首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The receptors for retinoic acid (RA) and for 1α,25-dihydroxyvitamin D3 (VD), RAR, RXR, and VDR are ligand-inducible members of the nuclear receptor superfamily. These receptors mediate their regulatory effects by binding as dimeric complexes to response elements located in regulatory regions of hormone target genes. Sequence scanning of the tumor necrosis factor-α type I receptor (TNFαRI) gene identified a 3′ enhancer region composed of two directly repeated hexameric core motifs spaced by 2 nucleotides (DR2). On this novel DR2-type sequence, but not on a DR5-type RA response element, VD was shown to act through its receptor, the vitamin D receptor (VDR), as a repressor of retinoid signalling. The repression appears to be mediated by competitive protein–protein interactions between VDR, RAR, RXR, and possibly their cofactors. This VDR-mediated transrepression of retinoid signaling suggests a novel mechanism for the complex regulatory interaction between retinoids and VD. J. Cell. Biochem. 67:287–296, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
5.
6.
Vitamin D receptor (VDR) is a member of the nuclear hormone receptor superfamily. When bound to a variety of vitamin D analogues, VDR manifests a wide diversity of physiological actions. The molecular mechanism by which different vitamin D analogues cause specific responses is not understood. The published crystallographic structures of the ligand binding domain of VDR (VDR-LBD) complexed with ligands that have differential biological activities have exhibited identical protein conformations. Here we report that rat VDR-LBD (rVDR-LBD) in solution exhibits differential chemical shifts when bound to three ligands that cause diverse responses: the natural hormone, 1,25-dihydroxyvitamin D(3) [1,25(OH)?D?], a potent agonist analogue, 2-methylene-19-nor-(20S)-1,25-dihydroxyvitamin D? [2MD], and an antagonist, 2-methylene-(22E)-(24R)-25-carbobutoxy-26,27-cyclo-22-dehydro-1α,24-dihydroxy-19-norvitamin D? [OU-72]. Ligand-specific chemical shifts mapped not only to residues at or near the binding pocket but also to residues remote from the ligand binding site. The complexes of rVDR-LBD with native hormone and the potent agonist 2MD exhibited chemical shift differences in signals from helix-12, which is part of the AF2 transactivation domain that appears to play a role in the selective recruitment of coactivators. By contrast, formation of the complex of rVDR-LBD with the antagonist OU-72 led to disappearance of signals from residues in helices-11 and -12. We present evidence that disorder in this region of the receptor in the antagonist complex prevents the attachment of coactivators.  相似文献   

7.
Ligand-dependent signal transduction by nuclear receptors (NRs) includes dynamic exchanges of coactivator (CoA) and corepressor (CoR) proteins. Here we focused on the structural determinants of the antagonist- and inverse agonist-enhanced interaction of the endocrine NR vitamin D receptor (VDR) and the adopted orphan NR constitutive androstane receptor (CAR) from two species with the CoR NR corepressor. We found that the pure VDR antagonist ZK168281 and the human CAR inverse agonist clotrimazole are both effective inhibitors of the CoA interaction of their respective receptors, whereas ZK168281 resembled more the mouse CAR inverse agonist androstanol in its ability to recruit CoR proteins. Molecular dynamics simulations resulted in comparable models for the CoR receptor interaction domain peptide bound to VDR/antagonist or CAR/inverse agonist complexes. A salt bridge between the CoR and a conserved lysine in helix 4 of the NR is central to this interaction, but also helix 12 was stabilized by direct contacts with residues of the CoR. Fixation of helix 12 in the antagonistic/inverse agonistic conformation prevents an energetically unfavorable free floatation of the C terminus. The comparable molecular mechanisms that explain the similar functional profile of antagonist and inverse agonists are likely to be extended from VDR and CAR to other members of the NR superfamily and may lead to the design of even more effective ligands.  相似文献   

8.
The vitamin D receptor (VDR), a member of the nuclear receptor superfamily, mediates the biological actions of the active form of vitamin D, 1alpha,25-dihydroxyvitamin D(3). It regulates calcium homeostasis, immunity, cellular differentiation, and other physiological processes. Recently, VDR was found to respond to bile acids as well as other nuclear receptors, farnesoid X receptor (FXR) and pregnane X receptor (PXR). The toxic bile acid lithocholic acid (LCA) induces its metabolism through VDR interaction. To elucidate the structure-function relationship between VDR and bile acids, we examined the effect of several LCA derivatives on VDR activation and identified compounds with more potent activity than LCA. LCA acetate is the most potent of these VDR agonists. It binds directly to VDR and activates the receptor with 30 times the potency of LCA and has no or minimal activity on FXR and PXR. LCA acetate effectively induced the expression of VDR target genes in intestinal cells. Unlike LCA, LCA acetate inhibited the proliferation of human monoblastic leukemia cells and induced their monocytic differentiation. We propose a docking model for LCA acetate binding to VDR. The development of VDR agonists derived from bile acids should be useful to elucidate ligand-selective VDR functions.  相似文献   

9.
10.
11.
Hereditary vitamin D-resistant rickets (HVDRR) is a genetic disorder most often caused by mutations in the vitamin D receptor (VDR). The patient in this study exhibited the typical clinical features of HVDRR with early onset rickets, hypocalcemia, secondary hyperparathyroidism, and elevated serum concentrations of alkaline phosphatase and 1,25-dihydroxyvitamin D [1,25-(OH)(2)D(3)]. The patient did not have alopecia. Assays of the VDR showed a normal high affinity low capacity binding site for [(3)H]1,25-(OH)(2)D(3) in extracts from the patient's fibroblasts. However, the cells were resistant to 1,25-dihydroxyvitamin D action as demonstrated by the failure of the patient's cultured fibroblasts to induce the 24-hydroxylase gene when treated with either high doses of 1,25-(OH)(2)D(3) or vitamin D analogs. A novel point mutation was identified in helix H12 in the ligand-binding domain of the VDR that changed a highly conserved glutamic acid at amino acid 420 to lysine (E420K). The patient was homozygous for the mutation. The E420K mutant receptor recreated by site-directed mutagenesis exhibited many normal properties including ligand binding, heterodimerization with the retinoid X receptor, and binding to vitamin D response elements. However, the mutant VDR was unable to elicit 1,25-(OH)(2)D(3)-dependent transactivation. Subsequent studies demonstrated that the mutant VDR had a marked impairment in binding steroid receptor coactivator 1 (SRC-1) and DRIP205, a subunit of the vitamin D receptor-interacting protein (DRIP) coactivator complex. Taken together, our data indicate that the mutation in helix H12 alters the coactivator binding site preventing coactivator binding and transactivation. In conclusion, we have identified the first case of a naturally occurring mutation in the VDR (E420K) that disrupts coactivator binding to the VDR and causes HVDRR.  相似文献   

12.
Vitamin D receptor (VDR) regulates the expression of vitamin D-dependent genes upon binding to its cognate ligand, 1alpha, 25-dihydroxyvitamin D3 (1,25(OH)2D3). This process represents a complex interaction of ligand-bound VDR with nuclear proteins like retinoid X receptor, nuclear accessory factors, and regulatory elements of the target gene. Expression of full-length VDR in Escherichia coli revealed that VDR binds DnaK, a member of heat-shock protein (Hsp) family, with high affinity. By systematic N-terminal truncation of VDR, the interaction site of DnaK on VDR was localized within a 17-amino-acid segment (105-122) representing the "hinge region" between the DNA-binding and hormone-binding domains of VDR. The putative DnaK-binding site was further localized between residues 105 to 109 of VDR by using binding-energy-minimization studies. The interaction of DnaK with VDR did not influence the binding of 1,25(OH)2D3 or nuclear accessory factor(s) to VDR. Furthermore, bovine brain Hsp 70, similar to DnaK, interacted with VDR-ligand-binding domain (105-427). These results suggest that DnaK/Hsp 70 may interact with VDR prior to the activation of the latter by 1,25(OH)2D3-binding.  相似文献   

13.
Interaction between c-fos and 1,25(OH)2 vitamin D3 (VD) on the type I collagen synthesis was studied. VD inhibited collagen synthesis and type I collagen mRNA expression in MC3T3-E1 osteoblastic cells. In contrast, VD reversed the inhibition of collagen synthesis and mRNA expression of the c-fos transfectants that overexpressed c-fos gene to a comparable level as those of the control transfectants. The gel shift assay showed that vitamin D receptor (VDR) complex binding to vitamin D responsive element (VDRE) was inhibited under constitutively expressed c-fos gene, suggesting that c-fos gene product, c-Fos, may inhibit the binding of VDR complex to VDRE by making a c-Fos-VDR complex. The result suggests the existence of a fine tuning between c-fos and VD in the bone metabolism which may be relevant to the pathogenesis of rheumatoid bone lesion. © 1995 Wiley-Liss, Inc.  相似文献   

14.
15.
Modulation of the vitamin D receptor (VDR) with a ligand has the potential to be useful for the oral treatment of osteoporosis. One component of our lead generation strategy to identify synthetic ligands for VDR included a fragment based drug design approach. Screening of ligands in a VDR fluorescence polarization assay and a RXR/VDR conformation sensing assay resulted in the identification of multiple fragment hits (lean >0.30). These fragment scaffolds were subsequently evaluated for interaction with the VDR ligand binding domain using hydrogen–deuterium exchange (HDX) mass spectrometry. Significant protection of H/D exchange was observed for some fragments in helixes 3, 7, and 8 of the ligand binding domain, regions which are similar to those seen for the natural hormone VD3. The fragments appear to mimic the A-ring of VD3 thereby providing viable starting points for synthetic expansion.  相似文献   

16.
Vitamin D nuclear receptor mediates the genomic actions of the active form of vitamin D, 1,25(OH)2D3. This hormone is involved in calcium and phosphate metabolism and cell differentiation. Compared to other nuclear receptors, VDR presents a large insertion region at the N-terminal part of the ligand binding domain between helices H1 and H3, encoded by an additional exon. This region is poorly conserved in VDR in different species and is not well ordered as observed by secondary structure prediction. We engineered a VDR ligand binding domain mutant by removing this insertion region. Here we report its biochemical and biophysical characterization. The mutant protein exhibits the same ligand binding, dimerization with retinoid X receptor and transactivation properties as the wild-type VDR, suggesting that the insertion region does not affect these main functions. Solution studies by small angle X-ray scattering shows that the conformation in solution of the VDR mutant is similar to that observed in the crystal and that the insertion region in the VDR wild-type is not well ordered.  相似文献   

17.
It has been reported that vitamin K deficiency in the rat markedly increases the 1,25-dihydroxyvitamin D3 receptor (VDR) binding to DNA and that vitamin K-dependent gamma-carboxylation of endogenous substrates of the intestinal and renal cytosol, also containing VDR, sharply reduced that binding (Sergeev, I.N., and Spirichev, V.B. (1989) Nutr. Res. 9, 725-733). In the present study we have evaluated vitamin K-dependent 14CO2 incorporation to VDR quantitated by immunoprecipitation with anti-VDR monoclonal antibodies. The results obtained strongly suggest that VDR in vitro can undergo gamma-carboxylation in the presence of vitamin K1 and that 15-25% of Glu residues in the VDR are carboxylated in vivo. Taking into account our earlier findings, it is likely that the VDR gamma-carboxylation modulates its binding to DNA.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号