首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated whether the parasite load of an individual could be predicted by its position in a social network. Specifically, we derived social networks in a solitary, territorial reptile (the tuatara, Sphenodon punctatus), with links based on the sharing of space, not necessarily synchronously, in overlapping territories. Tuatara are infected by ectoparasitic ticks (Amblyomma sphenodonti), mites (Neotrombicula spp.) and a blood parasite (Hepatozoon tuatarae) which is transmitted by the tick. We recorded the location of individual tuatara in two study plots twice daily during the mating season (March) in 2 years (2006 and 2007) on Stephens Island, New Zealand. We constructed weighted, directed networks to represent pathways for parasite transmission, where nodes represented individual tuatara and edges connecting the nodes represented the extent of territory overlap among each pair of individuals. We considered a network-based hypothesis which predicted that the in-strength of individuals (the sum of edge weights directed towards a node) in the derived network would be positively related to their parasite load. Alternatively, if the derived social network did not reflect actual parasite transmission, we predicted other factors such as host sex, size or territory size may better explain variation in parasite infection patterns. We found clear positive relationships between the in-strength of tuatara and their tick loads, and infection patterns with tick-borne blood parasites. In particular, the extent that individuals were connected to males in the network consistently predicted tick loads of tuatara. However, mite loads of tuatara were significantly related to host sex, body size and territory size, and showed little association with network measures. The results suggest that the pathway of transmission of parasites through a population will depend on the transmission mechanism of the parasite, but that social networks provide a powerful predictive tool for some parasites.  相似文献   

2.
We explored infection patterns and temporal dynamics of the protozoan blood parasite Hepatozoon tuatarae (Apicomplexa) infecting the tuatara (Sphenodon punctatus), a protected reptile living on Stephens Island, New Zealand. In March 2006, we surveyed tuatara in five study sites to examine spatial variation in infection prevalence, and four times, from May 2005 to November 2006, we recaptured marked individuals within three study sites to examine the temporal dynamics of infection. We also examined how blood-parasite infection patterns were influenced by host sex, body size, and host infestation with ticks (Amblyomma sphenodonti) and mites (Neotrombicula spp.), which are potential vectors of the blood parasite. Infection prevalence (16.9-24% infected) and intensity (<0.01-0.1% blood cells infected) were low in all samples. Infection intensity varied among the five sampled sites in March 2006, but prevalence did not. Neither infection prevalence nor intensity varied with time, and infections were detected in consecutive samples from recaptured individuals for up to 18 mo. Neither survey showed an influence of host sex on infection, but both surveys showed infection intensity declined with increasing host body size, as did infection prevalence in the spatial survey. In the temporal survey, we found a positive relationship between the tick numbers on hosts and blood-parasite infection intensity, which were stronger in two of the sampling periods and among larger hosts. These data suggest that exposure and susceptibility to infection decreases with host size and that ticks, but not mites, are probably the vectors in this ancient host-parasite association of a long-lived (>50 yr) host.  相似文献   

3.
Due to the close association between parasites and their hosts, many ‘generalist’ parasites have a high potential to become specialized on different host species. We investigated this hypothesis for a common ectoparasite of seabirds, the tick Ixodes uriae that is often found in mixed host sites. We examined patterns of neutral genetic variation between ticks collected from Black‐legged kittiwakes (Rissa tridactyla) and Atlantic puffins (Fratercula arctica) in sympatry. To control for a potential distance effect, values were compared to differences among ticks from the same host in nearby monospecific sites. As predicted, there was higher genetic differentiation between ticks from different sympatric host species than between ticks from nearby allopatric populations of the same host species. Patterns suggesting isolation by distance were found among tick populations of each host group, but no such patterns existed between tick populations of different hosts. Overall, results suggest that host‐related selection pressures have led to the specialization of I. uriae and that host race formation may be an important diversifying mechanism in parasites.  相似文献   

4.
Mechanisms of host preference in ectoparasites are important to the understanding of host‐parasite interactions. Since ectoparasites negatively affect the condition of their hosts, while the hosts’ condition itself may affect the parasites’ choice, separating the factors that drive host preference from parasite impact asks for experiments. We combined the data of two choice experiments to investigate the preference of the nidicolous tick Ixodes arboricola when exposed to the nestlings of a passerine bird (Parus major). In the first experiment, in which complete broods at hatching were exposed to an ecologically relevant number of ticks, the relationship between tick loads and nestlings’ developmental status was characterized by a distribution with the highest tick loads on the more developed nestlings. Host preference became more apparent at a smaller brood size, suggesting a role for host density. In a second experiment we evaluated host choice in a pairwise choice experiment, exposing pairs of siblings with contrasting developmental status to eight ticks. In the first and the second pair, a median developed nestling was linked with the most developed and the least developed nestling, respectively. Seventy‐two h after tick exposure we measured the innate constitutive humoral immunity and haematocrit. No differences were found in innate immunity, but the least developed nestlings had on average a lower haematocrit than the median and most developed nestlings. Significantly fewer ticks attached on the least developed nestling compared to the median nestling, and this difference was more pronounced when the innate immunity of the median developed nestling was higher. No difference in tick load was found among the median and best developed nestlings. The linkage between host preference and host physiological condition provide further insight in the mechanisms driving ectoparasite aggregation, which is important for the population dynamics of host, ticks and tick‐transmitted pathogens.  相似文献   

5.
Cattle-fever tick (Boophilus microplus and B. annulatus) populations that develop acaricide resistance become more difficult to control or eradicate. We used a simulation model to assess the direct and indirect effects of interactions among season, habitat type, grazing strategy, and acaricide resistance on the ability to eradicate Boophilus infestations in semi-arid thornshrublands of Texas, USA. Season of infestation appeared to have the strongest effect, with infestations begun on 27 September (autumn) tending to die out sooner than those begun on 1 March (spring) and to remain undetected. Habitat type had the next strongest effect, with infestations surviving much longer as canopy cover increased from uncanopied buffelgrass (Cenchrus ciliaris) habitats to mesquite (Prosopis glandulosa)-canopied grass habitats. Acaricide resistance had a moderate effect; as expected, highly resistant tick populations survived longer than those with no acaricide resistance. The importance of grazing strategy varied with changes in habitat type: as canopy cover increased, infestation duration increased faster under continuous grazing than under rotational grazing strategies. Importance of grazing strategy also varied with acaricide resistance: detected tick populations with no and slight acaricide resistance subjected to acaricide treatments tended to survive longer under rotational grazing than continuous grazing, due to reduced contact with a treated host. Populations with moderate and high resistance behaved more like untreated populations, tending to survive longer under continuous, rather than rotational, grazing, because they experienced less mortality on a treated host. Assuming acaricide treatments at 2-week intervals and maintenance of cattle in infested pastures, results indicate that, for each habitat type, infesting ticks have a threshold of acaricide resistance below which one can eradicate them faster with continuous grazing than with rotational grazing. As canopy cover increases, this threshold appears to shift from high resistance (in grass) to slight resistance (in mesquite).  相似文献   

6.
Abstract

In this study we investigate the geographic distribution, genetic diversity, and phylogenetic relationships of an endangered tick, Amblyomma sphenodonti (Family Ixodidae). Amblyomma sphenodonti and its host, the tuatara (Sphenodon), are found only on small offshore islands around New Zealand. Our results show that Amblyomma sphenodonti has a more severely restricted geographic distribution than its host, as it was found on only eight of 28 islands (four out of 12 island groups) where tuatara still live. The prevalence of A. sphenodonti is likely to have been affected by low host density and fluctuations in host population size as tuatara populations became isolated on offshore islands. Analysis of A. sphenodonti cytochrome oxidase 1 (CO1) sequences indicated a lack of gene flow between islands, with fixed differences in CO1 sequences between islands, but almost no genetic diversity within island populations. A similar phylogenetic pattern to that observed in tuatara mtDNA was observed, indicating co‐evolution of two species, at least since the Pleistocene. Phylogenetic analysis using 18S rRNA sequences suggest that A. sphenodonti is not closely related to other Amblyomma species, and that a separate genus for this species may be warranted. However, data from other ixodid ticks are required before the distinctiveness of A. sphenodonti can be confirmed and the phylogenetic relationships among ixodid ticks fully understood.  相似文献   

7.
A major question for understanding the ecology of parasite infections and diseases in wildlife populations concerns the transmission pathways among hosts. Network models are increasingly used to model the transmission of infections among hosts – however, few studies have integrated host behaviour and genetic relatedness of the parasites transmitted between hosts. In a study of the Australian sleepy lizard Tiliqua rugosa and its three‐host ixodid tick (Bothriocroton hydrosauri), we asked if patterns of genetic relatedness among ticks were best explained by spatial proximity or the host transmission network. Using synchronous GPS locations of over 50 adult lizards at 10 min intervals across the three‐month activity period, over 2 years, we developed two alternative parasite transmission networks. One alternative was based on the spatial proximity of lizards (at the centre of their home ranges), and the other was based on the frequency of asynchronous shared refuge use between pairs of lizards. In each year, adult ticks were removed from lizards and their genotypes were determined at four polymorphic microsatellite loci. Adult ticks collected from the same host were more related to each other than ticks from different hosts. Similarly, adult ticks collected from different lizards had a higher relatedness if those lizards had a shorter path length connecting them on each of the two networks we explored. The predictors of tick relatedness differed between years. In the first year, the asynchronous shared refuges network was the stronger predictor of tick relatedness, whereas in year two, the spatial proximity‐based network was the stronger predictor of tick relatedness. We speculate on how changing environmental conditions might change the relative importance of alternative processes driving the transmission of parasites.  相似文献   

8.
Impacts of sheep ticks Ixodes ricinus on livestock, gamebirds and wildlife are of concern across Europe. The present study describes livestock and tick management by 36 farmers from three upland sites of conservation importance in North Wales, where farmers consider that ticks have increased during the last 25 years. Sheep, average densities of 2.0 animals per ha were treated with pour‐on acaricides in spring, again in July, and also when removed from the moor in autumn. Given acaricide efficacy rates, sheep were susceptible to tick bites for half the period on the moor. Sheep from 17 farms were examined for ticks. Infestations were similar between farms and in relation to the acaricide used, averaging 9.3 ticks per sheep, although they were lower where the interval between successive acaricide treatments was shorter. Repeated sampling of sheep and red grouse chicks showed no annual difference in tick burdens on grouse chicks, which averaged 6.2 ticks per chick, although there were three‐fold fewer ticks on sheep in 2018 than in previous years. Tick bite rates on sheep and grouse were higher than elsewhere in the U.K. Most farmers interviewed would aim to improve their tick management using longer‐lasting acaricides and treating sheep more frequently, although they would need advice and financial help, which is currently unavailable via Government funded agri‐environment schemes.  相似文献   

9.
A. R. Main  C. M. Bull 《Oecologia》2000,122(4):574-581
Populations of the Australian sleepy lizard, Tiliqua rugosa, near Mt. Mary, South Australia carry natural infestations of two tick species Aponomma hydrosauri and Amblyomma limbatum. In field experiments at two sites, 18 km apart, lizards with experimentally increased tick loads had smaller home ranges, moved shorter distances in a day, and were found basking more but moving less often than lizards from which ticks were experimentally removed. The results were consistent for adult lizards in two years, and for sub-adults in a third year. Laboratory trials showed that juvenile lizards that had tick infestations had lower sprint speeds than uninfested siblings, and that adults with tick infestations had less endurance than those that were uninfested. The results contrast with those of a previous survey that showed that lizards with high tick loads had greater body size and remained longer at a site, but indicate that there may be a balance, for lizards, between the fitness advantages in occupying habitats with high-quality resources, and the costs from parasites that also prefer those habitats. Received: 02 March 1999 / Accepted: 07 October 1999  相似文献   

10.
The seabird tick Ixodes uriae parasitizes over 60 host species in the circumpolar regions of both hemispheres. To assess the impacts of these ticks on the growth and development of nestling seabirds, we used a logistic growth model to interpolate between successive measures of mass (g) and wing chord (mm) for 558 Cassin's auklet Ptychoramphus aleuticus and 344 rhinoceros auklet Cerorhinca monocerata chicks over 11 years (1997–2008, less 2003) on Triangle Island, British Columbia, Canada. From the model, we estimated the asymptotic measure and the age at inflection point for each chick's growth trajectory, and assessed their relationships with tick load relative to other sources of annual and seasonal variation in growth. Most chicks (72.4% of Cassin's auklets, 62.2% of rhinoceros auklets) hosted ≥ 1 ticks, and the median tick load on infested chicks was two in both species. Infestation rates varied by a factor of about two among years (0.42 to 0.87 overall), but were uncorrelated between species and with air temperatures over the preceding winter. The probability of hosting a tick declined strongly with chick age, mainly in the first 20 days after hatching, and to near zero by fledging. Asymptotic weights and/or wing lengths declined with tick load in both species, but at normal loads the reductions were minor relative to those imposed by other factors; only at very high loads, which were rare, were effects likely to be biologically relevant. Tick load and survival to fledging were unrelated in both species. While our study found little influence of ticks, we believe there is need for further study of the relationships between parasites and seabird demography, especially in light of ongoing environmental change.  相似文献   

11.
Host community composition and biodiversity can limit and regulate tick abundance which can have profound impacts on the incidence and severity of tick-borne diseases. Our understanding of the relationship between host community composition and tick abundance is still very limited. Here, we present a novel mathematical model of a stage-structured tick population to study the influence of host behaviour and competition in the presence of heterospecifics and the influence of host predation on tick densities. We examine the influence of specific changes in biodiversity that modify the competition among and the predation on small and large host populations. We find that increasing biodiversity will not always reduce tick populations, but depends on changes in species composition affecting the degree and type competition among hosts, and the host the predation is acting on. With indirect competition, tick densities are not regulated by increasing biodiversity; however, with direct competition, increased biodiversity will regulate tick densities. Generally, we find that biodiversity will regulate tick densities when it affects tick-host encounter rates. We also find that predation on small hosts have a limited influence on reducing tick populations, but when the predation was on large hosts this increased the magnitude of tick population oscillations. Our results have tick-management implications: while controlling large host populations (e.g. deer) and adult ticks will decrease tick densities, measures that directly control the nymph ticks could also be effective.  相似文献   

12.
Parasites profoundly influence the lives of their hosts, yet the dynamics of host–parasite interactions are poorly understood – especially in reptiles. We examined the ecological correlates of parasitism by ixodid ticks in an assemblage of 10 snake species in tropical Australia. In total, we recorded 3803 ticks on 1841 individual snakes of six species (no ticks were found on the other species). Molecular analyses confirmed the tropical reptile tick (Amblyomma fimbriatum: Ixodidae) to be the most common snake tick at our study site, with inter‐ and intraspecific variation in tick prevalence and intensity. Tick attachment sites were random on most snake species, but both male and female ticks congregated on the heads of the colubrid snake Boiga irregularis and the python Simalia amethistina. In these same species, tick loads were higher on snakes captured in woodland than in rainforest. Females of two python species (Aspidites melanocephalus and S. amethistina) had higher tick loads than did males. In B. irregularis, individuals captured in the dry season had higher tick loads than those captured in the wet season. In most parasitized snake species, larger individuals had greater tick loads. Data from snake recaptures confirmed individual tick burdens frequently varied, with little correlation between tick loads on the same snake at successive captures (except for B. irregularis). Finally, tick intensity was not correlated with (and thus, presumably did not influence) the body condition of any snake species in our study. Use of specific types of refuge sites may strongly influence tick loads on snakes in this system.  相似文献   

13.
Parent-offspring conflict may arise because the lifetime reproductive success of the parent is more influenced by its life span than by reproductive success during a particular reproductive event, while the fitness of an offspring depends firstly on its own survival as a juvenile and only subsequently on its own reproductive success. The naive immune system of young animals may allow offspring to be much more affected by parasites than their parents, and thus cause an initial asymmetry in a potential parent-offspring conflict. We investigated this type of conflict by assessing the health status and the immune response of parent and offspring sand martins Riparia riparia infested with manipulated loads of ticks Ixodes lividus (nests either treated with pyrethrin, water, or just visited). The prevalence and the intensity of tick infestations differed among treatments, with low tick loads in nests with the pyrethrin treatment. Ticks reduced the reproductive success of the host and increased offspring wing length. Broods with ticks had higher leukocyte concentrations and concentrations of immunoglobulins. The concentration of immunoglobulins in nestlings was negatively related to brood size and nestling tarsus length. Nestlings receiving the control treatments had a positive association between wing length and the concentration of immunoglobulins and a negative association between tarsus length and immunoglobulins. In contrast, adult sand martins did not respond to the parasite treatment in terms of immune response. Hence, the naive immune system of nestlings may be the crucial factor causing the parent-offspring conflict over costs of parasitism to be resolved to the advantage of parents that may sacrifice nestlings in heavily parasitized nests. Received: 30 March 1998 / Accepted: 5 December 1998  相似文献   

14.
Tick vector systems are comprised of complex climate‐tick‐host‐landscape interactions that are difficult to identify and estimate from empirical observations alone. We developed a spatially‐explicit, individual‐based model, parameterized to represent ecological conditions typical of the south‐central United States, to examine effects of shifts in the seasonal occurrence of fluctuations of host densities on tick densities. Simulated shifts in the seasonal occurrence of periods of high and low host densities affected both the magnitude of unfed tick densities and the seasonality of tick development. When shifting the seasonal densities of all size classes of hosts (small, medium, and large) synchronously, densities of nymphs were affected more by smaller shifts away from the baseline host seasonality than were densities of larval and adult life stages. When shifting the seasonal densities of only a single size‐class of hosts while holding other size classes at their baseline levels, densities of larval, nymph, and adult life stages responded differently. Shifting seasonal densities of any single host‐class earlier resulted in a greater increase in adult tick density than when seasonal densities of all host classes were shifted earlier simultaneously. The mean densities of tick life stages associated with shifts in host densities resulted from system‐level interactions of host availability with tick phenology. For example, shifting the seasonality of all hosts ten weeks earlier resulted in an approximately 30% increase in the relative degree of temporal co‐occurrence of actively host‐seeking ticks and hosts compared to baseline, whereas shifting the seasonality of all hosts ten weeks later resulted in an approximately 70% decrease compared to baseline. Differences among scenarios in the overall presence of active host‐seeking ticks in the system were due primarily to the degree of co‐occurrence of periods of high densities of unfed ticks and periods of high densities of hosts.  相似文献   

15.
Understanding the factors that influence patterns of ectoparasite infestation within wildlife populations involves knowledge of the mechanisms that influence host infestation. For ectoparasitic ticks, knowing where ticks might occur in the off-host environment and how they locate their hosts is essential to understanding patterns of ectoparasite infestation. The tuatara tick (Amblyomma sphenodonti) parasitises the tuatara (Sphenodon punctatus) on Stephens Island, New?Zealand. We completed a series of laboratory microcosm experiments to examine daily activity patterns, microhabitat preferences and host-seeking behaviour by Amblyomma sphenodonti. Firstly, to determine the diel activity pattern of ticks, we observed the behaviour of ticks every 2?h over a 48-h period. We then tested the preferences of ticks for soil moisture, soil texture and shade by offering different pairs of substrate conditions. Last, to determine what cues ticks used to locate their hosts, we tested the response of ticks to filter paper infused with host scent or excrement. Ticks were most active at night. They also showed a significant preference for moister, coarser and shaded substrates 12 h after the start of the experiment. Ticks did not show an immediate response to either of the two host stimuli, but after 12 h showed a significant preference for host scent and avoided host excreta. We suggest that the microhabitat preferences of ticks reflect conditions within host refuges (burrows), and that the delayed response to host odour suggests ticks could use host scent to identify substrates frequented by hosts.  相似文献   

16.
The process responsible for the formation of genetically distinct populations associated with different host species is known as host-associated differentiation (HAD). Many insect parasites of plants have been shown to exhibit HAD but there have been fewer studies of HAD in parasites of vertebrate animals. Previous to this study, HAD has been documented in at least three species of ticks. The American dog tick, Dermacentor variabilis (Say) (Acari: Ixodidae) was chosen as the focal species for this study due to its importance as the vector of tularemia and Rocky Mountain spotted fever. Previous population genetic studies of this tick found the existence of various haplotypes but the tick’s host origins were unknown. In this study, ticks were collected from 15 vertebrate host species to test for HAD using single nuclear polymorphisms (SNPs). In total, 136 individual D. variabilis ticks were sequenced using ddRADseq. Genomic evidence was found to point to D. variabilis exhibiting HAD on eight different hosts. A STRUCTURE analysis showed that the highest posterior probability was obtained with a population size of eight and these populations correlated with host species. Pairwise FST values were as high as 0.622 and indicated a range of genetic distinction between host groups. In addition, ticks collected from the vegetation appeared as one homogenous distinct genotype suggesting the existence of nidicolous (nest dwelling) and non-nidicolous genotypes. The identification of host race formation occurring in this animal parasite has implications for the understanding of D. variabilis pathogen transmission and targeted control efforts because genetically distinct populations can differ in traits relevant to these applications.  相似文献   

17.
Quanttative data on host tick burdens ar fundamental for the initiation of control strategies and effective management of wildlife populations, but the methods of live sampling employed for domestic animals are unsuitable for sampling wild animals. Despite advances in the use of destructive methods (the scrub and digestion techniques) to obtain measures of the total tick burden on wildlife, these methods are too involved for many field workers, who often need only measures of relative tick burden. Recently, patch sampling methods have been introduced whereby only certain predilection sites are sampled, the presumption being that the number of ticks collected gives an indiccation of the relative degree of infestation. We examined the validity of patch sampling as a measure of relative tick burden by comparing adult ticks collected from the ears, head, neck, foreleg and perianal region of impala (aepyceros melampus) with total tick burdens of the same animals derived from the digestion technique. Adult ticks from patch sampling were positively and significantly correlated with total adults and total ticks (larvae, nymphs, and adults) on impala, with ticks patch sampled from the neck showing the highest correlation with the total tick burden. Comparison of relative tick loads from patch sampling with absolute tick loads from digestion for three classes of impala (females, bachelor males and territorial males) gave qualitatively similar results. We conclude that, when measures of relative tick load are sufficient and destructive sampling is not feasible, patch sampling can provide reliable information on relative tick burdens that are positively correlated with the total tick burden.  相似文献   

18.
The spatio-temporal attachment site patterns of ticks feeding on their hosts can be of significance if co-feeding transmission (i.e. from tick to tick without a systemic infection of the host) of pathogens affects the persistence of a given disease. Using tick infestation data on roe deer, we analysed preferred attachment sites and niche width of Ixodes ticks (larvae, nymphs, males, females) and investigated the degree of inter- and intrastadial aggregation. The different development stages showed rather consistent attachment site patterns and relative narrow feeding site niches. Larvae were mostly found on the head and on the front legs of roe deer, nymphs reached highest densities on the head and highest adult densities were found on the neck of roe deer. The tick stages feeding (larvae, nymphs, females) on roe deer showed high degrees of intrastadial spatial aggregation, whereas males did not. Male ticks showed large feeding site overlap with female ticks. Feeding site overlap between larval-female and larval-nymphal ticks did occur especially during the months May–August on the head and front legs of roe deer and might allow pathogen transmission via co-feeding. Tick density, niche width and niche overlap on roe deer are mainly affected by seasonality, reflecting seasonal activity and abundance patterns of ticks. Since different tick development stages occur spatially and temporally clustered on roe deer, transmission experiments of tick-borne pathogens are urgently needed.  相似文献   

19.
Tick species density and diversity on Aldabran tortoises was investigated in relation to the habitat range and size of each tortoise. Identification of tick infestation patterns forms an important aspect of effective tick control. Ten Aldabran tortoises were de‐ticked and monitored over the course of 2 months. Tick species found were Amblyomma sparsum, Amblyomma nuttalli, Amblyomma hebraeum and Boophilus decoloratus, with the most prevalent species found being A. sparsum. Tick loads varied considerably from 20 to 214 ticks per tortoise, with most ticks collected from the head/neck region. Tortoises ranging outside Haller Park had higher tick loads (70–214) compared with tortoises ranging within Haller Park (20–99). Tick load was not correlated with tortoise size. Results indicate that tick loads are related to the habitat range of the tortoises and may indirectly also be related to food preference and host food availability. Implications of the findings and appropriate tick control measures are discussed.  相似文献   

20.
Studies were carried out in the Connemara area of County Galway in the west of Ireland in order to determine the abundance and distribution of the tick, Ixodes ricinus and the prevalence of its infection with Borrelia burgdorferi. The tick was very abundant locally, in particular when associated with cattle, sheep and enclosed red deer. Large numbers of ticks not only occurred on the pastures, but also on adjacent roadside verges. No infections with B. burgdorferi could be demonstrated when nymphal ticks were sampled from central areas of the pastures, suggesting that livestock and red deer are probably not significant reservoirs of the spirochaete. Small numbers of infected nymphal and adult ticks were associated with hedges, dry stone walls, the margins of woodland adjoining infested pastures and in woodland from which livestock were excluded. Woodmice (Apodemus sylvaticus) were most numerous in such habitats and the majority were infected with B. burgdorferi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号