptophan residues 22 and 28 did not react with 2-hydroxy-5-nitrobenzyl bromide or o-nitrophenylsulfenyl chloride, and thus are presumed to be buried in the interior of the inhibitor molecule. Although tyrosine-37 was acetylated without affecting binding characteristics, both carboxypeptidases A and B protected against deacetylation by hydroxylamine. These studies indicate that the carboxyl terminal region of the inhibitor is in contact with enzyme in the complex. The parallel effects of modifications on inhibitory activity toward carboxypeptidases A and B support previous evidence that both enzymes utilize the same binding site on the inhibitor [C. A. Ryan (1971), Biochem. Biophys. Res. Commun. 44, 1265].  相似文献   

14.
Dissociation, denaturation, and deactivation of aldolase from rabbit muscle in the acid pH range have been investigated using sedimentation analysis, fluorescence, circular dichroism, and activity tests. Under comparable experimental conditions the pH-dependent profiles of deactivation and denaturation parallel the dissociation of the enzyme. In the range of dissociation at pH4-5tetramers and monomers are in equilibrium. Intrinsic chromophores and far-ultraviolet circular dichroism suggest the transition to be a complex multistep process. At pH approximately 2.3 the enzyme is split into its fully inactive monomers which still contain some residual secondary structure. After reassociation under optimum conditions (0.2 M phosphate buffer pH 7.6, 1 mM EDTA, 0.1 mM dithiothreitol, 0 degrees C, enzyme concentration 0.4-59 mug/ml) up to 95% enzymic activity is recovered which belongs to a renatured tetrameric species indistinguishable from the native enzyme by all available biochemical and physicochemical criteria.  相似文献   

15.
The ice-nucleating bacterium, Pantoea agglomerans IFO12686, induces the cryoprotective protein (CRP) by cold acclimation at 12 degrees C. The CRP was purified to apparent homogeneity by various chromatographies. We found that the purified CRP was a monomer of approximately 29,000 according to gel filtration chromatography and SDS-PAGE, and was a heat-stable protein. The CRP could protect freeze-labile enzymes, lactate dehydrogenase (LDH), alcohol dehydrogenase (ADH) and isocitrate dehydrogenase (iCDH), against freezing-thawing denaturation. The activity of the CRP was about 3.5 x 10(4) times more effective than bovine serum albumin (BSA) and 2 x 10(6) times than COR26 from the ice-nucleating bacterium Pseudomonas fluorescens KUIN-1. We confirmed that the CRP was a novel protein, as judged by the a different molecule mass from the already-known cryoprotectants, and has an extremely high cryoprotective activity.  相似文献   

16.
Chemical modifications are carried out to investigate cationic residues of lipoamide dehydrogenase. Amidinations with imidoesters which introduce amidino groups with various substituents, alter the dehydrogenase activity without significantly affecting other functional activities. Correlation analyses of kinetic parameters (lipoamide reduction catalyzed by amidinated enzymes) for substituent effects offer a useful technique for studying structure-function relationship of the lysine residues. The specificity of phosphopyridoxylation and subsequent photoinactivation of the phosphopyridoxylated enzyme enable us to identify the lysine residue at the proximity of the active site histidine. Sensitized photoinactivation of glyoxalated enzyme together with relevant results suggest that the lysine residue provides cationic environment to the hydrophobic active site, and thereby, affects the reactivity of the active site histidine in the dehydrogenase reaction.  相似文献   

17.
Cytosine deaminase (cytosine aminohydrolase, EC 3.5.4.1) stoichiometrically catalyzes the hydrolytic deamination of cytosine and 5-fluorocytosine to uracil and 5-fluorouracil, respectively. Amino acid residues located in or near the active sites of the intracellular cytosine deaminase fromChromobacterium violaceum YK 391 were identified by chemical modification studies. The enzymic activity was completely inhibited by chemical modifiers, such as 1 mM NBS, chloramine-T, ρ-CMB, ρ-HMB and iodine, and was strongly inhibited by 1 mM PMSF and pyridoxal 5′-phosphate. This chemical deactivation of the enzymic activity was reversed by a high concentration of cytosine. Furthermore, the deactivation of the enzymic activity by ρ-CMB was also reversed by 1 mM cysteine-HCl, DTT and 2-mercaptoethanol. These results suggested that cysteine, tryptophan and methionine residues might be located in or near the active sites of the enzyme, while serine and lysine were indirectly involved in the enzymic activity. The intracellular cytosine deaminase fromC. violaceum YK 391 was assumed to be a thiol enzyme.  相似文献   

18.
Ahmad A  Akhtar MS  Bhakuni V 《Biochemistry》2001,40(7):1945-1955
Glucose oxidase (GOD) from Aspergillus niger is an acidic dimeric enzyme having a high degree of localization of negative charges on the enzyme surface and dimer interface. We have studied the effect of monovalent cations on the structure and stability of GOD using various optical spectroscopic techniques, limited proteolysis, size exclusion chromatography, differential scanning calorimetry, and enzymic activity measurements. The monovalent cations were found to influence the enzymic activity and tertiary structure of GOD, but no effect on the secondary structure of the enzyme was observed. The monovalent cation-stabilized GOD was found to have a more compact dimeric structure but lower enzymic activity than the native enzyme. The enzyme's K(m) for D-glucose was found to be slightly enhanced for the monovalent cation-stabilized enzyme (maximum enhancement of about 35% for LiCl) as compared to native GOD. Comparative denaturation studies on the native and monovalent cation-stabilized enzyme demonstrated a significant resistance of cation-stabilized GOD to urea (about 50% residual activity at 6.5 M urea) and thermal denaturation (Delta T(m) maximum of 10 degrees C compared to native enzyme). However, pH-induced denaturation showed a destabilization of monovalent cation-stabilized GOD as compared to the native enzyme. The effectiveness of monovalent cations in stabilizing GOD structure against urea and thermal denaturation was found to follow the Hofmeister series: K(+) > Na(+) > Li(+).  相似文献   

19.
The effect of the number of active groups of new affinity supports--odigose and odifil (ethylsulfo-activated agarose) on the retention of the specific activity of muscle aldolase was investigated. The active center of the enzyme includes lysine able to react with activated supports. The aldolase completely retained the specific activity after immobilization on the abovementioned relatively high-substituted supports, on which other enzymes, e.g. phosphorylase B, NAD-kinase from pigeon heart, were partially or completely inactivated. The aldolase was inactivated when being immobilized on more substituted supports. The enzyme specific activity completely retained if the high substituted supports were preliminary incubated at 37 degrees to destroy some diazo-groups.  相似文献   

20.
The reactivity of thiol groups and the subunit structure of aldolase   总被引:7,自引:6,他引:1  
1. Seven unique carboxymethylcysteine-containing peptides have been isolated from tryptic digests of rabbit muscle aldolase carboxymethylated with iodo[2-(14)C]acetic acid in 8m-urea. These peptides have been characterized by amino acid and end-group analysis and their location within the cyanogen bromide cleavage fragments of the enzyme has been determined. 2. Reaction of native aldolase with 5,5'-dithiobis-(2-nitrobenzoic acid), iodoacetamide and N-ethylmaleimide showed that a total of three cysteine residues per subunit of mol.wt. 40000 were reactive towards these reagents, and that the modification of these residues was accompanied by loss in enzymic activity. Chemical analysis of the modified enzymes demonstrated that the same three thiol groups are involved in the reaction with all these reagents but that the observed reactivity of a given thiol group varies with the reagent used. 3. One reactive thiol group per subunit could be protected when the modification of the enzyme was carried out in the presence of substrate, fructose 1,6-diphosphate, under which conditions enzymic activity was retained. This thiol group has been identified chemically and is possibly at or near the active site. Limiting the exposure of the native enzyme to iodoacetamide also served to restrict alkylation to two thiol groups and left the enzymic activity unimpaired. The thiol group left unmodified is the same as that protected by substrate during more rigorous alkylation, although it is now more reactive towards 5,5'-dithiobis-(2-nitrobenzoic acid) than in the native enzyme. 4. Conversely, prolonged incubation of the enzyme with fructose 1,6-diphosphate, which was subsequently removed by dialysis, caused an irreversible fall in enzymic activity and in thiol group reactivity measured with 5,5'-dithiobis-(2-nitrobenzoic acid). 5. It is concluded that the aldolase tetramer contains at least 28 cysteine residues. Each subunit appears to be identical with respect to number, location and reactivity of thiol groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号