首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Introduction  In this study, we delineated the apoptotic signaling pathways activated by sodium selenite in NB4 cells. Materials and methods  NB4 cells were treated with 20 μM sodium selenite for different times. The activation of caspases and ER stress markers, ROS levels, mitochondrial membrane potential and cell apoptosis induced by sodium selenite were analyzed by immunoblotting analysis, DCF fluorescence and flow cytometric respectively. siRNA was used to detect the effect of GADD153 on selenite-induced cell apoptosis. Conclusions  Sodium selenite-induced reactive oxygen species generation is an early event that triggers endoplasmic reticulum stress mitochondrial apoptotic pathways in NB4 cells.  相似文献   

2.
Zhushi Li 《FEBS letters》2010,584(11):2291-2297
Following our previous finding that sodium selenite induces apoptosis in human leukemia NB4 cells, we now show that the expression of the critical antioxidant enzyme manganese superoxide dismutase (MnSOD) is remarkably elevated during this process. We further reveal that reactive oxygen species (ROS), especially superoxide radicals, play a crucial role in selenite-induced MnSOD upregulation, with extracellular regulated kinase (ERK) and p53 closely implicated. Specifically, ERK2 translocates into the nucleus driven by ROS, where it directly phosphorylates p53, leading to dissociation of p53 from its inhibitory protein mouse double minute 2 (MDM2). Active p53 directly mediates the expression of MnSOD, serving as the link between ERK2 translocation and MnSOD upregulation.  相似文献   

3.
The mechanisms involved in the anti-carcinogenic activity of selenium remained to be elucidated. In the present study, we examined sodium selenite induced apoptosis and oxidative stress in human acute promyelocytic leukemia cell lines (NB4). Cell growth and viability were assessed by trypan blue exclusion and cell counting; apoptosis by DNA electrophoresis and analysis of intracellular DNA contents; reactive oxygen species and reduced glutathione in the cell were measured by lucigenin dependent chemoluminescent (CL) test and spectrophotometer; mitochondrial transmembrane potential was measured by flow cytometry. Sodium selenite could inhibit the growth and induce apoptosis of NB4 cells. Sodium selenite could increase the production of reactive oxygen species (ROS) in NB4 cells and decrease the level of intracellular reduced glutathione, but caused no change in the activity of antioxidant enzymes, superoxide dismutase (SOD), glutathione peroxidase (GPx). Sodium selenite enhanced the collapse of mitochondrial transmembrane potential (MTP), in parallel with the production of ROS. Finally antioxidant N-acetylcysteine (NAC) could inhibit the ROS production, MTP collapse and apoptosis in NB4 cells. Our results suggested that sodium selenite could induce apoptosis of NB4 cells through mitochondrial change mediated by production of reactive oxygen species within the cells.  相似文献   

4.
Jiang Q  Wang Y  Li T  Shi K  Li Z  Ma Y  Li F  Luo H  Yang Y  Xu C 《Molecular biology of the cell》2011,22(8):1167-1180
Autophagy can protect cells while also contributing to cell damage, but the precise interplay between apoptosis and autophagy and the contribution of autophagy to cell death are still not clear. Previous studies have shown that supranutritional doses of sodium selenite promote apoptosis in human leukemia NB4 cells. Here, we report that selenite treatment triggers opposite patterns of autophagy in the NB4, HL60, and Jurkat leukemia cell lines during apoptosis and provide evidence that the suppressive effect of selenite on autophagy in NB4 cells is due to the decreased expression of the chaperone protein Hsp90 (heat shock protein 90), suggesting a novel regulatory function of Hsp90 in apoptosis and autophagy. Excessive or insufficient expression indicates that Hsp90 protects NB4 cells from selenite-induced apoptosis, and selenite-induced decreases in the expression of Hsp90, especially in NB4 cells, inhibit the activities of the IκB kinase/nuclear factor-κB (IKK/NF-κB) signaling pathway, leading to less nuclear translocation and inactivation of NF-κB and the subsequent weak binding of the becn1 promoter, which facilitates the transition from autophagy to apoptosis. Taken together, our observations provide novel insights into the mechanisms underlying the balance between apoptosis and autophagy, and we also identified Hsp90-NF-κB-Beclin1 as a potential biological pathway for signaling the switch from autophagy to apoptosis in selenite-treated NB4 cells.  相似文献   

5.
The dual signal hypothesis of apoptosis holds that a common signal can activate both apoptotic and proliferative pathways. The fate of a cell is dependent on which of these two pathways predominates. In the MAPK family of kinases, ERK and JNK have been proposed to mediate apoptosis whereas the PI3K-stimulated kinase, Akt/PKB, has been shown to inhibit apoptosis. The object of this study was to determine the role of these kinases in a glioma model of apoptosis. We have previously shown that K252a induces apoptosis and inhibits kinase activity. In this study we confirm these results and shown that the protein tyrosine phosphatase inhibitor sodium vanadate activates ERK, JNK and Akt/PKB, but does not stimulate proliferation. Vanadate did protect T98G cells from K252a-induced apoptosis, an effect that was abolished by addition of the PI3K inhibitor wortmannin. This suggests that PI3K and Akt/PKB may be responsible for mediating vanadate's protective effect on glioma cells. We conclude that the intracellular balance between protein phosphorylation pathways is a critical determinant of both cell proliferation and cell death.  相似文献   

6.
7.
8.
为了探讨酸性鞘磷脂水解酶 (ASM)和MAPK信号通路在UVA诱导的细胞凋亡中的作用 ,用DNA梯形条带 (DNAladder)和荧光显微镜鉴定细胞凋亡 ,Western印迹分析MAPK信号通路的激活情况 .结果显示 :①经UVA照射 ,正常的淋巴母细胞JY出现严重的细胞凋亡 ,而ASM遗传性缺陷的淋巴母细胞MS1 4 1 8出现轻微凋亡 ;给予ASM特异性抑制剂NB6 ,UVA诱导的JY细胞凋亡明显减轻 ,表明UVA诱导的细胞凋亡依赖于ASM .②UVA照射后 ,磷酸化ERK含量在MS1 4 1 8细胞中明显升高 ,在JY细胞中受到抑制 ;UVA照射前给予NB6 ,JY细胞中磷酸化ERK含量上升 ,表明ASM能抑制ERK的激活 .③UVA照射后 ,磷酸化JNK含量在MS1 4 1 8细胞中几乎没有变化 ,而在JY细胞中含量升高 ;UVA照射前给予NB6 ,JY细胞中磷酸化JNK含量没有明显升高 ,表明ASM激活JNK通路 .④NB6对UVA激活的p38MAPK信号通路没有影响 ,表明p38的激活与ASM关系不大 .研究表明 ,UVA诱导的细胞凋亡是通过激活ASM、激活JNK信号通路并抑制ERK信号通路来完成的  相似文献   

9.
10.
Selenium, an essential trace element for humans, has been shown to have anticancer effects. Arsenic, a possibly essential ultratrace element for humans, has been used in the treatment of leukemia. Anticancer effects of selenium and arsenic have been related to their ability to induce apoptosis. Because humans are exposed to diverse trace elements simultaneously, it is important to learn their interrelationship. In this study, we demonstrate that sodium selenite (Na2SeO3) causes apoptosis at 3 μM and necrosis at high concentrations (>3 μM) in HL-60 cells. Similarly, both sodium arsenite (NaAsO2) at 50 μM and sodium arsenate (Na2HAsO4) induce apoptosis at 500 μM and necrosis at higher concentrations (>50 μM and >500 μM, respectively) in HL-60 cells. Arsenite/arsenate, but not selenite, enhances AP-1 DNA-binding activity. This finding indicates different mechanisms through which apoptosis is induced by these two elements. Interestingly, we observed that HL-60 cell necrosis induced by a high concentration (>3 μM) of selenite was essentially inhibited by arsenic (50 μM of NaAsO2 or 500 μM of Na2HAsO4), which resulted in a net effect of apoptosis. Because AP-1 DNA-binding activity was not induced in the presence of a combination of necrotic amount of selenite and apoptotic amount of arsenite/arsenate, the observed apoptosis apparently was through the mechanism used by selenite. Our results suggest, for the first time, that the toxic necrotic effect of selenite can be neutralized by arsenite/arsenate at the cellular level. The U.S. Department of Agriculture, Agricultural Research Service, Northern Plains Area, is an equal opportunity/affirmative action employer and all agency services are available without discrimination. Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products that may also be suitable.  相似文献   

11.
Epigallocatechin-3-gallate (EGCG) is a potent chemopreventive agent in many test systems and has been shown to inhibit tumor promotion and induce apoptosis. In the present study, we determined the effect of vanadate, a potent inhibitor of tyrosine phosphatase, on EGCG-induced apoptosis. Investigation of the mechanism of EGCG or vanadate-induced apoptosis revealed induction of caspase 3 activity and cleavage of phospholipase-gamma1 (PLC-gamma1). Furthermore, vanadate potentiated EGCG-induced apoptosis by mitogen-activated protein kinase (MAPK) signaling pathway. Treatment with EGCG plus vanadate for 24h produced morphological features of apoptosis and DNA fragmentation in U937 cells. This was associated with cytochrome c release, caspase 3 activation, and PLC-gamma1 degradation. EGCG plus vanadate activates multiple signal transduction pathways involved in coordinating cellular responses to stress. We demonstrate a requirement for extracellular signal-regulated protein kinase (ERK), a member of the mitogen-activated protein kinase family in EGCG plus vanadate-induced apoptosis in U937 cells. Elevated ERK activity that contributed to apoptosis by EGCG plus vanadate was supported by PD98059 and U0126, chemical inhibitor of MEK/ERK signaling pathway, prevented apoptosis. Taken together, our finding suggests that ERK activation plays an active role in mediating EGCG plus vanadate-induced apoptosis of U937 cells and functions upstream of caspase activation to initiate the apoptotic signal.  相似文献   

12.
BackgroundMyeloid leukemia is associated with reduced serum zinc and increased intracellular zinc. Our previous studies found that zinc depletion by TPEN induced apoptosis with PML-RARα oncoprotein degradation in acute promyelocytic NB4 cells. The effect of zinc homeostasis on intracellular signaling pathways in myeloid leukemia cells remains unclear.ObjectiveThis study examined how zinc homeostasis affected MAPK and Akt/mTOR pathways in NB4 cells.MethodsWe used western blotting to detect the activation of p38 MAPK, JNK, ERK1/2, and Akt/mTOR pathways in NB4 cells stimulated with the zinc chelator TPEN. Whether the effects of TPEN on these pathways could be reversed by zinc or the nitric oxide donor sodium nitroprusside (SNP) was further explored by western blotting. We used Zinpyr-1 staining to assess the role of SNP on labile zinc levels in NB4 cells treated with TPEN. In additional, we evaluated expressional correlations between the zinc-binding protein Metallothionein-2A (MT2A) and genes related to MAPKs and Akt/mTOR pathways in acute myeloid leukemia (AML) based on the TCGA database.ResultsZinc depletion by TPEN activated p38 and JNK phosphorylation in NB4 cells, whereas ERK1/2 phosphorylation was increased first and then decreased. The protein expression levels of Akt and mTOR were downregulated by TPEN. The nitric oxide donor SNP promotes zinc release in NB4 cells under zinc depletion conditions. We further found that the effects of zinc depletion on MAPK and Akt/mTOR pathways in NB4 cells can be reversed by exogenous zinc supplementation or treatment with the nitric oxide donor SNP. By bioinformatics analyses based on the TCGA database, we demonstrated that MT2A expression was negatively correlated with the expression of JNK, and was positively correlated with the expression of ERK1 and Akt in AML.ConclusionOur findings indicate that zinc plays a critical role in leukemia cells and help understanding how zinc depletion induces apoptosis.  相似文献   

13.
Requirement for ERK activation in cisplatin-induced apoptosis   总被引:22,自引:0,他引:22  
Cisplatin activates multiple signal transduction pathways involved in coordinating cellular responses to stress. Here we demonstrate a requirement for extracellular signal-regulated protein kinase (ERK), a member of the mitogen-activated protein kinase family in mediating cisplatin-induced apoptosis of human cervical carcinoma HeLa cells. Cisplatin treatment resulted in dose- and time- dependent activation of ERK. That elevated ERK activity contributed to cell death by cisplatin was supported by several observations: 1) PD98059 and U0126, chemical inhibitors of the MEK/ERK signaling pathway, prevented apoptosis; 2) pretreatment of cells with TPA, an activator of the ERK pathway, enhanced their sensitivity to cisplatin; 3) suramin, a growth factor receptor antagonist that greatly suppressed ERK activation, likewise inhibited cisplatin-induced apoptosis; and, finally, 4) HeLa cell variants selected for cisplatin resistance showed reduced activation of ERK following cisplatin treatment. Cisplatin-induced apoptosis was associated with cytochrome c release and subsequent caspase-3 activation, both of which could be prevented by treatment with the MEK inhibitors. However, the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone protected HeLa cells against apoptosis without affecting ERK activation. Taken together, our findings suggest that ERK activation plays an active role in mediating cisplatin-induced apoptosis of HeLa cells and functions upstream of caspase activation to initiate the apoptotic signal.  相似文献   

14.
BRCA1-induced apoptosis involves inactivation of ERK1/2 activities   总被引:7,自引:0,他引:7  
Mutation in the BRCA1 gene is associated with an increased risk of breast and ovarian cancer. Recent studies have shown that the BRCA1 gene product may be important in mediating responses to DNA damage and genomic instability. Previous studies have indicated that overexpression of BRCA1 can induce apoptosis or cell cycle arrest at the G(2)/M border in various cell types. Although the activation of JNK kinase has been implicated in BRCA1-induced apoptosis, the role of other members of the mitogen-activated protein kinase family in mediating the cellular response to BRCA1 has not yet been examined. In this study, we monitored the activities of three members of the MAPK family (ERK1/2, JNK, p38) in MCF-7 breast cancer cells and U2OS osteosarcoma cells after their exposure to a recombinant adenovirus expressing wild type BRCA1 (Ad.BRCA1). Overexpression of BRCA1 in MCF-7 cells resulted in arrest at the G(2)/M border; however, BRCA1 expression in U2OS cells induced apoptosis. Although BRCA1 induced JNK activation in both cell lines, there were marked differences in ERK1/2 activation in response to BRCA1 expression in these two cell lines. BRCA1-induced apoptosis in U2OS cells was associated with no activation of ERK1/2. In contrast, BRCA1 expression in MCF-7 cells resulted in the activation of both ERK1/2 and JNK. To directly assess the role of ERK1/2 in determining the cellular response to BRCA1, we used dominant negative mutants of MEK1 as well as MEK1/2 inhibitor PD98059. Our results indicate that inhibition of ERK1/2 activation resulted in increased apoptosis after BRCA1 expression in MCF-7 cells. Furthermore, BRCA1-induced apoptosis involved activation of JNK, induction of Fas-L/Fas interaction, and activation of caspases 8 and 9. The studies presented in this report indicate that the response to BRCA1 expression is determined by the regulation of both the JNK and ERK1/2 signaling pathways in cells.  相似文献   

15.
The mitogen-activated protein kinase/ERK kinase (MEK)/ERK pathway was shown to be constitutively activated in a large number of acute myelogenous leukemia (AML) cells, suggesting the important roles of this pro-survival signaling in leukemogenesis and proliferation of AML cells. This study explored the impact of the MEK inhibitor AZD6244 on the effect of cytarabien (AraC), one of the most commonly used anti-leukemia agents, to induce growth arrest and apoptosis of AML cells. AZD6244 effectively blocked AraC-induced MEK/ERK activation and enhanced its ability to induce growth arrest and apoptosis of NB4 and HL60 cells in parallel with induction of DNA damage as measured by detection of γ-H2AX by Western Blot analysis, resulting in enhanced expression of p21 waf1 and downregulation of c-Myc and Bcl-xl in these cells. Enhanced induction of apoptosis mediated by combination of AZD6244 and AraC was also shown in freshly isolated AML cells (n = 3). Taken together, concomitant administration of AraC and the inhibitor of MEK/ERK signaling may be useful for treatment of individuals with AML.  相似文献   

16.
17.
Jiang Q  Li F  Shi K  Yang Y  Xu C 《BMB reports》2012,45(3):194-199
Autophagy has been suggested as a possible mechanism for non-apoptotic death despite evidence from many species that autophagy represents a survival strategy of cells under stress. From our previous findings that supranutritional doses of sodium selenite induced apoptosis in human leukemia cells, now we show autophagic cell death occurred after selenite exposure in HL60, suggested an alternative mechanism for the potential therapeutic properties of selenite. Additionally, Death-associated Protein Kinase (DAPK) performed a significantly increased expression during this process, concomitantly with gradually decreased phosphorylation at Ser(308). We further reveal that the up-regulation of DAPK which depends on selenite-activated ERK had no effect on autophagy. However, activation of DAPK via PP2A-mediated dephosphorylation at Ser(308) serves as a new strategy for autophagy induction. In conclusion, these results indicate that PP2A-mediated activated DAPK sensitizes HL60 cells to selenite, ultimately triggers autophagic cell death pathway to commit cell demise. [BMB reports 2012; 45(3): 194-199].  相似文献   

18.
19.
We investigated whether phosphatidic acid (PA) can differentiate the promyelocytic leukemia (PML)-retinoic acid receptor alpha (RAR alpha)-expressing acute promyelocytic leukemic cell line, NB4, to dendritic cell (DC)-like cells. Dioctanoyl-PA alone upregulated the expression of DC markers. The expression of DC markers on NB4 cells was potentiated by the overexpression of phospholipase D and upregulation was blocked by the addition of n-butanol, an inhibitor of PA production. The expression of CD11c, CD83, and CCR7 in PA-treated NB4 cells was further increased by tumor necrosis factor (TNF)-alpha treatment. Increased functional capacities were also found in PA-differentiated and TNF-alpha-activated NB4 cells with respect to changes in T-cell proliferation, cytokine production, endocytic activity, and cytolytic capacity against undifferentiated NB4 cells. PA alone increased the phosphorylation of extracellular signal-regulated kinase (ERK)-1/2. The expression of DC markers was downregulated by PD98059, a specific inhibitor of ERK kinase or transient transfection of mutant-ERK. The level of PML-RAR alpha fusion protein was decreased by PA treatment and PD98059 blocked the decrease of PML-RAR alpha. These results suggest that PA induces differentiation of NB4 cells into DC-like cells and that the upregulation of antigen presenting cell markers is mediated by the activation of ERK and the downregulation of PML-RAR alpha levels.  相似文献   

20.
Effects of selenite and selenodiglutathione, an initial metabolite of selenite, on the induction of apoptosis and cytotoxicity were investigated in human promyelocytic leukemia HL-60 cells. Treatment of selenite or selenodiglutathione resulted in concentration-dependent cytotoxicity, measured by lactate dehydrogenase leakage assay, and by tetrazolium salt reduction assay. Selenodiglutathione has been shown to exert more cytotoxic effect than selenite in both assay systems. Time-course study of cellular selenium uptake suggests that the higher cytotoxicity of selenodiglutathione be largely due to faster and greater selenium uptake rate. Treatment with selenite or selenodiglutathione also induced apoptosis in a dose-dependent manner, as detected by enzyme-linked immunosorbent assay and by DNA fragmentation assay. The dose-response data of apoptosis induced by selenite or selenodiglutathione were similar to those of cytotoxicity, implicating a relationship between the induction of apoptosis and cytotoxicity. Zn, which is a well-known inhibitor of apoptosis, dose-dependently blocked not only the induction of apoptosis, but also the membrane damage induced by selenium, corroborating this hypothesis. It was noted that the inhibition of apoptosis by Zn exerted little protective effect on cytotoxicity at higher concentrations of selenium, compared with a perfect protective effect at low concentration of selenium. These results suggest that cytotoxicity induced by selenium may be partially correlated with apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号