首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytochrome P-450 isozyme 2 from rabbit liver microsomes fluoresces upon excitation at 295 nm due to the single tryptophyl residue (Trp121) in the protein. The fluorescence spectrum, which is not altered by the presence of phospholipid or substrates, has a maximum at 335 nm, which suggests that the environment of the residue is hydrophobic. The fluorescence intensity decreases linearly with increase of specific content of the cytochrome preparations, and the holoenzyme was estimated to exhibit, at most, 6% as much fluorescence as the apoenzyme. This indicates that the fluorescence of the tryptophan is quenched by energy transfer to the heme. The distance between the tryptophyl residue and the heme was estimated to be less than 40 A. From enhancement of the fluorescence by methanol and ethanol, 30 to 50% of the Trp residue was found to be accessible to these solvents. On the other hand, the accessibility to iodide and cesium ions, as estimated by quenching effects, is less than 14%. From such evidence, the tryptophyl residue is believed to be partly buried. Since Trp121 is conserved at or near the same position in all mammalian P-450's so far sequenced, the results obtained may be applicable to these related cytochromes as well.  相似文献   

2.
We investigated the structure of the active RecA-DNA complex by analyzing the environment of tyrosine residue 65, which is on the DNA-binding surface of the protein. We prepared a modified RecA protein in which the tyrosine residue was replaced by tryptophan, a natural fluorescent reporter, and measured the change in its fluorescence upon binding of DNA and cofactor. The fluorescence of the inserted tryptophan 65 (Trp65) was centered at 345 nm, indicating a partly exposed residue. Binding cofactor, adenosine 5'-O-3-thiotriphosphate (ATPgammaS), alone at a low salt concentration did not change the fluorescence of Trp65, confirming that the residue is not close to the nucleotide. In contrast, the binding of single-stranded DNA quenched the fluorescence of Trp65 in both the presence and absence of ATPgammaS. Trp65 fluorescence was also quenched upon binding a second DNA strand. The fluorescence change depended upon the presence and absence of ATPgammaS, reflecting the difference in the DNA binding. These results indicate that residue 65 is close to both the first and second DNA strands. The degree of quenching depended upon the base composition of DNA, suggesting that the residue 65 interacts with the DNA bases. Binding of DNA with ATPgammaS as well as binding of ATPgammaS alone at high salt concentration shifted the fluorescence emission peak from 345 to 330 nm, indicating a change from a polar to a non-polar environment. Therefore, the environment change around residue 65 would also be linked to a change in conformation and thus the activation of the protein.  相似文献   

3.
A semi-conserved tryptophan residue ofBacillus subtilistryptophanyl-tRNA synthetase (TrpRS) was previously asserted to be an essential residue and directly involved in tRNATrpbinding and recognition. The crystal structure of theBacillus stearothermophilusTrpRS tryptophanyl-5′-adenylate complex (Trp-AMP) shows that the corresponding Trp91 is buried and in the dimer interface, contrary to the expectations of the earlier assertation. Here we examine the role of this semi-conserved tryptophan residue using fluorescence spectroscopy.B. subtilisTrpRS has a single tryptophan residue, Trp92. 4-Fluorotryptophan (4FW) is used as a non-fluorescent substrate analog, allowing characterization of Trp92 fluorescence in the 4-fluorotryptophanyl-5′-adenylate (4FW-AMP) TrpRS complex. Complexation causes the Trp92 fluorescence to become quenched by 70%. Titrations, forming this complex under irreversible conditions, show that this quenching is essentially complete after half of the sites are filled. This indicates that a substrate-dependent mechanism exists for the inter-subunit communication of conformational changes. Trp92 fluorescence is not efficiently quenched by small solutes in either the apo- or complexed form. From this we conclude that this tryptophan residue is not solvent exposed and that binding of the Trp92 to tRNATrpis unlikely.Time-resolved fluorescence indicates conformational heterogeneity ofB. subtilisTrp92 with the fluorescence decay being best described by three discrete exponential decay times. The decay-associated spectra (DAS) of the apo- and complexed- TrpRS show large variations of the concentration of individual fluorescence decay components. Based on recent correlations of these data with changes in the local secondary structure of the backbone containing the fluorescent tryptophan residue, we conclude that changes observed in Trp92 time-resolved fluorescence originate primarily from large perturbations of its local secondary structure.The quenching of Trp92 in the 4FW-AMP complex is best explained by the crystal structure conformation, in which the tryptophan residue is found in an α-helix. The amino acid residue cysteine is observed clearly within the quenching radius (3.6 Å) of the conserved tryptophan residue. These tryptophan and cysteine residues are neighbors, one helical turn apart. If this local α-helix was disrupted in the apo-TrpRS, this disruption would concomitantly relieve the putative cysteine quenching by separating the two residues. Hence we propose a substrate-dependent local helix-coil transition to explain both the observed time-resolved and steady-state fluorescence of Trp92. A mechanism can be further inferred for the inter-subunit communication involving the substrate ligand Asp132 and a small α-helix bridging the substrate tryptophan residue and the conserved tryptophan residue of the opposite subunit. This putative mechanism is also consistent with the observed pH dependence of TrpRS crystal growth and substrate binding. We observe that the mechanism of TrpRS has a dynamic component, and contend that conformational dynamics of aminoacyl-tRNA synthetases must be considered as part of the molecular basis for the recognition of cognate tRNA.  相似文献   

4.
Structure-activity relationships of recombinant human interleukin 2   总被引:4,自引:0,他引:4  
Structure-activity relationships of recombinant human interleukin 2 were investigated by preparation, purification, and characterization of 21 missense mutants. A key role for residue Phe42 in the high-affinity interaction with receptor was indicated by (a) the reduction of 5-10-fold in binding affinity and bioactivity upon mutation of this residue to Ala and (b) the lack of evidence for conformational perturbation in Phe42----Ala in comparison with the wild-type protein as investigated by intrinsic fluorescence, second-derivative UV spectroscopy, electrophoresis, and reversed-phase HPLC, suggesting that the drop in binding is a direct effect of removal of the aromatic ring. In contrast, the conservative mutations Phe42----Tyr and Phe42----Trp did not cause significant reductions in bioactivity. UV and fluorescence spectra indicated approximately 60% overall exposure to solvent of tyrosines in the wild-type molecule, the tryptophan (residue 121) being buried; fluorescence data also showed that Trp42 in Phe42----Trp is likely to be within 1 nm of Trp121 and about 50% exposed to solvent. Phe44----Ala, Cys105----Ala, and Trp121----Tyr also exhibited reduced bioactivity, but these mutants are conformationally perturbed relative to wild type. None of the remaining mutants had detectably reduced bioactivity, even though several showed signs of altered conformation. Four mutants were recovered in very low yield, probably because of defective refolding.  相似文献   

5.
The fluorescence spectral distributions of four tryptophan residues of hen egg-white lysozyme were analyzed using time-resolved and quenching-resolved fluorescence spectroscopy. Trp62 and Trp108 gave the fluorescence maxima at 352 nm and 342 nm, respectively. The fluorescence of Trp28 and Trp111 occurred only at 300-360 nm and they were observed as an unresolved emission band with a maximum and shoulder at 320 nm and 330 nm. The fluorescence quenching and decay parameters of each tryptophan residue reconfirmed that Trp62 was fully exposed to the solvent but Trp108 was sealed in the cage of the peptide chains and furthermore showed that Trp28 and Trp111 are under the influence of the larger fluctuational motion at the hydrophobic matrix box. The fluorescence responses of each tryptophan residue to the lysozyme-ligand interaction suggested that the internal fluctuation was reduced by the binding of ligand to give a distorted conformation to the hydrophobic matrix box region.  相似文献   

6.
A truncated, 432 residue long, Bordetella pertussis adenylate cyclase expressed in Escherichia coli was analyzed for intrinsic fluorescence properties. The two tryptophans (Trp69 and Trp242) of adenylate cyclase, each situated in close proximity to residues important for catalysis or binding of calmodulin (CaM), produced overlapping fluorescence emission bands upon excitation at 295 nm. CaM, alone or in association with low concentrations of urea, induced important modifications in the spectra of adenylate cyclase such as shifts of the maxima and change in the shape of the bands. From these changes and from the fluorescence spectrum of a modified form of adenylate cyclase, in which a valine residue was substituted for Trp242, it was deduced that, upon binding of CaM to the wild-type adenylate cyclase, only the environment of Trp242 was affected. The fluorescence maximum of this residue, which is more exposed to the solvent than Trp69 in the absence of CaM, is shifted by 13 nm to shorter wavelength upon interaction of protein with its activator. Trypsin cleaved adenylate cyclase into two fragments, one carrying the catalytic domain, and the second carrying the CaM-binding domain (Ladant et al., 1989). The isolated peptides conserved most of the environment around their single tryptophan residues, as in the intact adenylate cyclase, which suggests that the two domains of truncated B. pertussis adenylate cyclase also conserved most of their three-dimensional structure in the isolated forms.  相似文献   

7.
Steady-state and time-resolved fluorescence, as well as phosphorescence measurements, were used to resolve the luminescence properties of the three individual tryptophan residues of barnase. Assignment of the fluorescence properties was performed using single-tryptophan-containing mutants and the results were compared with the information available from the study of wild-type and two-tryptophan-containing mutants (Willaert, Lowenthal, Sancho, Froeyen, Fersht, Engelborghs, Biochemistry 1992;31:711-716). The fluorescence and the phosphorescence emission of wild-type barnase is dominated by Trp35, although Trp71 has the strongest intrinsic fluorescence when present alone. Fluorescence emission of these two tryptophan residues is blue-shifted and pH-independent. The fluorescence decay parameters of Trp94 are pH-dependent, and an intramolecular collision frequency of 2 to 5 x 10(9) s(-1) between Trp94 and His18 is calculated. Fluorescence emission of Trp94 is red-shifted. Fluorescence anisotropy decay reveals the local mobility of the individual tryptophan residues and this result correlates well with their phosphorescence properties. Trp35 and Trp71 display a single phosphorescence lifetime, which reflects the rigidity of their environment. Surface Trp94 does not exhibit detectable phosphorescence emission. The existence of energy transfer between Trp71 and Trp94, as previously detected by fluorescence measurements, is also observed in the phosphorescence emission of barnase. Dynamic quenching causes the phosphorescence intensity to be protein-concentration dependent. In addition, fluorescence anisotropy shows concentration dependency, and this can be described by the formation of trimers in solution.  相似文献   

8.
Fluorescence and NMR spectral data have suggested an interaction between the single tryptophan in cyclophilin (CyP) and its high affinity ligand cyclosporin A (CsA). To study this interaction, a site mutation of Trp121 to Ala was introduced into human cyclophilin (CyP) and the encoded protein was expressed in E. coli. The Ala121 mutant was shown to catalyze the peptidyl-prolyl cis-trans isomerase (rotomase) reaction with several peptide substrates, albeit at less than ten percent the rate of the purified recombinant human CyP. Values for the apparent inhibition constant (Ki,app) of cyclosporin A with the human CyP and the Ala121 mutant were determined to be 1.6 +/- 0.4 nM and 640 +/- 90 nM, respectively by tight-binding inhibition analysis. The greater loss of affinity for CsA binding (400-fold) than for rotomase catalysis (20 fold) suggests that the catalytic and CsA binding properties associated with CyP can be decoupled as has been observed with an homologous protein found in E. coli (Liu, J. & Walsh, C.T. (1990) Proc. Natl. Acad. Sci. USA 87, 4028-4032).  相似文献   

9.
The fluorescence signal of the single tryptophan residue (Trp69) of Fusarium solani pisi cutinase is highly quenched. However, prolonged irradiation of the enzyme in the tryptophan absorption band causes an increase of the tryptophan fluorescence quantum yield by an order of magnitude. By using a combination of NMR spectroscopy and chemical detection of free thiol groups with a sulfhydryl reagent we could unambiguously show that the unusual fluorescence behaviour of Trp69 in cutinase is caused by the breaking of the disulfide bond between Cys31 and Cys109 upon irradiation, while the amide-aromatic hydrogen bond between Ala32 and Trp69 remains intact. This is the first example of tryptophan mediated photoreduction of a disulfide bond in proteins.  相似文献   

10.
The nanosecond dynamics of the single tryptophan, Trp10, of HPr from Streptomyces coelicolor, HPrsc, has been monitored at different pHs. Time-resolved fluorescence methods and DOSY measurements have been used to map the compactness of the protein. At low pHs, where a molten globule-like species has been described, the correlation times from fluorescence showed an abrupt change as the pH was increased. When the protein was folded (above pH 4), two correlation times were observed, which remained practically constant up to pH 9.5. The long correlation time, around 7.5 ns, corresponds to the global rotational motion of the protein, since this value is in agreement with that determined theoretically from hydrodynamic measurements. The short correlation time, around 1.4 ns, must report on fast movements of the protein segment containing the tryptophan residue. On the other hand, fluorescence lifetimes showed the same abrupt change as the correlation times at low pH, but, in addition, a sigmoidal change with a pKa approximately 4.3 was also observed. On the basis of the modeled structure of HPrsc, this last transition could be due to the proximity of Glu12 to Trp10. The changes monitored by the fluorescence lifetimes agree with those observed previously by steady-state fluorescence, CD, and ANS binding experiments. Taken together, these data suggest a multistate equilibrium during folding of HPrsc starting from low pHs.  相似文献   

11.
12.
W C Lam  D H Tsao  A H Maki  K A Maegley  N O Reich 《Biochemistry》1992,31(43):10438-10442
The interactions of an arsenic (III) reagent, (CH3)2AsSCH2CONH2, with two Escherichia coli RI methyltransferase mutants, W183F and C223S, have been studied by phosphorescence, optically detected magnetic resonance, and fluorescence spectroscopy. The phosphorescence spectrum of the W183F mutant containing only one tryptophan at position 225 reveals a single 0,0-band that is red-shifted by 9.8 nm upon binding of As(III). Fluorescence titration of W183F with (CH3)2AsSCH2CONH2 produces a large tryptophan fluorescence quenching. Analysis of the quenching data points to a single high-affinity As(III) binding site that is associated with the fluorescence quenching. Triplet-state kinetic measurements performed on the perturbed tryptophan show large reductions in the lifetimes of the triplet sublevels, especially that of the T chi sublevel. As(III) binding to the enzyme at a site very close to the Trp225 residue induces an external heavy-atom effect, showing that the perturber atom is in van der Waals contact with the indole chromophore. In the case of the C223S mutant, a single tryptophan 0,0-band also is observed in the phosphorescence spectrum, but no change occurs upon addition of the As(III) reagent. Fluorescence titration of C223S with As(III) shows essentially no quenching of tryptophan fluorescence, in contrast with W183F. These results, along with previous triplet-state and biochemical studies on the wild-type enzyme [Tsao, D. H.H., & Maki, A. H. (1991) Biochemistry 30, 4565-4572], show that As(III) binds with high affinity to the Cys223 residue and that the Trp225 side chain is located close enough to that of Cys223 to produce a heavy-atom perturbation when As(III) is bound.  相似文献   

13.
The calcium-binding protein isolated from the sarcoplasm of the muscles of the sand worm Nereis diversicolor has four EF-hands and three active binding sites for Ca(2+) or Mg(2+). Nereis diversicolor sarcoplasmic calcium-binding protein contains three tryptophan residues at positions 4, 57, and 170, respectively. The Wt protein shows a very limited fluorescence increase upon binding of Ca(2+) or Mg(2+). Single-tryptophan-containing mutants were produced and purified. The fluorescence titrations of these mutants show a limited decrease of the affinity for calcium, but no alterations of the cooperativity. Upon adding calcium, Trp170 shows a strong fluorescence increase, Trp57 an extensive fluorescence decrease, and Trp4 shows no fluorescence change. Therefore mutant W4F/W170F is ideally suited to analyze the fluorescence titrations and to study the binding mechanism. Mutations of the calcium ligands at the z-position in the three binding sites show no effect at site I and a total loss of cooperativity at sites III and IV. The quenching of Trp57 upon calcium binding is dependent on the presence of arginine R25, but this residue is not just a simple dynamic quencher. The role of the salt bridge R25-D58 is also investigated.  相似文献   

14.
Glutathione S-transferase P (GST-P) exists as a homodimeric form and has two tryptophan residues, Trp28 and Trp38, in each subunit. In order to elucidate the role of the two tryptophan residues in catalytic function, we examined intrinsic fluorescence of tryptophan residues and effect of chemical modification by N-bromosuccinimide (NBS). The quenching of intrinsic fluorescence was observed by the addition of S-hexylglutathione, a substrate analogue, and the enzymatic activity was totally lost when single tryptophan residue was oxidized by NBS. To identify which tryptophan residue is involved in the catalytic function, each tryptophan was changed to histidine by site-directed mutagenesis. Trp28His GST-P mutant enzyme showed a comparable enzymatic activity with that of the wild type one. Trp38His mutant neither was bound to S-hexylglutathione-linked Sepharose nor exhibited any GST activity. These findings indicate that Trp38 is important for the catalytic function and substrate binding of GST-P.  相似文献   

15.
Three Trp variants of lysyl-tRNA synthetase from Bacillus stearothermophilus, in which either one or both of the two Trp residues within the enzyme (Trp314 and Trp332) were substituted by a Phe residue, were produced by site-directed mutagenesis without appreciable loss of catalytic activity. The following two phenomena were observed with W332F and with the wild-type enzyme, but not with W314F: (1) the addition of L-lysine alone decreased the protein fluorescence of the enzyme, but the addition of ATP alone did not; (2) the subsequent addition of ATP after the addition of excess L-lysine restored the fluorescence to its original level. Fluorometry under various conditions and UV-absorption spectroscopy revealed that Trp314, which was about 20A away from the lysine binding site and was shielded in a non-polar environment, was solely responsible for the fluorescence changes of the enzyme in the L-lysine activation reaction. Furthermore, the microenvironmental conditions around the residue were made more polar upon the binding of L-lysine, though its contact with the solvent was still restricted. It was suggested that Trp314 was located in a less polar environment than was Trp332, after comparison of the wavelengths at the peaks of fluorescence emission and of the relative fluorescence quantum yields. Trp332 was thought, based on the fluorescence quenching by some perturbants and the chemical modification with N-bromosuccinimide, to be on the surface of the enzyme, whereas Trp314 was buried inside. The UV absorption difference spectra induced by the L-lysine binding indicated that the state of Trp314, including its electrostatic environment, changed during the process, but Trp332 did not change. The increased fluorescence from Trp314 at acidic pH compared with that at neutral pH suggests that carboxylate(s) are in close proximity to the Trp314 residue.  相似文献   

16.
Calreticulin is a Ca2+ -binding chaperone that resides in the lumen of the endoplasmic reticulum and is involved in the regulation of intracellular Ca2+ homeostasis and in the folding of newly synthesized glycoproteins. In this study, we have used site-specific mutagenesis to map amino acid residues that are critical in calreticulin function. We have focused on two cysteine residues (Cys(88) and Cys(120)), which form a disulfide bridge in the N-terminal domain of calreticulin, on a tryptophan residue located in the carbohydrate binding site (Trp(302)), and on certain residues located at the tip of the "hairpin-like" P-domain of the protein (Glu(238), Glu(239), Asp(241), Glu(243), and Trp(244)). Calreticulin mutants were expressed in crt(-/-) fibroblasts, and bradykinin-dependent Ca2+ release was measured as a marker of calreticulin function. Bradykinin-dependent Ca2+ release from the endoplasmic reticulum was rescued by wild-type calreticulin and by the Glu(238), Glu(239), Asp(241), and Glu(243) mutants. The Cys(88) and Cys(120) mutants rescued the calreticulin-deficient phenotype only partially ( approximately 40%), and the Trp(244) and Trp(302) mutants did not rescue it at all. We identified four amino acid residues (Glu(239), Asp(241), Glu(243), and Trp(244)) at the hairpin tip of the P-domain that are critical in the formation of a complex between ERp57 and calreticulin. Although the Glu(239), Asp(241), and Glu(243) mutants did not bind ERp57 efficiently, they fully restored bradykinin-dependent Ca2+ release in crt(-/-) cells. This indicates that binding of ERp57 to calreticulin may not be critical for the chaperone function of calreticulin with respect to the bradykinin receptor.  相似文献   

17.
The human MTH1 antimutator protein hydrolyzes mutagenic oxidized nucleotides, and thus prevents their incorporation into DNA and any subsequent mutation. We have examined its great selectivity for oxidized nucleotides by analyzing the structure of the protein and its interaction with nucleotides, as reflected in the fluorescence of its tryptophan residues. The binding of nucleotides decreased the intensity of MTH1 protein fluorescence and red-shifted the emission peak, indicating that at least one tryptophan residue is close to the binding site. Oxidized nucleotides (2-OH-dATP and 8-oxo-dGTP) produced a larger decrease in fluorescence intensity than did unoxidized nucleotides, and MTH1 protein had a much higher binding affinity for oxidized nucleotides. Deconvolution of protein fluorescence by comparison of its quenching by positively (Cs(+)) and negatively (I(-)) charged ions indicated that the MTH1 tryptophan residues are in two different environments. One class of tryptophan residues is exposed to solvent but in a negatively charged environment; the other class is partially buried. While the binding of unoxidized nucleotides quenches the fluorescence of only class 1 tryptophan residue(s), the binding of oxidized nucleotides quenched that of class 2 tryptophan residue(s) as well. This suggests that selectivity is due to additional contact between the protein and the oxidized nucleotide. Mutation analysis indicated that the tryptophan residue at position 117, which is in a negative environment, is in contact with nucleotides. The negatively charged residues in the binding site probably correlate with the finding that nucleotide binding requires metal ions and depends upon their nature. Positively charged metal ions probably act by neutralizing the negatively charged nucleotide phosphate groups. (c) 2002 Elsevier Science Ltd.  相似文献   

18.
J Liu  C M Chen  C T Walsh 《Biochemistry》1991,30(9):2306-2310
The human T-cell protein cyclophilin shows high affinity for and is the proposed target of the major immunosuppressant drug cyclosporin A (CsA). Cyclophilin also has peptidyl prolyl cis-trans isomerase activity that is inhibited by CsA with an IC50 of 6 nM, while by contrast a homologous PPIase from Escherichia coli has been found to be much less sensitive to CsA, shown here to be 500-fold less potent at an IC50 of 3000 nM. This E. coli rotamase lacks the single highly conserved tryptophan residue of eukaryotic cyclophilins, and we show here that mutation of the natural F112 to W112 enhances E. coli rotamase susceptibility to CsA inhibition by 23-fold. Correspondingly, the human W121 mutations to F121 or A121 yield cyclophilins with 75- and 200-fold decreased sensitivity to CsA, while kcat/Km values of rotamase activity in a tetrapeptide assay drop only 2- and 13-fold, respectively. This complementary gain and loss of CsA sensitivity to mutation to or from tryptophan validate the indole side chain as a major determinant in immunosuppressant drug recognition and the separation of PPIase catalytic efficiency from CsA affinity.  相似文献   

19.
ATP binding to myosin subfragment 1 (S1) induces an increase in tryptophan fluorescence. Chymotryptic rabbit skeletal S1 has 5 tryptophan residues (Trp113, 131, 440, 510 and 595), and therefore the identification of tryptophan residues perturbed by ATP is quite complex. To solve this problem we resolved the complex fluorescence spectra into log-normal and decay-associated components, and carried out the structural analysis of the microenvironment of each tryptophan in S1. The decomposition of fluorescence spectra of S1 and S1-ATP complex revealed 3 components with maxima at ca. 318, 331 and 339-342 nm. The comparison of structural parameters of microenvironment of 5 tryptophan residues with the same parameters of single-tryptophan-containing proteins with well identified fluorescence properties applying statistical method of cluster analysis, enabled us to assign Trp595 to 318 nm, Trp440 to 331 nm, and Trp 13, 131 and 510 to 342 nm spectral components. ATP induced an almost equal increase in the intensities of the intermediate (331 nm) and long-wavelength (342 nm) components, and a small decrease in the short component (318 nm). The increase in the intermediate component fluorescence most likely results from an immobilization of some quenching groups (Met437, Met441 and/or Arg444) in the environment of Trp440. The increase in the intensity and a blue shift of the long component might be associated with conformational changes in the vicinity of Trp510. However, these conclusions can not be extended directly to the other types of myosins due to the diversity in the tryptophan content and their microenvironments.  相似文献   

20.
Lathrop B  Gadd M  Biltonen RL  Rule GS 《Biochemistry》2001,40(11):3264-3272
Changes in the affinity of calcium for phospholipase A2 from Agkistrodon piscivorus piscivorus during activation of the enzyme on the surface of phosphatidylcholine vesicles have been investigated by site-directed mutagenesis and fluorescence spectroscopy. Changes in fluorescence that occur during lipid binding and subsequent activation have been ascribed to each of the three individual Trp residues in the protein. This was accomplished by generating a panel of mutant proteins, each of which lacks one or more Trp residues. Both Trp21, which is found in the interfacial binding region, and Trp119 show changes in fluorescence upon protein binding to small unilamellar zwitterionic vesicles or large unilamellar vesicles containing sufficient anionic lipid. Trp31, which is near the Ca2+ binding loop, exhibits little change in fluorescence upon lipid bilayer binding. A change in the fluorescence of the protein also occurs during activation of the enzyme. These changes arise from residue Trp31 as well as residues Trp21 and Trp119. The calcium dependence of the fluorescence change of Trp31 indicates that the affinity of the enzyme for calcium increases at least 3 orders of magnitude upon activation. These studies suggest either that a change in conformation of the enzyme occurs upon activation or that the increase in calcium affinity reflects formation of a ternary complex of calcium, enzyme, and substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号